Pursuant to 35 U.S.C. § 119(a), this application claims the benefit of earlier filing date and right of priority to Korean Application No. 10-2018-0137651, filed on Nov. 9, 2018, the contents of which are incorporated by reference herein in their entirety.
The present disclosure relates to a compressor, more particularly, a vane rotary compressor in which a vane protruding from a rotating roller comes in contact with an inner circumferential surface of a cylinder to form a compression chamber.
A rotary compressor can be divided into two types, namely, a type in which a vane is slidably inserted into a cylinder to come in contact with a roller, and another type in which a vane is slidably inserted into a roller to come in contact with a cylinder. Normally, the former is referred to as a ‘rotary compressor’ and the latter is referred to as a ‘vane rotary compressor’.
As for a rotary compressor, a vane inserted in a cylinder is pulled out toward a roller by elastic force or back pressure to come into contact with an outer circumferential surface of the roller. On the other hand, for a vane rotary compressor, a vane inserted in a roller rotates together with the roller, and is pulled out by centrifugal force applied to the vane and back pressure formed in the back pressure chamber to come into contact with an inner circumferential surface of a cylinder.
A rotary compressor independently forms compression chambers as many as the number of vanes per revolution of a roller, and each compression chamber simultaneously performs suction, compression, and discharge strokes. On the other hand, a vane rotary compressor continuously forms compression chambers as many as the number of vanes per revolution of a roller, and each compression chamber sequentially performs suction, compression, and discharge strokes. Accordingly, the vane rotary compressor has a higher compression ratio than the rotary compressor. Therefore, the vane rotary compressor is more suitable for high pressure refrigerants such as R32, R410a, and CO2, which have low ozone depletion potential (ODP) and global warming index (GWP).
Such a vane rotary compressor is disclosed in Patent Document [Japanese Patent Application Laid-Open No. JP2013-213438A, (Published on Oct. 17, 2013)]. The related art vane rotary compressor discloses a low-pressure type in which a suction refrigerant is filled in an inner space of a motor chamber but has a structure in which a plurality of vanes is slidably inserted into a rotating roller, which is a feature of a vane rotary compressor.
As disclosed in the patent document, back pressure chambers R are formed at rear end portions of vanes, respectively, communicating with back pressure pockets 21, 31 and 22, 32. The back pressure pockets are divided into a first pocket 21, 31 at a first intermediate pressure and a second pocket 22, 32 at a second intermediate pressure higher than the first intermediate pressure and close to a discharge pressure. Oil is depressurized between a rotation shaft and a bearing and introduced into the first pocket through a gap between the rotation shaft and the bearing. On the other hand, oil is introduced into the second pocket, with almost no pressure loss, through a flow path 34a penetrating through the bearing due to the gap between the rotation shaft and the bearing blocked. Therefore, the first pocket communicates with a back pressure chamber located at an upstream side, and the second pocket communicates with a back pressure chamber located at a downstream side based on a direction toward a discharge part from a suction part.
However, in the related art vane rotary compressor, a second pocket, among back pressure chambers, has a surface closed toward a rotation shaft to form a bearing surface. On the other hand, a first pocket has an inner circumferential surface opened toward the rotation shaft to form a sort of a discontinued surface, thus a bearing surface is not formed. This lowers overall support force of a bearing since surface pressure is greatly generated due to characteristics of a vane rotary compressor. As a result, behavior of the rotation shaft becomes unstable and abrasion or frictional loss between the rotation shaft and the bearing is increased, thereby decreasing mechanical efficiency.
Further, pressure of the first pocket, opened between the bearing and the rotation shaft, is not constant, which leads to increased fluctuations in back pressure for supporting the vane. Accordingly, behavior of the vane becomes unstable, and collision noise between the vane and the cylinder or leakage between compression chambers is increased.
Furthermore, there is a possibility of abrasion on the bearing surface caused by foreign materials accumulated in the first pocket opened between the bearing and the rotation shaft during long-time operation.
