The present invention relates to the field of vanes for a turbine engine of an aircraft. In particular, it relates to the design and/or manufacture of these vanes for turbine engines.
The prior art includes the documents JP-A-H09 60501, JP-A-2000 018003, JP-A-H07 253001, U.S. Pat. No. 4,165,949, and EP-A1-1 612 372.
Many mechanical parts of turbine engines are being modified and/or redesigned to improve the performance of the turbine engine. The low-pressure turbine vanes are in particular concerned, with optimised aerodynamic profiles. Generally speaking, a low-pressure turbine vane for a movable wheel comprises an aerodynamic blade extending along a radial axis perpendicular to the longitudinal axis and delimited radially by an inner root and an outer heel. The blade comprises a leading edge and a trailing edge which are connected by pressure side and suction side surfaces. One way of optimising the aerodynamic profile of the blade is to reduce the thickness of the trailing edge of the vane by about 0.30 mm (from 1 mm of the trailing edge along the circulation of the gas in the turbine engine), so as to avoid aerodynamic losses.
However, this new geometry introduces particular new constraints in terms of manufacturability and design to meet service life objectives compared to “conventional” vanes. The trailing edges are also subject to high mechanical stresses over their entire radial height and in particular at the junctions with the root and/or heels of the vanes when the latter rotate.
In particular, the present invention aims to provide a vane for a turbine engine, the profile of which is optimised so as to reduce the stresses applied to its trailing edge during operation of the turbine engine.
This is achieved in accordance with the invention by a vane for a turbine engine of an aircraft comprising a blade extending in a radial direction, the blade having a pressure side surface and a suction side surface which are connected upstream, in a direction of circulation of a gas in the turbine engine, by a leading edge and downstream by a trailing edge, the blade having at a radially outer end, a heel and comprising a transverse head section in a plane perpendicular to a radial direction of the blade, taken at the radially outer end, the heel extending radially towards the outside from the transverse head section which has a first centre of gravity, the heel having a second centre of gravity which is defined in a plane parallel to the transverse head section, the second centre of gravity being offset at least transversely from the first centre of gravity, the second centre of gravity being defined in a predetermined zone delimited at least in part by a first straight line and a second straight line substantially forming a V which is open towards the pressure side surface and which comprises an apex whose orthogonal projection on the transverse head section is located on the first centre of gravity.
Thus, this solution achieves the above-mentioned objective. In particular, such an arrangement of the centre of gravity of the heel allows to reduce the stresses applied to the trailing edge by about 10%, taking into account the manufacturing constraints of the vane and the aerodynamic profile of the vane. This vane profile is also more efficient and its trailing edge can be even thinner. Such a vane can also be adapted to any type of turbine engine without the need for structural modifications to it to integrate the vane.
The vane also comprises one or more of the following features, taken alone or in combination:
The invention also relates to a wheel of a turbine engine comprising a disc centred on a longitudinal axis and a plurality of vanes having any of the above features, extending from the periphery of the disc and evenly distributed around the longitudinal axis.
The invention also relates to a turbine engine comprising a vane or wheel as aforesaid.
Finally, the invention relates to a method for optimising a vane for a turbine engine of an aircraft, the vane comprising a blade, extending in a radial direction, with a heel at a radially outer end and a transverse head section at the radially outer end, the heel extending radially towards the outside from the transverse head section, the method comprising the following steps:
According to the method, the latter comprises a step of offsetting a trailing edge of the blade and/or a leading edge of the blade with respect to a first axis of inertia of a reference frame of inertia.
According to the method, the transverse head section is located radially just below the heel.
The invention will be better understood, and other purposes, details, characteristics and advantages thereof will become clearer on reading the following detailed explanatory description of embodiments of the invention given by way of purely illustrative and non-limiting examples, with reference to the attached schematic drawings in which:
Generally a turbine comprises one or more stages which are arranged successively along the longitudinal axis X of the turbine engine. Each turbine stage comprises a bladed movable wheel forming a rotor and a fixed wheel with vanes forming a stator. The vanes of this stator are referred to as turbine stator vanes. Each movable wheel 3 comprises an annular disc 4 as shown in
In
In the present description, the vane will be described with respect to radial directions R, longitudinal L and transverse T directions while the turbine engine will be described with respect to longitudinal axis X, radial axis Z and transverse axis Y. The directions are perpendicular to each other. The axes are also perpendicular to each other and form an orthonormal reference frame OXYZ, with O being the origin of the reference frame. The origin of the reference frame is centred on the longitudinal axis of the turbine engine. In the installation situation, the radial direction is parallel to the radial axis.
