The present invention relates to a vane compressor.
Conventionally, a common vane compressor is proposed (refer to, e.g., Patent Literature 1). The vane compressor has a structure in which a vane is fitted in a vane groove formed at one location or each of a plurality of locations in a rotor portion of a rotor shaft (unitary formation of the columnar rotor portion that rotates within a cylinder and a shaft that transmits torque to the rotor portion being referred to as the rotor shaft), and a vane tip slides while contacting the inner peripheral surface of the cylinder.
A different vane compressor is proposed (refer to, e.g., Patent Literature 2). In the vane compressor, an inside of a rotor shaft is formed to be hollow, and a fixed shaft for vanes is disposed in the inside of the rotor shaft. The vanes are rotatably attached to the fixed shaft. Further, each vane is held rotatably with respect to a rotor portion through a pair of semicircular-bar-shaped supporting members in the vicinity of an outer peripheral part of the rotor portion.
Patent Literature 1: JP 10-252675 A (Page 4 and FIG. 1)
Patent Literature 2: JP 2000-352390 A (Page 6 and FIG. 1)
In the conventional common vane compressor (e.g., Patent Literature 1), the direction of the vane is restricted by the vane groove formed in the rotor portion of the rotor shaft. The vane is held to constantly have the same inclination with respect to the rotor portion. Therefore, an angle formed between the vane and the inner peripheral surface of the cylinder changes along with rotation of the rotor shaft. Thus, it is necessary to form the radius of a circular arc formed by the vane tip to be smaller than the radius of the inner peripheral surface of the cylinder in order for the vane tip to make contact with all around the inner peripheral surface of the cylinder.
In the vane compressor where the vane tip slides while contacting the inner peripheral surface of the cylinder, the vane tip having a greatly different radius from that of the inner peripheral surface slides. Thus, between the two components (the cylinder and the vane), a fluid lubrication state, in which an oil film is formed and the vane tip slides through the oil film, does not occur but rather a boundary lubrication state occurs. Generally, while a friction coefficient of a lubrication state is around 0.001 to 0.005 in the fluid lubrication state, the friction coefficient greatly increases to be approximately 0.05 or more in the boundary lubrication state.
In the structure of the conventional common vane compressor, the vane tip slides on the inner peripheral surface of the cylinder in the boundary lubrication state. Sliding resistance is therefore high, leading to a great reduction of the compressor efficiency due to an increase in machine loss. There is also a problem that the vane tip and the inner peripheral surface of the cylinder tend to abrade to make it difficult to ensure long life of the vane and the cylinder. Then, the conventional vane compressor has been so designed that a pressing force of the vane against the inner peripheral surface of the cylinder is reduced as much as possible.
As a mode for improving the above-mentioned problems, there has been proposed a method (e.g., Patent Literature 2). In this method, the inside of the rotor portion is formed to be hollow. Then, the fixed shaft for rotatably supporting the vanes at the center of the inner peripheral surface of the cylinder is provided in the inside. Further, each vane is held through the supporting members in the vicinity of the outer peripheral part of the rotor portion so that each vane is rotatable with respect to the rotor portion.
With this arrangement, the vanes are rotatively supported at the center of the inner peripheral surface of the cylinder. Therefore, the vane longitudinal direction constantly coincides with the normal direction of the inner peripheral surface of the cylinder. The radius of the inner peripheral surface of the cylinder and the radius of a circular arc formed by each vane tip may be therefore formed to be approximately equal to each other so that each vane tip portion is along the inner peripheral surface of the cylinder. Each vane tip and the inner peripheral surface of the cylinder may be therefore formed not to be in contact with each other. Alternatively, even if the vane tip and the inner peripheral surface of the cylinder contact with each other, a fluid lubrication state with a sufficient film may be produced. The sliding state of each vane tip portion, which is the problem of the conventional vane compressor, may be thereby improved.
