The present invention relates to variable vane arrangement for positioning at a gas inlet of a turbo-machine such as a turbo-charger.
Turbochargers are well-known devices for supplying air to the intake of an internal combustion engine at pressures above atmospheric pressure (boost pressures). A conventional turbocharger essentially comprises an exhaust gas driven turbine wheel mounted on a rotatable shaft within a turbine housing. Rotation of the turbine wheel rotates a compressor wheel mounted on the other end of the shaft within a compressor housing. The compressor wheel delivers compressed air to the inlet manifold of the engine, thereby increasing engine power. The turbocharger shaft is conventionally supported by journal and thrust bearings, including appropriate lubricating systems, located within a central bearing housing connected between the turbine and compressor wheel housing.
In known turbochargers, the turbine stage comprises a turbine chamber within which the turbine wheel is mounted; an annular inlet passageway defined between facing radial walls arranged around the turbine chamber; an inlet arranged around the inlet passageway; and an outlet passageway extending axially from the turbine chamber. The passageways and chambers communicate such that pressurised exhaust gas admitted to the inlet chamber flows through the inlet passageway to the outlet passageway via the turbine and rotates the turbine wheel.
It is known to improve turbine performance by providing vanes, referred to as nozzle vanes, in the inlet passageway so as to deflect gas flowing through the inlet passageway towards the direction of rotation of the turbine wheel. Each vane is generally laminar, and is positioned with one radially outer surface arranged to oppose the motion of the exhaust gas within the inlet passageway, i.e. the circumferential component of the motion of the exhaust gas in the inlet passageway is such as to direct the exhaust gas against the outer surface of the vane.
Turbines may be of a fixed or variable geometry type. Variable geometry type turbines differ from fixed geometry turbines in that the geometry of the inlet passageway can be varied to optimise gas flow velocities over a range of mass flow rates so that the power output of the turbine can be varied to suit varying engine demands.
In one form of a variable geometry turbocharger, a nozzle ring carries a plurality of axially extending vanes, which extend into the air inlet, and through respective apertures (“slots”) in a shroud which forms a radially-extending wall of the air inlet. The nozzle ring is axially movable by an actuator to control the width of the air passage. Movement of the nozzle ring also controls the degree to which the vanes project through the respective slots.
An example of such a variable geometry turbocharger is shown in
Gas flowing from the inlet chamber 2 to the outlet passageway 3 passes over a turbine wheel 9 and as a result torque is applied to a turbocharger shaft 10 supported by a bearing assembly 14 that drives a compressor wheel 11. Rotation of the compressor wheel 11 about rotational axis 100 pressurizes ambient air present in an air inlet 12 and delivers the pressurized air to an air outlet 13 from which it is fed to an internal combustion engine (not shown). The speed of the turbine wheel 9 is dependent upon the velocity of the gas passing through the annular inlet passageway 4. For a fixed rate of mass of gas flowing into the inlet passageway, the gas velocity is a function of the width of the inlet passageway 4, the width being adjustable by controlling the axial position of the nozzle ring 5. As the width of the inlet passageway 4 is reduced, the velocity of the gas passing through it increases.
The nozzle ring 5 supports an array of circumferentially and equally spaced vanes 7, each of which extends across the inlet passageway 4. The vanes 7 are orientated to deflect gas flowing through the inlet passageway 4 towards the direction of rotation of the turbine wheel 9. When the nozzle ring 5 is proximate to the annular shroud 6 and to the facing wall, the vanes 7 project through suitably configured slots in the shroud 6 and into the recess 8. Each vane has an “inner” major surface which is closer to the rotational axis, and an “outer” major surface which is further away.
A pneumatically or hydraulically operated actuator 16 is operable to control the position of the nozzle ring 5 within an annular cavity 19 defined by a portion 26 of the turbine housing via an actuator output shaft (not shown), which is linked to a stirrup member (not shown). The stirrup member in turn engages axially extending guide rods (not shown) that support the nozzle ring 5. Accordingly, by appropriate control of the actuator 16 the axial position of the guide rods and thus of the nozzle ring 5 can be controlled. It will be appreciated that electrically operated actuators could be used in place of a pneumatically or hydraulically operated actuator.