Furthermore, the terms “upstream”, “downstream”, “axial”, “axially” are defined with respect to the direction of circulation of gases in the turbine engine and also substantially along the longitudinal axis or direction. Similarly, the terms “radially”, “inner” and “outer” are defined with respect to the radial axis or direction.
The blade 5 comprises a leading edge 8 and a trailing edge 9 which are opposite, here along the longitudinal direction of the blade. Each blade is arranged in the aerodynamic flow so that the leading edge 8 is positioned upstream of the trailing edge 9. The leading edge 8 and the trailing edge 9 are connected by a pressure side surface 10 and a suction side surface 11 (see
The profile of the vane is curved and the vane has a transverse thickness which varies from the leading edge to the trailing edge. In this example, the blade of the vane is full. That is, the blade does not have any cavities inside it.
Advantageously, the vane is made of a metallic material or a metallic alloy such as a nickel-based alloy. An example of a nickel-based alloy is known as DS200®.
With reference to
The root 12 also comprises a first platform 16 which separates the blade from the root 12. In particular, the first platform 16 defines a radially inner wall portion delimiting a turbine engine duct in which an aerodynamic flow, in this case a primary flow, circulates. The stilt 15 extends radially between the platform 16 and the bulb 14.
The blade 5 comprises at its radially outer end 7 a heel 17. As can be seen in
In operation, each vane is subject to aerodynamic forces due to the circulation of the gas flow through the turbine and the vanes, and to centrifugal forces due to the rotation of the turbine disc about the longitudinal axis.
In
With reference to
The first centre of gravity G1 of the transverse head section ST is also located at a second predetermined distance (such as about 5 mm) from a straight line D2 defined in the first plane of the transverse head section, tangent with the trailing edge 9 at the point B2 and parallel to the first axis of inertia I1. The trailing edge is at a distance VBF of the order of 5 mm from the first axis of inertia I1. Similarly, the trailing edge is located at a distance VSI of about 16 mm from the first axis of inertia I1.
In
The blade 5 is subjected to a stress, in particular, at its trailing edge 9, which is mainly due to the bending moments (M1 and M2) created by the aerodynamic and centrifugal forces, as well as to the traction (Fz) due to the centrifugal force. This stress can be translated into the following strength of materials equation:
With
This equation is advantageously applied at the leading and trailing edges of the transverse head section of the blade.
The material distribution of the blade in the transverse head section ST is greater around the second axis of inertia than around the first axis of inertia.
In order to limit, or even eliminate or transfer elsewhere, the stresses that apply to the thin trailing edge here (relatively thin thickness compared to a trailing edge of a conventional vane), the vane has an optimised profile or geometry. For example, the trailing edge 9 has a transverse thickness of 0.30 mm, or even 0.20 mm from an axial distance of 1 mm from the trailing edge.
To this end and with reference to
Advantageously, but not restrictively, the second centre of gravity of the heel is defined in a predetermined zone ZG which is located upstream of the blade and in the vicinity of the pressure side surface 10 of the transverse head section. The predetermined zone is also defined in the plane of the second centre of gravity. Even more specifically, the predetermined zone is located upstream of a median plane of the transverse head section that is parallel to the second axis of inertia and includes the radial direction. Placing the centre of gravity of the heel in such a zone reduces the stresses at the trailing edge of the blade.
As can be seen precisely in
The first straight line L1 is inclined by a first angle β (beta) with respect to the first axis of inertia I1 and passes through the first centre of gravity G1 of the transverse head section ST. This first angle is between 1 and 10°.
The second straight line L2 is inclined by a second angle γ (gamma) with respect to the second axis of inertia I2 and passes through the centre of gravity G1 of the transverse head section ST. The second straight line L2 is also parallel to the longitudinal axis X as we can see in
The predetermined zone ZG is also delimited at least partially by a third straight line L3 which is parallel to the first axis of inertia. This third straight line L3 is located at a distance from the first axis of inertia (towards the suction side surface) which is between 0 and 1 mm depending on the geometry of the vane and the turbine stages.
We can also see in
More generally, the predetermined zone ZG is delimited by:
The platform 18 of the heel 17 is defined in plane inclined radially towards the outside. Said plane forms an angle α (alpha) which is between 0° and 40° with the plane of the transverse head section. The angle simplifies the modelling by calculation which avoids working with non-whole and/or inclined sections. This angle depends on the shape of the duct of the turbine but also on the geometry of the blade.