In the method of Patent Literature 2, however, the inside of the rotor portion is formed to be hollow, thus making it difficult to provide torque to the rotor portion or to rotatively support the rotor portion. In Patent Literature 2, end plates are provided at both end surfaces of the rotor portion. As the end plate on one side needs to transmit power from the rotary shaft, the end plate on the one side is in the shape of a disk, and the rotary shaft is connected to the center of the end plate. The end plate on the other side needs to be formed not to interfere with rotation ranges of the vane fixed shaft and the vane axis support member. Thus, it is necessary to form the end plate on the other side to be in the shape of a ring with a hole opened at the center portion thereof. Therefore, it is necessary to form a portion for rotatively supporting each end plate to have a diameter larger than that of the rotary shaft, causing a problem that bearing sliding loss increases.
A space formed between the rotor portion and the inner peripheral surface of the cylinder is narrow so that compressed air does not leak. High precision is therefore required for the outer diameter and the rotation center of the rotor portion. The rotor portion and the end plates are, however, formed of separate components. Thus, there is a problem that a distortion which may occur by fastening the rotor portion to the end plates, a coaxial gap between the rotor portion and the end plates, or the like may lead to degradation of precision of the outer diameter or the rotation center of the rotor portion.
The present invention has been made in order to solve the problems as described above, and provides a vane compressor which will be described below.
(1) Firstly, a vane compressor that, in order to reduce bearing sliding loss of a rotary shaft and reduce gas leakage loss by narrowing a space formed between a rotor portion and the inner peripheral surface of a cylinder, includes a plurality of vanes in which, a mechanism where the vanes rotate about the center of the cylinder, the mechanism being necessary for performing a compression operation such that the normal to a circular arc formed by each vane tip portion and the normal to the inner peripheral surface of the cylinder are constantly approximately coincident with each other, is implemented by unitarily forming the rotor portion and the rotary shaft. This mechanism is implemented without using, for the rotor portion, end plates that may degrade precision of the outer diameter or the rotation center of the rotor portion.
(2) Secondly, a vane compressor in which, by applying the above-mentioned mechanism, gas leakage from a space between each vane tip portion and the inner peripheral surface of the cylinder is minimized while keeping each vane tip portion from being in contact with the inner peripheral surface of the cylinder.
(3) Thirdly, a vane compressor in which, while achieving the above-mentioned mechanism, another mechanism where the vanes are rotatable and movable in the rotor portion is implemented by a method for enabling sliding in a fluid lubrication state.
A vane compressor according to the present invention includes:
an approximately cylindrical cylinder whose both axial ends are open;
a cylinder head and a frame that close the both axial ends of the cylinder;
a rotor shaft including a columnar rotor portion that rotates in the cylinder and a shaft portion that transmits torque to the rotor portion; and
a plurality of vanes installed in the rotor portion, each of the plurality of vanes having a tip portion formed into a circular arc shape facing outward, wherein
each of the plurality of vanes is held to be constantly in a normal direction of an inner peripheral surface of the cylinder or is held to constantly have a fixed inclination with respect to the normal direction of the inner peripheral surface of the cylinder so that a compression operation is performed in a state where a normal to the circular arc shape formed by the tip portion of each of the plurality of vanes and a normal to the inner peripheral surface of the cylinder are constantly approximately coincident with each other,
the plurality of vanes are rotatably and movably supported with respect to the rotor portion in the rotor portion,
a concave portion or a ring-shaped groove being concentric with an inner diameter of the cylinder is formed in an end surface of each of the cylinder head and the frame on a side of the cylinder,
a pair of vane aligners are fitted in the concave portion or the ring-shaped groove, each of the vane aligners including a plate-like projection or a groove at a partial-ring-shaped end surface thereof, and
the plate-like projection or the groove is fitted in a groove or a projection provided at each of the plurality of vanes.
