The invention relates to a valvetrain for an internal combustion engine, in particular of a motor vehicle.
Such a valvetrain for an internal combustion engine, in particular of a motor vehicle, is already known from DE 10 2007 037 746 A1. The valvetrain comprises at least one camshaft that can be rotated around an axis of rotation in a direction of rotation and at least two cam pieces arranged on the camshaft, which each have at least two cams for actuating a respective gas exchange valve and are rotationally fixedly connected to the camshaft. Thus, the cam pieces can be driven via the camshaft and can thus be rotated around the axis of rotation in the direction of rotation. Moreover, an actuator is provided by means of which the cam pieces can be shifted in the axial direction of the camshaft in relation to it.
The object of the present invention is to further develop a valvetrain of the kind mentioned above in such a way that the installation space requirement of the valvetrain can be kept particularly minimal.
In order to develop a valvetrain of the kind specified herein in such a way that the installation space requirement of the valvetrain can be kept particularly minimal, it is provided according to the invention that a first of the cam pieces has a first rib outwardly protruding from a first base body of the first cam piece in the radial direction of the camshaft, the rib extending along the direction of rotation in a or across a first angle region of the first cam piece or the camshaft. The second cam piece has a second rib outwardly protruding from a second base body of the second cam piece in the radial direction of the camshaft, the rib extending along the direction of rotation in a or across a second angle region of the second cam piece attached to the first angle region.
Here, the actuator common to the cam pieces is coupled to the first cam piece via the first rib during a respective first part of a respective rotation of the camshaft and decoupled from the second cam piece, such that, in particular during the respective first part or while the first cam piece is coupled to the actuator via the first rib, the first cam piece can be shifted via the first rib by means of the actuator, while a shifting of the second cam piece caused by the actuator ceases. Moreover, the actuator is coupled to the second cam piece via the second rib during a respective second part of the respective rotation of the camshaft following on from the first part and is decoupled from the first cam, such that, in particular while the second cam shaft is coupled to the actuator via the second rib or during the second part, the second cam piece can be shifted via the second rib by means of the actuator, while a shifting of the first cam piece caused by the actuator ceases.
In relation to the second cam piece or the second rib, the first part of the respective rotation is a first decoupling phase, since the actuator is decoupled from the second rib and thus from the second cam piece during the respective first part. In relation to the first cam piece or in relation to the first rib, the second part is a second decoupling phase, since the actuator is decoupled from the first rib and thus from the first cam piece during the respective decoupling phase. Thus, the actuator is decoupled from the respective rib and thus from the respective cam piece during the respective decoupling phase, such that a mechanical forced decoupling is provided. During an operation of the internal combustion engine formed, for example, as a reciprocating piston engine, the camshaft carries out several successive and complete rotations, for example, wherein each rotation respectively has the first part and the second part. Thus, the actuator is periodically mechanically forcibly decoupled from the respective cam piece during the operation. However, in the decoupling phase, a switching process can be at least introduced or carried out, since the actuator is coupled to one of the cam pieces in the decoupling phase, the cam piece being able to be correspondingly shifted by means of the actuator.
Since guide tracks or guide connecting links that are provided, for example, on the cam pieces and into which a pin of the actuator, for example, would have to engage, are not used to cause the shifting of the cam pieces, but since the ribs outwardly protruding in the radial direction are used to cause the shifting of the cam pieces, whose thickness running in the axial direction of the camshaft can be kept particularly minimal, the installation space requirement of the valvetrain according to the invention can be kept particularly minimal. In other words, the ribs formed, for example, as crescent ribs or as crescent-shaped ribs, can be designed to be very narrow in the axial direction, such that the ribs require a very minimal installation space on the camshaft. As a result, the valvetrain according to the invention can also be used, for example, for such internal combustion engines and, in particular, in cylinder heads of such internal combustion engines, which have a very small cylinder spacing. Moreover, a production that is laborious in terms of time and cost of guide tracks, also called switching connecting links, in the cam pieces can be avoided, such that the valvetrain according to the invention can be produced cost-effectively. At the same time, a valve stroke switch according to the so-called sliding cam principle can be realized by means of the valvetrain according to the invention, since the cam pieces can be shifted in the radial direction of the camshaft in relation to this in order to thus be able to switch between different valve strokes, for example.
