The application relates generally to gas turbine engines and, more particularly, to diffusers for compressors.
Stable operation of compressors in gas turbine engines may be limited by two forms of instabilities: rotating stall and surge. Both stall and surge can be detrimental to the performance of the compressor and its operability, and to the structural integrity of the compressor as well. The diffuser of the compressor has been known to contribute to these instabilities. Conventional passage control techniques for improving the stall range in diffuser pipes involves changing the throat size of the diffuser pipes, or performing overboard bleed. However, these solutions can require expensive hardware upgrades, modifications, or engine re-matching.
There is accordingly provided a vane diffuser for diffusing gases received from an outlet of a compressor, the diffuser comprising: an annular diffuser body including a plurality of diffuser vanes defining therebetween a plurality of diffuser passages, the diffuser passages being circumferentially distributed, each of the diffuser vanes having a pressure side surface and a suction side surface, a direction of main gas flow through the diffuser passages being defined from a passage inlet in fluid communication with the outlet of the compressor to a passage outlet; and a plurality of fluid injection conduits each extending between a conduit inlet and a conduit outlet for at least one of the diffuser vanes, the conduit outlet defining at least one opening in at least one of the pressure and suction side surfaces and configured to inject fluid along said at least one of the pressure and suction side surfaces in the direction of main gas flow through the corresponding diffuser passage.
There is also provided a method for controlling a compressor of a gas turbine engine, the compressor including a compressor rotor which feeds a main gas flow into a diffuser downstream therefrom, the method comprising: directing the main gas flow through a plurality of circumferentially distributed angled diffuser vanes of the diffuser between an inlet and an outlet thereof; and injecting a compressible fluid along a side surface of at least one of the diffuser vanes in a direction of the main gas flow through said diffuser vane.
There is further provided a centrifugal compressor of a gas turbine engine, the centrifugal compressor comprising: an impeller having an inner hub with vanes thereon and adapted to rotate within an outer shroud about a central longitudinal axis, the impeller having a radial impeller outlet; and a diffuser assembly for diffusing gases radially received from the impeller outlet, comprising: an annular diffuser body including a plurality of diffuser vanes defining therebetween a plurality of circumferentially distributed angled diffuser passages, each diffuser vane having a pressure side surface and a suction side surface, a direction of main gas flow through each diffuser passage being defined from a passage inlet in fluid communication with the outlet of the impeller to a passage outlet; and a plurality of fluid injection conduits each extending between a conduit inlet and a conduit outlet for at least one of the diffuser vanes, the conduit outlet defining at least one opening in at least one of the pressure and suction side surfaces and configured to inject fluid along said side surface in the direction of main gas flow through the corresponding diffuser passage.
Reference is now made to the accompanying figures in which:
The compressor section 14 of the engine 10 includes one or more compressor stages, at least one of which includes a centrifugal compressor 14A. The centrifugal compressor 14A includes a rotating impeller 15 with impeller vanes 17 and a downstream diffuser assembly 20. The impeller 15 is configured to rotate within an outer shroud 19 about the central axis 11. The impeller 15 draws air axially, and rotation of the impeller 15 increases the velocity of a main gas flow as the main gas flow is directed though the impeller vanes 17, to flow out in a radially outward direction under centrifugal forces.
The vane diffuser assembly 20 (or simply “diffuser 20”) is positioned immediately downstream of the exit of a rotating component of the compressor, which in the exemplary embodiment is the impeller 15. The diffuser 20 forms the fluid connection between the impeller 15 and the combustor 16, thereby allowing the impeller 15 to be in serial flow communication with the combustor 16. The diffuser 20 redirects the radial flow of the main gas flow exiting the impeller 15 to an annular axial flow for presentation to the combustor 16. The diffuser 20 also reduces the velocity and increases the static pressure of the main gas flow when it is directed therethrough.