In the vane compressor according to the present invention, by unitarily forming the rotor portion and the rotary shaft, a mechanism where the vanes rotate about the center of the cylinder, the mechanism being necessary for performing a compression operation such that the normal to a circular arc formed by each vane tip portion and the normal to the inner peripheral surface of the cylinder are constantly approximately coincident with each other, can be implemented. Bearing sliding loss can be therefore reduced by supporting the rotary shaft by bearings having a small diameter. Further, precision of the outer diameter or the rotation center of the rotor portion is improved. A space formed between the rotor portion and the inner peripheral surface of the cylinder can be thereby narrowed to reduce gas leakage loss.
The compression element 101 and an electric motor element 102 for driving this compression element 101 are stored in a hermetic container 103 in the vane compressor 200 (hermetic type) shown in
The electric motor element 102 for driving the compression element 101 is composed of a brushless DC motor, for example. The electric motor element 102 includes a stator 21 fixed to an inner periphery of the hermetic container 103 and a rotor 22 that is disposed inside the stator 21 and uses a permanent magnet. Electric power is supplied to the stator 21 from a glass terminal 23 fixed to the hermetic container 103 by welding.
The compression element 101 sucks a refrigerant of a low-pressure into a compression chamber from a suction portion 26 and compresses the sucked refrigerant. The compressed refrigerant is discharged in the hermetic container 103, passes through the electric motor element 102, and is then discharged to an outside (high-pressure side of a refrigerating cycle) from a discharge pipe 24 fixed to (welded at) the upper portion of the hermetic container 103. The vane compressor 200 (hermetic type) may be either a high-pressure type compressor of high pressure inside the hermetic container 103, or a low-pressure type compressor of low pressure inside the hermetic container 103. This embodiment shows a case where the number of vanes (which are a first vane 9 and a second vane 10 in
Since this embodiment is characterized by the compression element 101, the compression element 101 will be described below in detail. Although a reference symbol is assigned to each component constituting the compression element 101 in
As shown in
(1) Cylinder 1: The whole shape of the cylinder 1 is approximately cylindrical, and both axial end portions of the cylinder 1 are open. A suction port 1a is open in an inner peripheral surface 1b of the cylinder 1.
(2) Frame 2: The frame 2 has a longitudinal section approximately in the shape of a letter T. A portion of the frame 2 contacting the cylinder 1 is approximately in the shape of a disk, and closes one opening portion (on the upper side of the cylinder 1 in
(3) Cylinder Head 3: The cylinder head 3 has a longitudinal section approximately in the shape of a letter T (refer to
(4) Rotor Shaft 4: The rotor shaft 4 has a structure in which a rotor portion 4a, upper and lower rotary shaft portions 4b and 4c are unitarily formed. The rotor portion 4a rotates inside the cylinder 1 about a central axis that is eccentric to the central axis of the cylinder 1. The rotary shaft portions 4b and 4c are respectively supported by the bearing portion 2b of the frame 2 and the bearing portion 3b of the cylinder head 3. Bush holding portions 4d and 4e and vane relief portions 4f and 4g each having an approximately circular cross-section and penetrating in the axial direction are formed in the rotor portion 4a. The bush holding portion 4d and the vane relief portion 4f are communicated, and the bush holding portion 4e and the vane relief portion 4g are communicated. The bush holding portion 4d and the bush holding portion 4e are disposed at substantially symmetrical positions, and the vane relief portion 4f and the vane relief portion 4g are disposed at substantially symmetrical positions (refer to
(5) Vane Aligners 5 and 7: Each of the vane aligners 5 and 7 is a partial-ring-shaped component. A vane holding portion 5a, which is a quadrangular plate-like projection, is installed upright on one of axial end surfaces (on the lower side in
(6) Vane Aligners 6 and 8: Each of the vane aligners 6 and 8 is a partial-ring-shaped component. A vane holding portion 6a, which is a quadrangular plate-like projection, is installed upright on one of axial end surfaces (on the upper side in
(7) First Vane 9: The first vane 9 is in the shape of an approximately quadrangular plate. A tip portion 9a located on the side of the inner peripheral surface 1b of the cylinder 1 is formed into a circular arc shape facing outward, and the radius of the circular arc shape is formed to be approximately equal to the radius of the inner peripheral surface 1b of the cylinder 1. Slit-like back side grooves 9b are formed in the back side of the first vane 9 which is opposite to the inner peripheral surface 1b of the cylinder 1, over the fitting length of the vane holding portion 5a of the vane aligner 5 and over the fitting length of the vane holding portion 6a of the vane aligner 6. The back side grooves 9b may be provided as one over the entire axial length of the first vane 9.