This may be particularly problematic for the related art vane rotary compressor when a high-pressure refrigerant such as R32, R410a, and CO2 is used. In more detail, when the high-pressure refrigerant is used, the same level of cooling capability may be obtained as that when using relatively a low-pressure refrigerant such as R134a, even though the volume of each compression chamber is reduced by increasing the number of vanes. However, if the number of vanes increases, a frictional area between the vanes and the cylinder are increased accordingly. As a result, a bearing surface on the rotation shaft is reduced, which makes behavior of the rotation shaft more unstable, leading to a further increase in mechanical friction loss. This may be even worse under a low-temperature heating condition, a high pressure ratio condition (Pd/Ps≥6), and a high-speed operating condition (above 80 Hz).
One aspect of the present disclosure is to provide a vane rotary compressor capable of enhancing mechanical efficiency between a rotation shaft and a bearing by increasing a radial supporting force to the rotation shaft while differentiating back pressure applied to a vane according to a vane position.
Another aspect of the present disclosure is to provide a vane rotary compressor capable of stabilizing behavior of a rotation shaft by forming a bearing surface for supporting the rotation shaft as a continuous surface or by minimizing a discontinuous surface of the bearing surface.
Still another aspect of the present disclosure is to provide a vane rotary compressor capable of enhancing compression efficiency, stabilizing behavior of a vane by lowering pressure pulsation of back pressure for supporting the vane so as to lower collision noise between the vane and a cylinder and reducing leakage between compression chambers.
Still another aspect of the present disclosure is to provide a vane rotary compressor capable of preventing abrasion on a bearing or a rotation shaft by blocking foreign materials from accumulating between the bearing and the rotation shaft even during long-time operation.
Still another aspect of the present disclosure is to provide a vane rotary compressor capable of enhancing radial supporting force to a rotation shaft when a high-pressure refrigerant such as R32, R410a, and CO2 is used.
Still another aspect of the present disclosure is to provide a vane rotary compressor capable of enhancing radial supporting force to a rotation shaft even under a low-temperature heating condition, a high pressure ratio condition, and a high-speed operation condition.
In order to achieve the aspects of the present disclosure, there is provided a vane rotary compressor, including a cylinder, a main bearing and a sub bearing each coupled to the cylinder to form a compression space together with the cylinder and having a back pressure pocket formed on a surface facing the cylinder, a rotation shaft radially supported by the main bearing and the sub bearing, a roller provided with a plurality of vane slots formed along a circumferential direction and having one end opened toward an outer circumferential surface, and back pressure chambers each formed in another end of the vane slots so as to communicate with the back pressure pocket, and a plurality of vanes slidably inserted into the vane slots of the roller and protruding in a direction toward an inner circumferential surface of the cylinder when the roller rotates so as to divide the compression space into a plurality of compression chambers, wherein the back pressure pocket is divided into a plurality of pockets having different inner pressure along the circumferential direction, and wherein the plurality of pockets is provided with bearing protrusion portions formed on an inner circumferential side facing an outer circumferential surface of the rotation shaft and forming radial bearing surfaces with respect to the outer circumferential surface of the rotation shaft.
Here, the plurality of pockets may be provided with a first pocket having first pressure and a second pocket having second pressure higher than the first pressure. The bearing protrusion portion of the second pocket may be provided with a communication flow path through which an inner circumferential surface of the bearing protrusion portion facing the outer circumferential surface of the rotation shaft communicates with an outer circumferential surface as an opposite side surface of the inner circumferential surface of the bearing protrusion portion.
In addition, the communication flow path may be formed in a manner that at least part thereof overlaps an oil groove provided on a radial bearing surface of the main bearing or the sub bearing.
The communication flow path may be formed as a communication groove recessed by a predetermined width and depth into an axial end surface of the bearing protrusion portion.
The communication flow path may be alternatively formed as a communication hole penetrating through an inner circumferential surface and an outer circumferential surface of the bearing protrusion portion.
In addition, the communication flow path may be formed so that an area thereof at an inner circumferential surface of the bearing protrusion portion is larger than an area at an outlet side thereof.
Here, if an axial depth of the back pressure pocket is H and a radial width of the bearing protrusion portion is T, 2≤H/T≤6 may be satisfied.