In order to be able to keep the installation space requirement, the costs and the weight of the valvetrain particularly low, it is provided in a further embodiment of the invention that a third angle region, attached to the first angle region in the direction of rotation, of the first cam piece is free from the first rib, wherein a fourth angle region, attached to the second angle region in the direction of rotation, of the second cam piece is free from the second rib. This means that the first rib does not run into or is not arranged in the third angle region, wherein the second rib does not run or is not arranged in the fourth angle region.
A further embodiment is characterized in that the respective cam piece can be shifted between a respective first position and a respective second position. In the first position of the first cam piece, a first gas exchange valve is actuated, for example, by means of a first of the cams of the first cam piece, in particular when the camshaft is rotated around the axis of rotation. In the second position of the first cam piece, the first gas exchange valve, for example, is actuated by means of the second cam of the first cam piece, wherein the first cam and the second cam of the first cam piece are different from each other by means of a respective stroke of the first gas exchange valve that can be caused by means of the cams of the first cam piece and also referred to as the valve stroke.
In the first position of the second cam piece, a second gas exchange valve, for example, is actuated by means of the first of the cams of the second cam piece. In the second position of the second cam piece, the second gas exchange valve, for example, is actuated by means of the second cam of the second cam piece, wherein the cams, for example, of the second cam piece differ from one another in that strokes that differ from one another and are also called valve strokes of the second gas exchange valve can be caused by means of the cams of the second cam piece. In this way, a valve stroke switching can be achieved by shifting the cam pieces.
In principle, it is conceivable that the first cam piece, for example, is shifted out of the first position into the second position or vice versa by means of the actuator inside a first rotation of the camshaft, wherein the second cam piece is shifted out of the first position into the second position or vice versa inside a second rotation following the first rotation by means of the actuator.
However, it has been shown to be particularly advantageous when both the first cam piece and the second cam piece can be shifted out of the respective first position into the respective second position or vice versa by means of the actuator inside the same rotation. Thus, a valve stroke switching, for example, for the first gas exchange valve and for the second gas exchange valve can be realized within the same rotation, such that a particularly advantageous operation can be depicted in a manner saving installation space.
In order to keep the installation space requirement as minimal as possible, it is provided in a further embodiment of the invention that the ribs are arranged on a common first plane running perpendicularly to the axial direction of the camshaft, when the cam pieces are simultaneously in the first positions. Furthermore, the ribs are arranged on a common second plane running perpendicularly to the axial direction of the camshaft and spaced apart from the first plane in the axial direction, when the cam pieces are simultaneously in the second positions. In doing so, the installation space requirement can be kept minimal.
A further embodiment is characterized in that the valvetrain has a first form-fit element and a second form-fit element, which can be shifted by means of the actuator in a movement direction running in parallel to the axial direction. When the cam pieces are simultaneously in the first positions, the first rib, during the first part, and the second rib, during the second part of the rotation, interact in a form-fit manner with the first form-fit element, and a form-fit interaction of the ribs with the second form-fit element ceases during the rotation. During the rotation, both the first rib and the second rib, for example, thus engage in the first form-fit element during the respective parts, wherein an engagement of the ribs in the second form-fit element ceases during this rotation.
When the cam pieces are simultaneously in the second positions, the first rib, during the first part, and the second rib, during the second part, interact in a form-fit manner with the second form-fit element, and a form-fit interaction of the ribs with the first form-fit element ceases during the rotation. Thus, for example during the rotation, the ribs engage in a form-fit manner in the second form-fit element, wherein, during this rotation, an engagement of the ribs in the first form-fit element ceases. If, for example, the first cam piece is in its first position, while the second cam piece is simultaneously in its second position, then the first rib interacts with the first form-fit element during the first part, the second rib interacts with the second form-fit element during the second part, a form-fit interaction of the first rib with the second form-fit element ceases during the rotation, and a form-fit interaction of the second rib with the first form-fit element ceases during the rotation. In doing so, a particularly adequate valve stroke switch can be realized in a manner saving installation space.
In order to keep the number of parts, the weight and the installation space requirement in a particularly low range, it is provided in a further embodiment of the invention that the cam pieces can be shifted both in a first direction and in a second direction opposite to the first direction via the ribs by means of the actuator. Thus, the cam pieces can be moved, in particular shifted, from the respective first position into the respective second position and back from the respective second position into the respective first position by means of one and the same actuator.