(8) Second Vane 10: The second vane 10 is in the shape of an approximately quadrangular plate. A tip portion 10a located on the side of the inner peripheral surface 1b of the cylinder 1 is formed into a circular arc shape facing outward, and the radius of the circular arc shape is formed to be approximately equal to the radius of the circle formed by the inner peripheral surface 1b of the cylinder 1. Slit-like back side grooves 10b are formed in the back side of the second vane 10 which is opposite to the inner peripheral surface 1b of the cylinder 1, over the fitting length of the vane holding portion 7a of the vane aligner 7 and over the fitting length of the vane holding portion 8a of the vane aligner 8. The back side grooves 10b may be provided as one over the entire axial length of the second vane 10.
(9) Bushes 11 and 12: A pair of the bushes 11 are each formed into an approximately semicolumnar shape. The pair of the approximately semicolumnar bushes 11 are fitted in the bush holding portion 4d of the rotor shaft 4. The plate-like first vane 9 is held inside the bushes 11 so that the first vane 9 may rotate and move in an approximately centrifugal direction (centrifugal direction from the center of the inner peripheral surface 1b of the cylinder 1) with respect to the rotor portion 4a. A pair of the bushes 12 are each formed into an approximately semicolumnar shape. The pair of the approximately semicolumnar bushes 12 are fitted in the bush holding portion 4e of the rotor shaft 4. The plate-like second vane 10 is held inside the bushes 12 so that the second vane 10 may rotate and move in the approximately centrifugal direction (centrifugal direction from the center of the inner peripheral surface 1b of the cylinder 1) with respect to the rotor portion 4a.
The vane holding portions 5a and 6a of the vane aligners 5 and 6 are fitted in the back side grooves 9b of the first vane 9, and the vane holding portions 7a and 8a of the vane aligners 7 and 8 are fitted in the back side grooves 10b of the second vane 10. The directions of the first vane 9 and the second vane 10 are thereby restricted such that the normal to the circular arc formed by the tip of each of the first vane 9 and the second vane 10 and the normal to the inner peripheral surface 1b of the cylinder 1 are constantly coincident with each other.
Operations will now be described. The rotary shaft portion 4b of the rotor shaft 4 receives rotative power from a driving portion of the electric motor element 102 or the like (or engine in the case of the engine-driven type), so that the rotor portion 4a rotates in the cylinder 1. Along with rotation of the rotor portion 4a, the bush holding portions 4d and 4e disposed in the vicinity of the outer periphery of the rotor portion 4a move on the circumference of a circle centering on the rotary shaft portion 4b of the rotor shaft 4. Then, the pair of bushes 11 held in the bush holding portion 4d and the pair of bushes 12 held in the bush holding portion 4e, the first vane 9 rotatably held in the pair of bushes 11, and the second vane 10 rotatably held in the pair of bushes 12 also rotate together with the rotor portion 4a.