Also, if a portion of the main bearing or the sub bearing defining a compression space is a flange portion and a thickness of the flange portion is L, H−L≥2 may be satisfied.
In addition, the bearing protrusion portion may be formed to have the same axial depth and radial width along a circumferential direction.
Here, the roller may be concentric with a center of the rotation shaft and eccentric with respect to a center of the cylinder so as to rotate together with the rotation shaft.
The outer circumferential surface of the roller may be disposed to be close to an inner circumferential surface of the cylinder at one point.
Here, the rotation shaft may be provided with an oil flow path formed in a central portion thereof along an axial direction. The oil flow path may be provided with an oil passage hole formed through an inner circumferential surface thereof toward the outer circumferential surface of the rotation shaft. The oil passage hole may be formed within a range of the radial bearing surface.
The oil passage hole may be formed in a manner that at least part thereof overlaps an axial range of the bearing protrusion portion.
In order to achieve the aspects of the present disclosure, there is provided a vane rotary compressor, including a casing having a sealed inner space, a driving motor installed in the inner space of the casing and generating rotational force, a cylinder provided at one side of the driving motor in the inner space of the casing, a main bearing and a sub bearing coupled to the cylinder to form a compression space together with the cylinder, a rotation shaft having one end coupled to the driving motor and another end penetrating through the main bearing and the sub bearing so as to be radially supported, and provided with an oil flow path formed axially through a central part thereof, a roller concentric with a center of the rotation shaft, provided with a plurality of vane slots each formed along a circumferential direction and having one end opened toward an outer circumferential surface, and back pressure chambers each formed in another end of the vane slot in a communicating manner, and a plurality of vanes slidably inserted into the vane slots of the roller, and configured to protrude in a direction toward an inner circumferential surface of the cylinder when the roller rotates so as to divide the compression space into a plurality of compression chambers, wherein the back pressure chambers communicate with a plurality of back pressure pockets having different inner back pressure in an independent manner, wherein a back pressure pocket, among the plurality of back pressure pockets, having a relatively high inner pressure is provided with a communication flow path so as to communicate with the oil flow path of the rotation shaft, and wherein the communication flow path is formed to be smaller than a cross-sectional area of an inner circumferential side of the back pressure pocket facing the rotation shaft.
Here, the back pressure pockets are provided with bearing protrusion portions formed on an inner circumferential side facing the outer circumferential surface of the rotation shaft and forming radial bearing surfaces with respect to the outer circumferential surface of the rotation shaft, and the communication flow path may be formed on the bearing protrusion portions.
In a vane rotary compressor according to the present disclosure, as a bearing protrusion portion is formed on an inner circumferential side of a back pressure pocket facing a rotation shaft, a bearing surface of a shaft receiving portion that radially supports the rotation shaft can form a continuous surface. Further, an elastic bearing effect can be enhanced as the bearing protrusion portion forms a continuous surface. Accordingly, behavior of the rotation shaft can become stable so that mechanical efficiency of the compressor can be increased and abrasion on an inner circumferential surface of the bearing can be suppressed. This may result in enhancing reliability of the compressor.
In addition, since a communication flow path is formed in the bearing protrusion portion, oil of discharge pressure or pressure almost equal to discharge pressure, can be quickly and smoothly supplied to a high-pressure side back pressure pocket and pressure pulsation in the back pressure pocket can also be reduced. Accordingly, it is possible to provide stable back pressure to a relevant vane by supplying the high-pressure oil to a back pressure chamber connected to the high-pressure side back pressure pocket. This can prevent a vane related to a discharge stroke from being separated from the cylinder, thereby preventing leakage between compression chambers. In addition, behavior of the vane can be stabilized, thereby reducing noise from the compressor caused by vane vibration.
Also, abrasion on a bearing or the rotation shaft can be suppressed as the bearing protrusion portion prevents foreign materials from entering a bearing surface even during long-time operation, thereby enhancing reliability of the compressor.