The nozzle ring 5 has axially extending inner and outer annular flanges 17 and 18 respectively that extend into the annular cavity 19, which is separated by a wall 27 from a chamber 15. Inner and outer sealing rings 20 and 21, respectively, are provided to seal the nozzle ring 5 with respect to inner and outer annular surfaces of the annular cavity 19, while allowing the nozzle ring 5 to slide within the annular cavity 19. The inner sealing ring 20 is supported within an annular groove 22 formed in the inner surface of the cavity 19 and bears against the inner annular flange 17 of the nozzle ring 5, whereas the outer sealing ring 21 is supported within an annular groove 23 provided within the annular flange 18 of the nozzle ring 5 and bears against the radially outermost internal surface of the cavity 19. It will be appreciated that the inner sealing ring 20 could be mounted in an annular groove in the flange 17 rather than as shown, and/or that the outer sealing ring 21 could be mounted within an annular groove provided within the outer surface of the cavity rather than as shown. A first set of pressure balance apertures 25 is provided in the nozzle ring 5 within the vane passage defined between adjacent apertures, while a second set of pressure balance apertures 24 are provided in the nozzle ring 5 outside the radius of the nozzle vane passage.
In known variable geometry turbo-machines which employ vanes projecting through slots in a shroud, a clearance is provided between the vanes and the edges of the slots to permit thermal expansion of the vanes as the turbocharger becomes hotter. As viewed in the axial direction, the vanes and the slots have the same shape, but the vanes are smaller than the slots. In a typical arrangement, the vanes are positioned with an axial centre line of each vane in a centre of the corresponding slot, such that in all directions away from the centre line transverse to the axis of the turbine, the distance from the centre line to the surface of the vane is the same proportion of the distance from the centre line to the edge of the corresponding slot. The clearance between the vanes and the slots is generally arranged to be at least about 0.5% of the distance of a centre of the vanes from the rotational axis (the “nozzle radius”) at room temperature (which is here defined as 20 degrees Celsius) around the entire periphery of the vane (for example, for a nozzle radius of 46.5 mm the clearance may be 0.23 mm, or 0.5% of the nozzle radius). This means that, if each of the vanes gradually thermally expands perpendicular to the axial direction, all points around the periphery of the vane would touch a corresponding point on the slot at the same moment. At all lower temperatures, there is a clearance between the entire periphery of the vane and the edge of the corresponding slot.
The present invention aims to provide new and useful vane assemblies for use in a turbo-machine, as well as new and useful turbo-machines (especially turbo-chargers) incorporating the vane assemblies.
In general terms, the present invention proposes that in the turbine of a turbomachine of the kind in which, at a gas inlet vanes project through slots in a shroud to a degree controlled by an actuator, one surface of each vane substantially conforms to the shape of a corresponding surface of the the corresponding slot, so as to enable a smaller clearance between them.
In one form of the invention, a smaller clearance is provided between the vanes and the surfaces of the slots in locations on the inner surface face of each vane, than on an outer surface of each vane.
In an alternative form of the invention, a smaller clearance may be provided between the vanes and the surfaces of the slots in locations on the outer surface of the vane, than on the inner surface of each vane.
In either case, a surface of each vane is formed to have a profile very similar to that of a facing edge of the corresponding shroud slot, so that the vane can be positioned closely against the edge of the slot. The clearance on that side of the vane may be so small as to inhibit, or even substantially prevent, leakage of gas between the vane and the slot on that side of the vane.
The invention is motivated by an observation made by present inventors that, in turbine arrangements in which vanes project from a nozzle ring through slots in a shroud, gas can leak through the clearances between the shroud and the vanes, and this causes significant losses in efficiency because gas can pass from the outer surface of the vane to the inner surface of the vane. By closing the gap between the vane and the slot on one side of the vane, this leakage can be significantly reduced.
Specifically, a first aspect of the invention provides a turbine having:
Preferably, the conformal portion of the vane surface includes at least 80%, and more preferably at least 90% of the length of the median line.
In this document the statement that two lines diverge from each other by no more than a certain distance x may be understood to mean that the lines can be placed such that the lines do not cross and such that no point along either one of the lines is further than a distance x from the other of the lines.
The conformal portion of the vane surface may include a portion of one of the convex end portions of the vane surface. If the conformal surface is on the inner face of the vane, this is typically the conformal portion at a leading edge of the vane. If the conformal surface is on the outer face of the vane, this is typically the trailing edge of the vane. Preferably, the conformal portion of the vane surface includes at least the portion of the convex end portion of the vane surface between the first major vane surface and the median line.
Due to the conformity of the profiles of the corresponding portions of the conformal portion of the vane surface of the vane and the corresponding portion of the surface of the slot, those portions can be arranged in close proximity. The range of positions in which the vane can be positioned relative to the corresponding slot is limited by the fact that the nozzle ring and shroud can only be moved axially and/or rotated about the axis. It may be further limited by the coupling mechanism which couples the nozzle ring to the shroud. Preferably, at room temperature, the corresponding portions of the conformal portion of the vane surface of the vane and the corresponding portion of the surface of the slot can be positioned with a gap of no more than 0.35%, no more than 0.3%, no more than 0.2% or even no more than 0.1% of the nozzle radius (e.g. for a 48.1 mm nozzle radius, a gap of no more than 0.17 mm, no more than 0.1 mm, or even no more than 0.05 mm) between them along the whole of their respective lengths. Thus, leakage of gas between the vane inner surface and the slot inner surface can be reduced.