The plate-like vane holding portion 5a (projecting portion) of the partial-ring-shaped vane aligner 5 and the plate-like vane holding portion 6a (projecting portion) of the partial-ring-shaped vane aligner 6 are slidably fitted in the back side grooves 9b formed in the back side of the first vane 9, so that the orientation of the first vane 9 (the vane longitudinal orientation) is restricted in the normal direction of the inner peripheral surface 1b of the cylinder 1. The vane aligner 5 is rotatably fitted in the vane aligner holding portion 2a (in
The plate-like vane holding portion 7a (projecting portion) of the partial-ring-shaped vane aligner 7 and the plate-like vane holding portion 8a (projecting portion) of the partial-ring-shaped vane aligner 8 are slidably fitted in the back side grooves 10b formed in the back side of the second vane 10, so that the orientation of the second vane 10 (the vane longitudinal orientation) is restricted in the normal direction of the inner peripheral surface 1b of the cylinder 1. The vane aligner 7 is rotatably fitted in the vane aligner holding portion 2a (in
The first vane 9 is pressed in the direction of the inner peripheral surface 1b of the cylinder 1 due to a pressure difference between the tip portion 9a and the back side grooves 9b (when the vane compressor 200 has a structure in which the refrigerant of a high pressure or an intermediate pressure is guided to a back side space of the first vane 9), a spring (not shown), a centrifugal force, or the like. Then, the tip portion 9a of the first vane 9 slides along the inner peripheral surface 1b of the cylinder 1. During this sliding of the tip portion 9a, the radius of the circular arc formed by the tip portion 9a of the first vane 9 is approximately equal to the radius of the inner peripheral surface 1b of the cylinder 1, and the normal to the circular arc formed by the tip portion 9a of the first vane 9 and the normal to the inner peripheral surface 1b of the cylinder 1 are substantially coincident with each other. Thus, a sufficient oil film is formed between the tip portion 9a of the first vane 9 and the inner peripheral surface 1b of the cylinder 1 to produce a fluid lubrication state. The same also holds true for the second vane 10.
The compression principle of the vane compressor 200 in this embodiment is approximately similar to that of a conventional vane compressor.
Further, the first vane 9 slides on the inner peripheral surface 1b of the cylinder 1 at one location, and the second vane 10 slides on the inner peripheral surface 1b of the cylinder 1 at one location. Three spaces (which are a suction chamber 13, an intermediate chamber 14, and a compression chamber 15) are thereby formed in the cylinder 1. The suction port 1a (communicated with a low-pressure side of the refrigerating cycle) is open to the suction chamber 13. The compression chamber 15 is communicated with the discharge port 2c (which is formed in the frame 2, for example, but which may be formed in the cylinder head 3) that is closed by a discharge valve not shown except when discharging is performed. The intermediate chamber 14 is communicated with the suction port 1a up to a certain rotation angle range. Then, there is a rotation angle range where the intermediate chamber 14 is communicated with none of the suction port 1a and the discharge port 2c. Thereafter, the intermediate chamber 14 is communicated with the discharge port 2c.
The suction port 1a is provided between the closest point and a point A where the tip portion 9a of the first vane 9 slides on the inner peripheral surface 1b of the cylinder 1 at the “90-degree angle” (e.g., at a location of approximately 45 degrees). The suction port 1a opens in the range from the closest point to the point A. The suction port 1a is just denoted as “suck” in
The discharge port 2c is located in the vicinity of and at a predetermined distance leftward from the closest point where the rotor portion 4a of the rotor shaft 4 and the inner peripheral surface 1b of the cylinder 1 are closest (e.g., at a location of approximately 30 degrees). The discharge port 2c is just denoted as “discharge” in
At the “0-degree angle” in
At the “45-degree angle” in
At the “90-degree angle” in
At the “135-degree angle” in
Then, the second vane 10 approaches the discharge port 2c. When the pressure of the compression chamber 15 exceeds the high pressure (including a pressure necessary for opening the discharge valve not shown) of the refrigerating cycle, the discharge valve opens, so that the refrigerant in the compression chamber 15 is discharged in the hermetic container 103.
When the second vane 10 passes by the discharge port 2c, a small quantity of the high pressure refrigerant remains (becomes a loss) in the compression chamber 15. Then, when the compression chamber 15 disappears at the “180-degree angle” (not shown), this high pressure refrigerant changes to a low pressure refrigerant in the suction chamber 13. At the “180-degree angle”, the suction chamber 13 transitions to the intermediate chamber 14, and the intermediate chamber 14 transitions to the compression chamber 15. The compression operation is thereafter repeated.