In a particularly advantageous embodiment of the invention, the actuator common to the cam pieces has an engine common to the cam pieces, by means of which engine the cam pieces can be shifted via the ribs. As part of the invention, the engine is generally to be understood to mean a device or machine, which converts a type of energy into kinetic energy to shift the cam pieces, for example, and, in doing so, performs mechanical work, by means of which the respective cam piece can be shifted or is shifted. Here, the engine is an electric engine and thus can be operated electrically, such that the type of energy mentioned above is electrical energy. However, the engine can alternatively be formed as a pneumatic or hydraulic engine. The idea underlying this embodiment is to allocate the cam pieces that are formed separately from one another and can be shifted relative to one another to the engine common to the cam pieces, such that exactly one engine is provided for shifting the cam pieces. The knowledge underlying this embodiment is that one actuator and thus one engine is conventionally provided per cam piece, such that two actuators and two engines are provided when using two cam pieces. However, according to the invention, it is now provided to shift the two cam pieces by means of one and the same actuator or by means of one and the same engine, whereby the installation space requirement can be kept within a particularly low range.
A particularly advantageous embodiment is characterized in that the form-fit elements and, via these, the cam pieces can be shifted by means of the engine in the first direction and in the second direction, whereby the cam pieces can be shifted from the respective first position into the respective second position and from the respective second position into the respective first position by means of the engine. Thus, a particularly compact construction of the valvetrain can be realized.
Finally, it has been shown to be particularly advantageous when the angle region is greater than 90 degrees, in particular greater than 100 degrees and preferably greater than 120 degrees. Preferably, the angle region is greater than 160 degrees, in particular greater than 170 degrees, wherein the angle region is preferably at most 180 degrees, in particular at most 179 degrees. In doing so, a sufficiently long period of time is available during the respective rotation of the camshaft in order to shift the respective cam piece within the respective rotation, in particular in order to shift the two cam pieces within the respective rotation.
Further advantages, features and details of the invention emerge from the description below of a preferred exemplary embodiment and by means of the drawings. The features and feature combinations mentioned above in the description and the features and feature combination mentioned below in the description of the Figures and/or shown only in the Figures can be used not only in the respectively specified combination, but also in other combinations or individually without leaving the scope of the invention.
In the Figures, the same or functionally identical elements are provided with the same reference numerals.
Sectionally in a schematic side view,
The valvetrain 10 further comprises an actuator 26 common to the cam pieces 18 and 20 by means of which the cam pieces 18 and 20 can be shifted in the axial direction of the camshaft 12 relative to the camshaft 12. The axial direction of the camshaft 12 here coincides with the axis of rotation 14. The respective cam piece 18 or 20 can be shifted in the axial direction of the camshaft 12 relative to this between a respective first position shown in
As a result, in the first position of the cam piece 20, the second gas exchange valve is actuated by means of the cam 22 of the cam piece 20, wherein, in the second position of the cam piece 20, the second gas exchange valve is actuated by means of the cam 24 of the cam piece 20. A respective first stroke of the respective gas exchange valve is caused or can be caused by means of the respective cam 22. A respective second stroke of the respective gas exchange valve can be caused or is caused by means of the respective cam 24. Here, the second stroke, for example, is greater than the first stroke, such that the respective gas exchange valve can be opened or is opened further by means of the respective cam 24 than by means of the respective cam 22. The respective gas exchange valve here carries out the respective stroke on its way out of the respective closed position into the respective open position. By carrying out the respective first stroke, the respective gas exchange valve reaches a first of the open positions out of the respective closed position, wherein the respective gas exchange valve reaches the respective second position from the respective closed position by carrying out the respective second stroke. Since the second stroke is greater than the first stroke, the respective first open position is between the closed position and the respective second open position.
Since the different strokes can be moved by means of the cams 22 and 24, a valve stroke switch can be achieved by shifting the respective cam piece 18 or 20 into the respective positions, whereby an efficient and effective operation of the internal combustion engine can be achieved. In order to now be able to keep the installation space requirement of the valvetrain 10 particularly minimal, the cam piece 18 also called the first cam piece has a first rib 30 protruding outwardly from a first base body 28 of the cam piece 18 in the radial direction of the camshaft 12, the rib extending in the direction of rotation into a or across a first angle region of the first cam piece 18. The radial direction of the camshaft 12 runs perpendicularly to the axial direction and is illustrated in
The actuator 26 is an actuator common to the cam pieces 18 and 20, such that both the cam piece 18 and the cam piece 20 can be shifted out of the respective first position into the respective second position and out of the respective second position into the respective first position by means of the actuator 26. The actuator 26 common to the cam pieces 18 and 20 is coupled in a form-fit manner to the first cam piece 18 via the first rib 30 during a respective first part of a respective rotation of the cam shaft 12 and decoupled from the second cam piece 20, such that—while the actuator is coupled to the cam piece 18 via the rib 30 and decoupled from the cam piece 20—the first cam piece 18 can be shifted via the first rib 30 by means of the actuator 26, while a shifting of the second cam piece 20 caused by the actuator 26 ceases.
