Claims
- 1. A vane pump comprising:
a) a pump housing having a cylindrical interior chamber defining a central axis through which a vertical centerline and a horizontal centerline extend; b) a cam member mounted within the interior chamber of the pump housing and having a bore extending therethrough and defining a circumferential surface of a pumping cavity, the circumferential surface of the pumping cavity including a discharge arc segment, an inlet arc segment and seal arc segments separating the inlet arc segment and the discharge arc segments from one another; c) a cylindrical rotor member mounted for rotational movement within the bore of the cam member about the central axis of the interior chamber, the rotor member having a central body portion having first and second axially opposed end surfaces and a plurality of circumferentially spaced apart radially extending vane slots formed therein, each vane slot supporting a corresponding vane element mounted for radial movement therein, each vane element having a radially outer tip surface adapted for slideably engaging the circumferential surface of the pumping cavity and a radially inner undervane portion within each vane slot; and d) means for communicating a high pressure fluid from the discharge arc region to the inlet arc region so as to prevent pump start-up, the fluid communication occurring when the tip surface of each vane element has worn a predetermined amounted with respect to the undervane portion of each vane element.
- 2. A vane pump as recited in claim 1, wherein the means for communicating a high pressure fluid from the discharge arc region to the inlet arc region when the tip surface of each vane element has worn a predetermined amount comprises arcuate channels formed in the first end surface of the body portion of the rotor member, the arcuate channels extending between each vane slot.
- 3. A vane pump as recited in claim 2, wherein the arcuate channels are spaced from the central axis by a radial distance, the radial distance defining the predetermined amount of wear.
- 4. A vane pump as recited in claim 2, wherein the means for communicating a high pressure fluid from the discharge arc region to the inlet arc region when the tip surface of each vane element has worn a predetermined amount further comprising arcuate channels formed in the second end surface of the body portion of the rotor member, the arcuate channels extending between each vane slot.
- 5. A vane pump as recited in claim 2, wherein the predetermined amount of wear is reached when the undervane portion of each vane element at a point in the pumping cavity is positioned radially outward of the arcuate channels formed in the body portion of the rotor thereby allowing high pressure fuel to communicate from the discharge arc segment to the inlet arc segment of the pumping cavity.
- 6. A vane pump as recited in claim 1, wherein the circumferential surface of the pump cavity includes a discharge arc segment of about 150 degrees, a first seal arc segment of about 30 degrees, an inlet arc segment of about 150 degrees and a second seal arc segment of about 30 degrees.
- 7. A vane pump as recited in claim 1, further comprising first and second axially spaced apart end plates disposed within the interior chamber of the pump housing, each end plate having a first surface which is adjacent to the rotor member, each first surface forming an axial end portion of the pumping cavity, each end plate spaced from the rotor member so as to allow frictionless rotation of the rotor member within the pumping cavity.
- 8. A vane pump as recited in claim 7, further comprising means associated with the first surface of each end plate for communicating fluid from the discharge arc segment of the pumping cavity to the undervane portion of each vane element when each vane element passes through the discharge and seal arc segments and for communicating fluid from the inlet arc region of the pumping cavity to the undervane portion of each vane element when each vane element passes through the inlet arc segment as the rotor member rotates about the central axis.
- 9. A vane pump as recited in claim 7, wherein the rotor member further comprises a plurality of substantially axial fluid passages formed in the central body portion of the rotor, each passage positioned between the plurality of circumferentially spaced apart radial vane slots and providing a path through the rotor body portion for fluid to communicate axially from the pumping cavity to the first and second end plate.
- 10. A vane pump as recited in claim 9, wherein the means for communicating a high pressure fluid from the discharge arc region to the inlet arc region when the tip surface of each vane element has worn a predetermined amounted comprises arcuate channels formed in the first end surface of the body portion of the rotor member, the arcuate channels extending between each vane slot.
- 11. A vane pump comprising:
a) a pump housing having a cylindrical interior chamber defining a central axis through which a vertical centerline and a horizontal centerline extend; b) a cam member mounted within the interior chamber of the pump housing and having a bore extending therethrough and defining a circumferential surface of a pumping cavity, the circumferential surface of the pumping cavity including a discharge arc segment, an inlet arc segment and seal arc segments separating the inlet arc segment and the discharge arc segments from one another; and c) a cylindrical rotor member mounted for rotational movement within the bore of the cam member about the central axis of the interior chamber, the rotor member having a central body portion which includes first and second axially opposed end surfaces and a plurality of circumferentially spaced apart radially extending vane slots formed therein, each vane slot supporting a corresponding vane element mounted for radial movement therein, each vane element having a radially outer tip surface adapted for slideably engaging the circumferential surface of the pumping cavity and a radially inner undervane portion within each vane slot, the first end surface of the body portion having arcuate channels formed therein and extending between each vane slot, the arcuate channels for providing a path for high pressure fluid to leak from the discharge arc segment to the inlet arc segment of the pumping cavity when each vane tip surface has worn such that the undervane portion is positioned radially outward of the arcuate channels.