As described above, the volume of the suction chamber 13 gradually increases due to rotation of the rotor shaft 4, so that the suction chamber 13 continues to suck in the gas. The suction chamber 13 thereafter transitions to the intermediate chamber 14. The volume of the intermediate chamber 14 gradually increases partway through the process of sucking in the gas, so that the intermediate chamber 14 continues to suck in the gas. Partway through the process of sucking in the gas, the volume of the intermediate chamber 14 reaches its maximum, and then the intermediate chamber 14 is not communicated with the suction port 1a. Suction of the gas in the intermediate chamber 14 is then finished. The volume of the intermediate chamber 14 thereafter gradually decreases, so that the gas is compressed. Then, the intermediate chamber 14 transitions to the compression chamber 15. The compression chamber 15 then continues to compress the gas. The gas, which has been compressed to a predetermined pressure, is discharged from a discharge port (e.g., the discharge port 2c) formed in the portion of the cylinder 1, the frame 2 or the cylinder head 3 opening to the compression chamber 15.
In this embodiment, a mechanism where the first vane 9 and the second vane 10 rotate about the center of the cylinder 1, the mechanism being necessary for performing a compression operation such that the normal to the circular arc formed by each of the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10, and the normal to the inner peripheral surface 1b of the cylinder 1 are constantly approximately coincident with each other, is implemented by a structure in which the rotary shaft portions 4b and 4c are unitarily formed with the rotor portion 4a. The mechanism is implemented without using, for the rotor portion 4a, end plates that may degrade precision of the outer diameter or the rotation center of the rotor portion 4a. Therefore, bearing sliding loss can be reduced by supporting the rotary shaft portions 4b and 4c by the bearing portions 2b and 3b each having a small diameter. Further, the precision of the outer diameter or the rotation center of the rotor portion 4a is improved. A space formed between the rotor portion 4a and the inner peripheral surface 1b of the cylinder 1 can be thereby narrowed to reduce gas leakage loss. Thus, there is an effect of obtaining the vane compressor 200 with a high efficiency.
Further, as compared with a conventional common vane compressor, the vane compressor 200 in this embodiment is so configured that the radius of the circular arc formed by each of the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10 is formed to be approximately equal to the radius of the inner peripheral surface 1b of the cylinder 1, and that the normal to the circular arc formed by each of the tip portions 9a of the first vane 9 and the tip portions 10a of the second vane 10 and the normal to the inner peripheral surface 1b of the cylinder 1 are coincident with each other. The fluid lubrication state is thereby produced for sliding portions of the tip portions 9a and 10a. Thus, there are effects that sliding resistances of the tip portions 9a and 10a are greatly reduced, thereby greatly reducing the sliding loss of the vane compressor 200, and abrasion of the tip portion 9a of the first vane 9, the tip portion 10a of the second vane 10, and the inner peripheral surface 1b of the cylinder 1 can be reduced.
In this embodiment, the vane aligner holding portions 2a and 3a formed in the frame 2 and the cylinder head 3 are shaped into ring grooves. The vane aligners 5, 6, 7, and 8 slide on cylindrical surfaces on the outer peripheral sides of the ring grooves. The vane aligner holding portions 2a and 3a therefore do not necessarily need to be in the shape of the ring grooves. The vane aligner holding portions 2a and 3a may be concave portions with grooves each having an outer diameter substantially equal to the outer diameter of each of the vane aligners 5, 6, 7, and 8.
Though not shown in the drawings, it is also possible to further reduce the sliding resistances of the vane tip portions by applying to the configuration of this embodiment a conventional technique. In this conventional technique, a pressure to be acted on the back side of each vane is controlled, thereby reducing a pressing force between the vane tip portions and the inner peripheral surface of the cylinder.