Note that this is in contrast to the known vane and slot arrangement discussed above, in which the vane and slot have the same shape as viewed in the axial direction, but have different sizes at room temperature, so that each portion of the vane surface of has a different radius of curvature from the nearest portion of the slot surface.
More preferably, the conformal portion of the vane surface extends along at least 80%, or at least 85%, of the length of the median line, and preferably along at least 90% of the length of the median line. Preferably, the profile of the conformal portion of the vane surface diverges from the profile of the corresponding portion of the slot surface by no more than 0.2% of the nozzle radius (e.g. 0.1 mm for a 48.1 mm nozzle radius) throughout their respective lengths.
In some embodiments, the conformal portion of the vane is positionable in contact with the corresponding portion of the edge of the slot along substantially the whole of the length of the conformal portion. For example, there may be more than two points of contact between them, and the maximum distance of any point of the conformal portion of the vane surface from the slot surface is no greater than 0.35%, 0.3% or even 0.2% of the nozzle radius. For example, in the case of a nozzle radius of 48.1 mm, the maximum distance of any point of the conformal portion of the vane surface from the slot surface may be no greater than 0.17 mm, 0.15 mm or even 0.10 mm.
At temperatures higher than room temperature, the vanes and shroud will experience thermal expansion. Since the clearance between the conformal portion of the vane surface and the corresponding portion of the slot surface is small, at high temperatures expansion may bring the vane and the slot into contact, or even press them together, which would impede axial movement of the nozzle ring. However, flexibility in the support structure which supports the vanes in relation to the shroud surface may be enough to permit the vane to retract away from the inner surface of the shroud, to prevent the respective surfaces being pressed together with high force.
Thus, the invention makes possible a turbine in which the vane and slots are, or can be, positioned such that on average over the conformal portion of the vane surface, the gap between the vane inner surface and the slot inner surface at room temperature is no more than 20%, and preferably no more than 10% or even 5%, of the gap between the vane outer surface and the slot outer surface; or, conversely, the gap between the vane outer surface and the slot outer surface is no more than 20%, and preferably no more than 10% or even 5%, of the gap between the vane inner surface and the slot inner surface.
Embodiments of the invention will now be described for the sake of example only, with reference to the following drawings in which:
Referring to
The axis of the shaft about which the turbine wheel 9 (not shown in
Viewed in this axial direction, the substantially-planar annular nozzle ring 5 encircles the axis 100. From the nozzle ring 5, vanes 7 project in the axial direction. Defining a circle 70 centred on the axis 100 and passing through the centroids of the profiles of the vanes 7, we can define the nozzle radius 71 as the radius of the circle 70.
The nozzle ring 5 is moved axially by an actuator (not shown in
The actuator exerts a force on the nozzle ring 5 via two axially-extending guide rods. In
The location, as viewed in the axial direction, at which a second of the guide rods is connected to the nozzle ring 5 is shown as 31. The connection between the nozzle ring 5 and the second guide rod is due to a second bracket (not visible in
Holes 24, 25 are balance holes provided in the nozzle ring for pressure equalisation. They are provided to achieve a desirable axial load (or force) on the nozzle.
Facing the nozzle ring 5, is the shroud 6 illustrated in
As viewed in the axial direction, each vane 7 has a median line 51 which extends from one end of the vane to the other (half way between the vane inner and outer surfaces 41, 42 when viewed in the axial direction), and this median line has both a radial and a circumferential component. We refer to the surface of the slot which the vane inner surface 41 faces as the slot inner surface 46, and the surface of the slot which the vane outer surface 42 faces as the slot outer surface 47. As shown in
Turning to
In contrast to the known vanes of
To facilitate this, the vane surface and slot surface are formed with a conformal portion 145 which extends along at least about 80% of the length of the median line 151, or even at least 85% or 90% of the length of the median line 151. The conformal portion 145 of the vane surface in
In use, various elements of the turbine expand as they become larger. Optionally the material of the nozzle ring 5, including the vanes 107, and the material of the shroud 6 may have the same coefficient of thermal expansion. For example, they may be formed of the same material. This means that both may expand in the same proportions as the temperature of the turbine increases, so that the clearance between the vanes 107 and the slot 130 remains around the entire periphery of the vane 107.
It may happen, however, that the vanes 107 and shroud 6 expand in different proportions (for example, because they are formed from different materials and/or experience different temperatures). Due to the coupling of the nozzle ring 5 to the rods illustrated in
Turning to
By contrast,
Turning to
Number | Date | Country | Kind |
---|---|---|---|
1619347.6 | Nov 2016 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2017/053413 | 11/13/2017 | WO | 00 |