Referring to
The diffuser body 22 includes a diffuser case 24 circumscribing and surrounding the impeller outlet 17A. The diffuser case 24 is in one particular embodiment a unitary machined part. A series of angled and circumferentially-distributed diffuser passages 26 extend through the diffuser body 22 from the impeller outlet 17A, each diffuser passage 26 being defined between circumferentially adjacent diffuser islands or stator vanes 28. In the depicted embodiment, each diffuser vane 28 is shaped as a wedge, and includes a pressure side surface 29A and a suction side surface 29B facing the diffuser passages 26. Each diffuser vane 28 forms an airfoil, and has a length extending between a leading edge 28A and a trailing edge 28B, and a height within the diffuser case 24 between a hub 28C and a tip 28D (see
In the embodiment shown, each diffuser passage 26 is tangential, i.e. it is oriented such that its central axis 26A coincides with a tangent to the periphery of the impeller outlet 17A or to a circle concentric therewith. In the depicted embodiment, the leading edges 28A of the diffuser vanes 28 extend into the space of the impeller outlet 17A. As such, the space of the impeller outlet 17A in
The diffuser passages 26 can be fluid conduits or machined orifices which extend through some, or all, of the diffuser body 22, thus defining fluid paths along which the main gas flow can be conveyed. The diffuser passages 26 each have a passage inlet 26B which is in fluid communication with the impeller outlet 17A so as to receive the main gas flow therefrom, as well as a passage outlet 26C through which the main gas flow exits when it leaves each diffuser passage 26. A direction of main gas flow D is therefore defined through each diffuser passage 26 from its passage inlet 26B to its passage outlet 26C.
Still referring to
By injecting the compressible fluid along one or both of the side surfaces 29A,29B of one or more of the diffuser vanes 28 at a suitable location, it may be possible to prevent and/or reduce increased blockage and flow separation by energizing the boundary layer along the side surfaces 29A,29B of the diffuser vanes 28. Flow with momentum deficit at the side surfaces 29A,29B is given greater momentum with the addition of the compressible fluid to the main gas flow, making the main gas flow more resistant to flow separation. Another possible benefit may be that the injected compressible fluid helps to keep the main gas flow attached to the side surfaces 29A,29B. The injection assembly 30 has a supply 32 of the compressible fluid, and one or more injection conduits 34 for injecting the compressible fluid along each of the diffuser vanes 28, both of which will now be discussed.
The injection assembly 30 draws the compressible fluid from the supply 32. The supply 32 can be any source of the compressible fluid which is independent of the diffuser 20 and/or the compressor 14A. The compressible fluid from this supply 32 can be actively provided, meaning that it can pumped or otherwise actively directed to the injection conduits 34.
In the depicted embodiment, the supply 32 is simply a region of higher pressure within the compressor 14A or downstream thereof. As shown in
Still referring to
Referring to
In the depicted embodiment, each opening 38 is shaped to inject the compressible fluid along the side surface 29A,29B in the direction of main gas flow D and through each diffuser passage 26. It will be therefore appreciated that the shape of each opening 38 can vary to achieve such functionality. In the depicted embodiment, each conduit outlet 36B is defined by an elongated converging duct extending into the body of the diffuser vane 28 and oriented in a downstream direction. The opening 38 of each conduit outlet 36B has an elliptical shape and is formed in the side surface 29A,29B so that fluid exiting therefrom is substantially directed along the side surface 29A,29B in the direction of main gas flow D. The mass flow and velocity of the injected compressible fluid are influenced by the geometry of the conduit outlet 36B and/or its opening 38. The geometry and shape of the conduit outlet 36B and/or its opening 38 may therefore be selected to not only control the amount of compressible fluid, but also to determine the injection angle at which the injected flow is introduced. The injection angle is defined between the vector along which the compressible fluid is injected and the corresponding side surface 29A,29B. In most embodiments, the angle has a value of about zero degrees so that the compressible fluid is injected substantially tangentially to the local vane side surface 29A,28B. In an alternate embodiment, the injection angle is defined between the vector along which the compressible fluid is injected and the vector of the main gas flow D. The angle has a value of about zero degrees so that the compressible fluid is injected substantially parallel to the direction of main gas flow D. It will be appreciated that other configurations for the openings 38 are possible, and are discussed in greater detail below.
Still referring to
It can thus be appreciated that the diffuser 20 disclosed herein allows for injecting higher pressure fluid along the airfoil surfaces 29A,29B of the diffuser vanes 28. This higher pressure air, which in an embodiment is collected in the combustor 16, is therefore re-injected at or near a location where flow reversal occurs on the diffuser vanes 28. By injecting the compressible fluid along the side surfaces 29A,29B of the diffuser vane 28 and in the direction of main gas flow D, it is believed that the boundary layer along the surfaces 29A,29B is energized and additional momentum is provided to the main gas flow through the diffuser passages 26. This contrasts with some conventional techniques for improving diffuser performance, which provide fluid injection along a direction that is normal to the side surface of the diffuser vane. It is believed that injecting relatively low momentum fluid into a diffuser passage in a direction normal to the side surface of the diffuser causes the injected fluid to mix with the higher momentum main gas flow, and causes mixing losses as a result.