This embodiment shows a method of restricting the directions of the first vane 9 and the second vane 10 by fitting the vane holding portions 5a, 6a, 7a, and 8a of the vane aligners 5, 6, 7, and 8 in the back side grooves 9b of the first vane 9 and the back side grooves 10b of the second vane 10. The vane holding portions 5a, 6a, 7a, and 8a, the back side grooves 9b of the first vane 9, and the back side grooves 10b of the second vane 10 each include a thin-walled portion.
Since the vane holding portions 5a, 6a, 7a, and 8a are the quadrangular plate-like projections as shown in
Therefore, in order to apply the method of this embodiment, it is preferable that a refrigerant with a small force to be acted on the first vane 9 and the second vane 10, that is, with a low operating pressure be used. The refrigerant with a normal boiling point of minus 45 degrees Celsius or higher, for example, is suitable. The refrigerant such as R600a (isobutane), R600 (butane), R290 (propane), R134a, R152a, R161, R407C, R1234yf, and R1234ze can be used without causing any problem in terms of the strength of the vane holding portions 5a, 6a, 7a, and 8a, the back side grooves 9b of the first vane 9, and the back side grooves 10b of the second vane 10.
In the second embodiment described above as well, it is possible to perform the compression operation in the state where the normal to the circular arc formed by each of the vane tip portions (which are the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10) and the normal to the inner peripheral surface 1b of the cylinder 1 are constantly coincident with each other during rotation. Thus, an effect similar to that in the first embodiment described above can be obtained. As clear from
Operations will now be described. In the third embodiment, the operations approximately similar to those in the first embodiment are performed. The third embodiment is different from the first embodiment in that the first vane 9 is unitarily formed with at least one of the vane aligners 5 and 6 and the second vane 10 is unitarily formed with at least one of the vane aligners 7 and 8. Movements of the first. vane 9 and the second vane 10 in the rotor normal direction are thereby fixed. Consequently, the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10 do not slide on the inner peripheral surface 1b of the cylinder 1, so that the first vane 9 and the second vane 10 rotate without contacting to and with maintaining a minute space from the inner peripheral surface 1b of the cylinder 1.
In this embodiment, the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10 are not in contact with the inner peripheral surface 1b of the cylinder 1. Consequently, no sliding loss occurs in the vane tip portions (which are the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10). A force to act on sliding portions of the vane aligners 5, 6, 7 and 8 and the vane aligner holding portions 2a and 3a increases correspondingly. However, these sliding portions are in the fluid lubrication state. In addition, a sliding distance of each of the sliding portions of the vane aligners 5 and 6 and the vane aligners 7 and 8 and a corresponding one of the vane aligner holding portions 2a and 3a is shorter than a sliding distance of each of the vane tip portions (which are the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10). Thus, there is an effect of further reducing sliding loss from that in the first embodiment.
Though not illustrated in the third embodiment as well, it may be so arranged that only the normal to the circular arc formed by each of the vane tip portions (which are the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10) and the normal to the inner peripheral surface 1b of the cylinder 1 are substantially coincident with each other and that the vane longitudinal direction has a fixed inclination with respect to the normal direction of the inner peripheral surface 1b of the cylinder 1, as in the second embodiment. With this arrangement, the length of the circular arc formed by each of the vane tip portions (which are the tip portions 9a of the first vane 9 and the tip portion 10a of the second vane 10) can be increased. A resulting increase in seal length makes it possible to further reduce leakage loss at each of the vane tip portions (which the tip portion 9a of the first vane 9 and the tip portion 10a of the second vane 10).
Alternatively, excessive movement of the second vane 10 in a direction opposite to the side of the inner peripheral surface 1b of the cylinder 1 may be restricted by closing, instead of opening, each of the vane holding groove 7b of the vane aligner 7 and the vane holding groove 8b of the vane aligner 8 on the internal diameter side. The same configuration may also be applied to the first vane 9 and the vane aligners 5 and 6. An effect similar to that in the first embodiment can be obtained in the above-mentioned configuration as well.