- 12. A vane pump as recited in claim 11, wherein the arcuate channels are spaced from the central axis by a radial distance, the radial distance defining an amount of allowable vane tip surface wear which can occur before high pressure fluid can leak from the discharge arc segment to the inlet arc segment of the pumping cavity.
- 13. A vane pump as recited in claim 12, further comprising arcuate channels formed in the second end surface of the body portion of the rotor member, the arcuate channels extending between each vane slot.
- 14. A vane pump as recited in claim 11, wherein the circumferential surface of the pump cavity includes a discharge arc segment of about 150 degrees, a first seal arc segment of about 30 degrees, an inlet arc segment of about 150 degrees and a second seal arc segment of about 30 degrees.
- 15. A vane pump as recited in claim 11, further comprising first and second axially spaced apart end plates disposed within the interior chamber of the pump housing, each end plate having a first surface which is adjacent to the rotor member, each first surface forming an axial end portion of the pumping cavity, each end plate spaced from the rotor member so as to allow frictionless rotation of the rotor member within the pumping cavity.
- 16. A vane pump as recited in claim 15, further comprising means associated with the first surface of each end plate for providing a path for the high pressure fluid to communicate from the pumping cavity to the undervane portion of each vane element when each vane element passes through the discharge and seal arc segments as the rotor member rotates about the central axis and for providing a path for the low pressure fluid to communicate from the inlet arc region of the pumping cavity to the undervane portion of each vane element when each vane element passes through the inlet arc segment as the rotor member rotates about the central axis.
- 17. A vane pump as recited in claim 15, wherein the rotor member further comprises a plurality of substantially axial fluid passages formed in the central body portion of the rotor, each passage positioned between the plurality of circumferentially spaced apart radial vane slots and providing a path through the rotor body for fluid to communicate axially from the pumping cavity to the first and second end plate.
- 18. A vane pump comprising:
a) a pump housing having a cylindrical interior chamber defining a central axis through which a vertical centerline and a horizontal centerline extend; b) a cam member mounted within the interior chamber of the pump housing and having a bore extending therethrough and defining a circumferential surface of a pumping cavity, the circumferential surface of the pumping cavity including a discharge arc segment, an inlet arc segment and seal arc segments separating the inlet arc segment and the discharge arc segments from one another; c) a cylindrical rotor member mounted for rotational movement within the bore of the cam member about the central axis of the interior chamber, the rotor member having a central body portion having first and second axially opposed end surfaces and a plurality of circumferentially spaced apart radially extending vane slots formed therein, each vane slot supporting a corresponding vane element mounted for radial movement therein, each vane element having a radially outer tip surface adapted for slideably engaging the circumferential surface of the pumping cavity and a radially inner undervane portion within each vane slot; d) a leak path for communicating fluid from the discharge arc region to the inlet arc region when the cam member is in a start-up position and each undervane portion is positioned radially outward of the leak path; and e) first and second axially spaced apart end plates disposed within the interior chamber of the pump housing, each end plate having a first surface which is adjacent to the rotor member, each first surface forming an axial end portion of the pumping cavity, each end plate spaced from the rotor member so as to allow frictionless rotation of the rotor member within the pumping cavity.
- 19. A vane pump as recited in claim 18, further comprising means associated with the first surface of each end plate for providing a path for the high pressure fluid to communicate from the pumping cavity to the undervane portion of each vane element when each vane element passes through the discharge and seal arc segments as the rotor member rotates about the central axis and for providing a path for the low pressure fluid to communicate from the inlet arc region of the pumping cavity to the undervane portion of each vane element when each vane element passes through the inlet arc segment as the rotor member rotates about the central axis.
- 20. A vane pump as recited in claim 19, wherein the rotor member further comprises a plurality of substantially axial fluid passages formed in the central body portion of the rotor, each passage positioned between the plurality of circumferentially spaced apart radial vane slots and providing a path for fluid to communicate axially from the pumping cavity to the first and second end plate.
- 21. A vane pump as recited in claim 18, wherein the leak path comprises arcuate channels formed in the first end surface of the body portion of the rotor member, the arcuate channels extending between each vane slot.
- 22. A vane pump as recited in claim 21, wherein the arcuate channels are spaced from the central axis by a radial distance, the radial distance defining the predetermined amount of wear.
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 09/741,524, filed Dec. 20, 2000, and claims priority to U.S. Provisional Patent Application No. 60/236,293, filed Sep. 28, 2000, both of which are herein incorporated by reference in their entirety to the extent they are not inconsistent with this disclosure.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60236293 |
Sep 2000 |
US |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09741524 |
Dec 2000 |
US |
Child |
09966132 |
Sep 2001 |
US |