Advantageously, for a heel weighing between 10 and 20 g, the third straight line L3 is offset from the first axis of inertia by a distance of between 0 and 0.3 mm with a platform inclined between 20 and 30° with respect to the plane of the transverse head section. Alternatively, the third straight line is at a distance of between 0 and 1 mm with a platform inclined between 0 and 20° to the plane of the head section.
Another possibility or addition to reduce the stress at the trailing edge is to optimise the profile of the trailing edge locally. With reference to
According to another embodiment illustrated in
The addition of this thickening at the trailing edge and at the radially inner end of the blade allows a stress reduction of between 2 and 7%. This thickening also makes it easier to manufacture the blade with the thin trailing edge. This geometry also enables to limit the risk of abatement of the material. The abatement is then likely to occur in a less constrained zone than originally and allows for a 10-20% margin gain on some materials.
As can be seen in
The determination of the centre of gravity of the heel is obtained by means of a method for optimising the profile of a vane for a turbine engine of an aircraft. The various steps of the method are implemented using CADD and/or calculation software.
Firstly, the characteristics of the vane such as its mass, material, dimensions, etc. are referenced in the software.
In a first step, the blade 5 is divided into several (horizontal) transverse sections according to its radial height.
The blade transverse head section at the radially outer end (and located just before the radius of the heel, at 100% of the height of the blade) is selected.
The method then includes a step of calculating the centre of gravity G1 of the transverse head section ST. Prior to this calculation step, a mass is associated with the transverse head section ST. The centre of gravity G1 is defined as the geometric barycentre point of the transverse head section.
The coordinates of the centre of gravity G1 are defined, in the plane of the transverse head section, with respect to the reference frame of inertia comprising the first axis of inertia I1 and the second axis of inertia I2, the origin R1 of which is located on the centre of gravity G1 of the transverse head section.
The method further comprises a step of calculating the centre of gravity of the heel of the vane. Prior to this step, the mass of the heel of the vane is measured, which allows to determine its centre of gravity.
A comparison of the coordinates between the centre of gravity G1 of the transverse head section ST and the centre of gravity G2 of the heel 17 is carried out.
For this purpose, a measurement of the distance between the first and second centre of gravity G1, G2 is carried out. For this purpose, an orthogonal projection of the plane of the heel including its centre of gravity G2 is made in the plane of the transverse head section ST.
Finally, the method comprises a compensation step in which the second centre of gravity of the root is offset from the first centre of gravity of the head section in the predetermined zone. The compensation step comprises an at least transverse and axial offset of the centre of gravity G2 of the heel in the predetermined zone to reduce the aerodynamic stresses on the relatively thin trailing edge.
Typically once compared, if the centre of gravity G2 of the heel is not in the predetermined zone, at least partially V-shaped, a modification of the mass distribution of the heel is performed to move the centre of gravity G2 of the heel forward or backward. This operation is advantageously manual (in the design software) and of course depends on the manufacturing and integration criteria of the vane.
To compensate for the constraints at the relatively thin trailing edge of the blade, we can also manually adjust the distance of the leading edge and/or trailing edge from the first axis of inertia. To do this, we position the blade transverse sections relative to each other in the radial direction to limit the moment between them. By manually adjusting the values of δAx and δTg (from the formula below) with respect to the first axis of inertia, the offset is achieved and thus the moment is created. In the case of the thin trailing edge, we seek to modify the offset to decrease the stresses at the trailing edge.
The formula below characterises the stress σBF at the trailing edge along the first axis of inertia I1. This formula characterises the compensation at the leading and/or trailing edge as stated above.
With:
When the distance VBA of the leading edge to the first axis of inertia I1 is smaller than the distance VBF of the trailing edge to the first axis of inertia I1, we apply, for example, an axial compensation (or displacement value in the axial direction (δAx)) of the leading edge upstream of about 1 mm and of the leading edge downstream of about 5 mm with respect to the axis of inertia I1. That is, we reduce or increase the distance of the trailing or leading edges from the first axis of inertia I1. In order to achieve a greater compensation of the axial moment, we can achieve an axial offset of the leading edge of about 2 mm upstream and an axial offset of the trailing edge downstream of about 6 mm.
When the distance VBA of the leading edge is greater than the distance VBF of the trailing edge, we apply a relatively large leading and trailing edge axial displacement value and/or a tangential displacement. In this case, it is possible to minimise the stress at the trailing edge.
Number | Date | Country | Kind |
---|---|---|---|
FR1906411 | Jun 2019 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2020/051007 | 6/12/2020 | WO | 00 |