In the fourth embodiment as well, the first vane 9 may be unitarily formed with at least one of the vane aligners 5 and 6. Alternatively, the second vane 10 may be unitarily formed with at least one of the vane aligners 7 and 8. An effect similar to that in the third embodiment can be obtained.
Projecting portions (projecting portions (not shown) of the first vane 9 or the projecting portions 10d of the second vane 10) provided at the end surfaces of the vane (the first vane 9 or the second vane 10) may be attached to the vane (the first vane 9 or the second vane 10) to be inclined, and only the normal to the circular arc formed by the vane tip portion (the tip portion 9a of the first vane 9 or the tip portion 10a of the second vane 10) may be made to coincide with the normal direction of the inner peripheral surface 1b of the cylinder 1. With this configuration, the effect similar to that in the second embodiment can be obtained.
For each of the first to fourth embodiments, the case where the number of the vanes is two is shown. The first to fourth embodiments may be similarly configured even when the number of the vanes is three or more, and effects similar to those in the first to fourth embodiments can be obtained.
Number | Date | Country | Kind |
---|---|---|---|
2010-182962 | Aug 2010 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/067648 | 8/2/2011 | WO | 00 | 11/30/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/023426 | 2/23/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1291618 | Olson | Jan 1919 | A |
1339723 | Smith | May 1920 | A |
1444269 | Piatt | Feb 1923 | A |
2044873 | Beust | Jun 1936 | A |
4410305 | Shank et al. | Oct 1983 | A |
4657491 | Frank | Apr 1987 | A |
4955985 | Sakamaki et al. | Sep 1990 | A |
4958995 | Sakamaki et al. | Sep 1990 | A |
4997351 | Sakamaki et al. | Mar 1991 | A |
4997353 | Sakamaki et al. | Mar 1991 | A |
4998867 | Sakamaki et al. | Mar 1991 | A |
4998868 | Sakamaki et al. | Mar 1991 | A |
5002473 | Sakamaki et al. | Mar 1991 | A |
5011390 | Sakamaki et al. | Apr 1991 | A |
5022842 | Sakamari et al. | Jun 1991 | A |
5030074 | Sakamaki et al. | Jul 1991 | A |
5032070 | Sakamaki et al. | Jul 1991 | A |
5033946 | Sakamaki et al. | Jul 1991 | A |
5044910 | Sakamaki et al. | Sep 1991 | A |
5087183 | Edwards | Feb 1992 | A |
5160252 | Edwards | Nov 1992 | A |
5536153 | Edwards | Jul 1996 | A |
6193906 | Kaneko et al. | Feb 2001 | B1 |
6223554 | Adachi | May 2001 | B1 |
8602760 | Maeyama et al. | Dec 2013 | B2 |
20130064705 | Sekiya et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
26718 | Jan 1910 | GB |
52 47571 | Dec 1977 | JP |
55 139993 | Nov 1980 | JP |
58 70087 | Apr 1983 | JP |
58 197493 | Nov 1983 | JP |
60 256583 | Dec 1985 | JP |
61 132793 | Jun 1986 | JP |
63 73593 | May 1988 | JP |
6 501758 | Feb 1994 | JP |
10 252675 | Sep 1998 | JP |
2000 352390 | Dec 2000 | JP |
2001 115979 | Apr 2001 | JP |
Entry |
---|
International Search Report Issued Nov. 8, 2011 in PCT/JP11/67648 Filed Aug. 2, 2011. |
U.S. Office Action mailed Aug. 14, 2014 in co-pending U.S. Appl. No. 13/700,634. |
Japanese Office Action issued Oct. 29, 2013 in Patent Application No. 2012-529553 with Partial English Translation. |
Extended European Search Report issued Jun. 17, 2014 in Patent Application No. 11818068.6. |
Extended European Search Report issued Jun. 17, 2014 in Patent Application No. 11818070.2. |
Office Action Issued Jan. 23, 2015 in co-pending U.S. Appl. No. 13/700,634. |
Number | Date | Country | |
---|---|---|---|
20130149178 A1 | Jun 2013 | US |