In a vane rotary compressor according to the present disclosure, when a high-pressure refrigerant such as R32, R410a, and CO2 is used, radial support to the rotation shaft can be enhanced although surface pressure against a bearing is higher than that when a medium to low pressure refrigerant such as R134a is used. This may result in preventing leakage between compression chambers and stabilizing behavior of the vane, thereby enhancing reliability of the vane rotary compressor using the high-pressure refrigerant.
In addition, in a vane rotary compressor according to the present disclosure, radial supporting force to a rotation shaft can be enhanced even under a low-temperature heating condition, a high pressure ratio condition, and a high-speed operation condition.
Description will now be given in detail of a vane rotary compressor according to exemplary embodiments disclosed herein, with reference to the accompanying drawings.
Referring to
The casing 110 may be classified as a vertical type or a horizontal type according to a compressor installation method. As for the vertical-type casing, the driving motor and the compression unit are disposed at both upper and lower sides along an axial direction. And as for the horizontal-type casing, the driving motor and the compression unit are disposed at both left and right sides.
The driving motor 120 provides power for compressing a refrigerant. The driving motor 120 includes a stator 121, a rotor 122, and a rotation shaft 123.
The stator 121 is fixedly inserted into the casing 110. The stator 121 may be mounted on an inner circumferential surface of the cylindrical casing 110 in a shrink-fitting manner or so. For example, the stator 121 may be fixedly mounted on an inner circumferential surface of an intermediate shell 110b.
The rotor 122 is disposed with being spaced apart from the stator 121 and located at an inner side of the stator 121. The rotation shaft 123 is press-fitted into a central part of the rotor 122. Accordingly, the rotation shaft 123 rotates concentrically together with the rotor 122.
An oil flow path 125 is formed in a central part of the rotation shaft 123 in an axial direction, and oil passage holes 126a and 126b are formed through a middle part of the oil flow path 125 toward an outer circumferential surface of the rotation shaft 123. The oil passage holes 126a and 126b include a first oil passage hole 126a belonging to a range of a first shaft receiving portion 1311 to be described later and a second oil passage hole 126b belonging to a range of a second shaft receiving portion 1321. Each of the first oil passage hole 126a and the second oil passage hole 126b may be provided by one or in plurality. In this embodiment, the first and second oil passage holes are provided in plurality, respectively.
An oil feeder 127 is installed at the middle or a lower end of the oil flow path 125. Accordingly, when the rotation shaft 123 rotates, oil filled in a lower part of the casing is pumped by the oil feeder 127 and is sucked along the oil flow path 125, so as to be introduced into a sub bearing surface 1321a with the second shaft receiving portion through the second oil passage hole 126b and into a main bearing surface 1311a with the second shaft receiving portion through the first oil passage hole 126a.
It is preferable that the first oil passage hole 126a and the second oil passage hole 126b are formed so as to overlap a first oil groove 1311b and a second oil groove 1321b, respectively, which are to be explained later. In this way, oil supplied to the bearing surfaces 1311a and 1321a of a main bearing 131 and a sub bearing 132 through the first oil passage hole 126a and the second oil passage hole 126b can be quickly introduced into a main-side second pocket 1313b and a sub-side second pocket 1323b to be explained later.
The compression unit 130 includes a cylinder 133 in which a compression space V is formed by the main bearing 131 and the sub bearing 132 installed on both sides of an axial direction.
Referring to
Referring to
A first communication flow path 1315 to be described later is formed in the first oil groove 1311b, and a second communication flow path 1325 to be described later is formed in the second oil groove 1321b. The first communication flow path 1315 and the second communication flow path 1325 are provided for guiding oil flowing into the respective bearing surfaces 1311a and 1321a to a main-side back pressure pocket 1313 and a sub-side back pressure pocket 1323.
The first flange portion 1312 is provided with the main-side back pressure pocket 1313, and the second flange portion 1322 is provided with the sub-side back pressure pocket 1323. The main-side back pressure pocket 1313 is provided with a main-side first pocket 1313a and a main-side second pocket 1313b, and the sub-side back pressure pocket 1323 is provided with a sub-side first pocket 1323a and a sub-side second pocket 1323b.