During a respective second part, following the first part, of the respective rotation of the camshaft 12, the actuator 26 is coupled to the second cam piece 20 via the second rib 36 and decoupled from the first cam piece 18, such that—while the actuator 26 is coupled to the second cam piece 20 via the rib 36 and decoupled from the first cam piece 18—the second cam piece 20 can be shifted via the second rib 36 by means of the actuator 26, while a shifting of the first cam piece 18 caused by the actuator 26 ceases.
Here, the valvetrain 10 has a first form-fit element 38 and a second form-fit element 40, which is arranged next to the form-fit element 38 in a movement direction 42 running in parallel to the axial direction. The form-fit elements 38 and 40 can here be translationally moved in the movement direction 42 by means of the actuator 26, wherein the form-fit elements 38 and 40 can be translationally moved, i.e., shifted, in a first direction illustrated by an arrow 44 and coinciding with the movement direction and in a second direction illustrated in
The form-fit elements 38 and 40 can here be translationally moved, i.e., shifted, together by means of the actuator 26 in the movement direction between a first position shown in
Overall, it can be seen in
The actuator 26 is, for example, a linear actuator, by means of which the form-fit elements 38 and 40 can be shifted in the movement direction. Furthermore, it is conceivable that the engine 52 is a rotary engine which has, for example, a rotor that can be rotated around the movement direction 42. A threaded spindle, for example, can be driven by means of the rotor and thus can be rotated around the movement direction 42, wherein the form-fit elements 38 and 40, for example, are screwed onto the threaded spindle. Furthermore, the form-fit elements 38 and 40, for example, are secured against a rotation around the movement direction, such that a relative rotation of the threaded spindle between the threaded spindle and the form-fit elements 38 and 40 is converted into a translational movement of the form-fit elements 38 and 40 in the movement direction 42. If thus the rotor and thus the threaded spindle, for example, are rotated in a first direction of rotation, then the form-fit elements 38 and 40 are shifted in the first direction, for example. If, for example, the rotor and thus the threaded spindle are rotated in a second direction opposite to the first direction of rotation, then the form-fit elements 38 and 40, for example, are shifted in the second direction. In this way, the cam pieces 18 and 20 can be shifted forwards and backwards in the movement direction, i.e., in the first direction and in the second direction, by means of the common engine 52.
Overall, it can be seen that, when the cam pieces 18 and 20 are simultaneously in the first positions, the first rib 30 interacts in a form-fit manner with the first form-fit element 38 during the first part and the second rib 36 does so during the second part, and a form-fit interaction of the ribs 30 and 36 with the second form-fit element 40 ceases during the rotation. When the cam pieces 18 and 20 are simultaneously in the second positions, the first rib 30 interacts in a form-fit manner with the second form-fit element 40 during the first part and the second rib 36 does so during the second part, and a form-fit interaction of the ribs 30 and 36 with the first form-fit element 38 ceases during the respective rotation. If the first cam piece is in its first position and if the second cam piece is simultaneously in its second position, the first rib interacts with the first form-fit element during the first part, the second rib interacts with the second form-fit element during the second part, a form-fit interaction of the first rib with the second form-fit element ceases during the rotation and a form-fit interaction of the second rib 36 with the first form-fit element 38 ceases during the rotation.
Furthermore, it can be seen that the two ribs 30 and 36, for example formed as crescent ribs, can be formed to be very narrow in the axial direction, whereby they require only a small construction space on the camshaft 12. Thus, the valvetrain 10 can also be used in such cylinder heads or internal combustion engines, which have a very small cylinder spacing. Moreover, a production of cost-intensive switching connecting links in the cam pieces 18 and 20 can be avoided, such that the valvetrain 10 can be produced cost-effectively.
Number | Date | Country | Kind |
---|---|---|---|
10 2018 000 435.0 | Jan 2018 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/084481 | 12/12/2018 | WO | 00 |