The diffuser vane 128 also has a recessed portion along one of the side surfaces 129A,129B. The side surface 129A,129B of the diffuser vane 128 includes a first chordwise segment 140A adjacent to the leading edge 128A of the diffuser vane 128, and a second chordwise segment 140B extending from the first segment 140A to the trailing edge 128B of the diffuser vane 128. The second segment 140B is recessed into the body of the diffuser vane 128 from the first segment 140A to define a notched segment 140C between the first and second segments 140A,140B. In the profile shown in
In the depicted embodiment, compressible fluid is provided to be injected along the surface of the turning vanes 356. Each fluid injection conduit includes a turning vane conduit outlet 336B in fluid communication with the supply of compressible fluid. The turning vane conduit outlet 336B defines one or more openings 338 in one or both of the pressure and a suction side surface of each turning vane 356. The openings 338 are shaped to inject fluid along the corresponding side surface in the direction of main gas flow D through each diffuser passage 326.
Referring to
In light of the preceding, it can be appreciated that the diffuser 20 disclosed herein allows for re-circulated fluid to re-energize the boundary layer along the side surfaces 29A,29B of the diffuser vanes 28. The injected fluid helps to reduce diffuser range flow separation and can lead to improvements in diffuser range and pressure recovery. The reduction in diffuser losses may help to improve the overall performance and range of the compressor 14A. In at least some embodiments, the flow injection is performed passively and is driven only by the pressure difference between areas downstream of the diffuser and the point of flow injection. Such a passive control technique is relatively easy and cheap to implement. This contrasts with some conventional techniques for improving diffuser stator stall range (e.g. bores in the diffuser, leading edge tip corner cutback, overboard bleed, etc.).
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departing from the scope of the invention disclosed. For example, although the diffuser is described herein as being a component of a centrifugal compressor, it will be appreciated that the diffuser can also be used with an axial compressor. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3964837 | Exley | Jun 1976 | A |
3971218 | Toth, Jr. | Jul 1976 | A |
4054398 | Penny | Oct 1977 | A |
4131389 | Perrone et al. | Dec 1978 | A |
4164845 | Exley et al. | Aug 1979 | A |
4212585 | Swarden et al. | Jul 1980 | A |
4264271 | Libertini | Apr 1981 | A |
4308718 | Mowill | Jan 1982 | A |
4315714 | Exley et al. | Feb 1982 | A |
4368005 | Exley et al. | Jan 1983 | A |
4402764 | Clark et al. | Sep 1983 | A |
4445816 | Ribaud et al. | May 1984 | A |
4576550 | Bryans | Mar 1986 | A |
4687412 | Chamberlain | Aug 1987 | A |
4740138 | Zaehring et al. | Apr 1988 | A |
4832993 | Coulon | May 1989 | A |
4919773 | Naik | Apr 1990 | A |
5064691 | Kirner et al. | Nov 1991 | A |
5252027 | Brasz | Oct 1993 | A |
5372477 | Cole | Dec 1994 | A |
5385015 | Clements | Jan 1995 | A |
5427498 | Lehe et al. | Jun 1995 | A |
5478200 | Brodersen et al. | Dec 1995 | A |
5564898 | Richards et al. | Oct 1996 | A |
5601406 | Chan et al. | Feb 1997 | A |
5618162 | Chan et al. | Apr 1997 | A |
5876572 | Rickerby et al. | Mar 1999 | A |
6155777 | Aschenbruck et al. | Dec 2000 | A |
6166462 | Finkenbinder et al. | Dec 2000 | A |
6209312 | Singer et al. | Apr 2001 | B1 |
6210104 | Schoenenborn | Apr 2001 | B1 |
6220816 | Nguyen Duc et al. | Apr 2001 | B1 |
6224321 | Ebden et al. | May 2001 | B1 |
6471475 | Sasu et al. | Oct 2002 | B1 |
6478887 | Sue et al. | Nov 2002 | B1 |
6589015 | Roberts et al. | Jul 2003 | B1 |
6605160 | Hoskin | Aug 2003 | B2 |
6695579 | Meng | Feb 2004 | B2 |
6706319 | Seth et al. | Mar 2004 | B2 |
6797335 | Paderov et al. | Sep 2004 | B1 |
7387487 | Guemmer | Jun 2008 | B2 |
7553122 | Kirtley | Jun 2009 | B2 |
8235648 | Leblanc | Aug 2012 | B2 |
8641373 | Porodo et al. | Feb 2014 | B2 |
20020114693 | Bartholoma et al. | Aug 2002 | A1 |
20050118019 | Roberts et al. | Jun 2005 | A1 |
20150226232 | Duong | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
170815 | Oct 1921 | GB |
775784 | May 1957 | GB |
WO-0034628 | Jun 2000 | WO |
WO-0206676 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20180172022 A1 | Jun 2018 | US |