The main-side first pocket 1313a and the main-side second pocket 1313b are formed with a predetermined spacing therebetween along a circumferential direction, and the sub-side first pocket 1323a and the sub-side second pocket 1323b are formed with a predetermined spacing therebetween along the circumferential direction.
The main-side first pocket 1313a has a pressure lower than a pressure in the main-side second pocket 1313b, for example, an intermediate pressure between suction pressure and discharge pressure. And the sub-side first pocket 1323a has pressure lower than a pressure in the sub-side second pocket 1323b, for instance, an intermediate pressure nearly the same as the pressure of the main-side first pocket 1313a. The main-side first pocket 1313a has intermediate pressure by being decompressed while oil is introduced into the main-side first pocket 1313a through a fine passage between a main-side first bearing protrusion portion 1314a and an upper surface 134a of the roller 134 to be described later, and the sub-side first pocket 1323a also has an intermediate pressure by being decompressed while oil is introduced into the sub-side first pocket 1323a through a fine passage between a sub-side first bearing protrusion portion 1324a and a lower surface 134b of the roller 134 to be described later. On the other hand, the main-side second pocket 1313b and the sub-side second pocket 1323b maintain discharge pressure or pressure almost equal to discharge pressure as oil, which is introduced into the main bearing surface 1311a and the sub bearing surface 1321a through the first oil passage hole 126a and the second oil passage hole 126b, flows into the main-side second pocket 1313b and the sub-side second pocket 1323b through the first communication flow path 1315 and the second communication flow path 1325 to be described later.
An inner circumferential surface, which constitutes a compression space V, of a cylinder 133 is formed in an elliptical shape. The inner circumferential surface of the cylinder 133 may be formed in a symmetric elliptical shape having a pair of major and minor axes. However, the inner circumferential surface of the cylinder 133 has an asymmetric elliptical shape having multiple pairs of major and minor axes in this embodiment of the present disclosure. This cylinder 133 formed in the asymmetric elliptical shape is generally referred to as a hybrid cylinder, and this embodiment describes a vane rotary compressor to which such a hybrid cylinder is applied. However, a back pressure pocket structure according to the present disclosure is equally applicable to a vane rotary compressor with a cylinder with a symmetric elliptical shape.
As illustrated in
In addition, an empty space is formed in a central portion of the cylinder 133 so as to form a compression space V including an inner circumferential surface. This empty space is sealed by the main bearing 131 and the sub bearing 132 to form the compression space V. The roller 134 to be described later is rotatably coupled to the compression space V.
The inner circumferential surface 133a of the cylinder 133 is provided with an inlet port 1331 and outlet ports 1332a and 1332b on both sides of a circumferential direction with respect to a point where the inner circumferential surface 133a of the cylinder 133 and an outer circumferential surface 134c of the roller 134 are almost in contact with each other.
The inlet port 1331 is directly connected to a suction pipe 113 penetrating through the casing 110, and the outlet ports 1332a and 1332b communicates with an inner space of the casing 110, thereby being indirectly connected to a discharge pipe 114 coupled to the casing 110 in a penetrating manner. Accordingly, a refrigerant is sucked directly into the compression space V through the inlet port 1331 while a compressed refrigerant is discharged into the inner space of the casing 110 through the outlet ports 1332a and 1332b, and is then discharged to the discharge pipe 114. As a result, the inner space of the casing 110 is maintained in a high-pressure state forming discharge pressure.
In addition, the inlet port 1331 is not provided with an inlet valve, separately, however, the outlet ports 1332a and 1332b are provided with discharge valves 1335a and 1335b, respectively, for opening and closing the outlet ports 1332a and 1332b. The discharge valves 1335a and 1335b may be a lead-type valve having one end fixed and another end free. However, various types of a valve such as a piston valve, other than a lead type valve, may be used for the discharge valves 1335a and 1335b as necessary.
When the lead-type valve is used for discharge valves 1335a and 1335b, valve grooves 1336a and 1336b are formed on an outer circumferential surface of the cylinder 133 so as to mount the discharge valves 1335a and 1335b. Accordingly, the length of the outlet ports 1332a and 1332b is reduced to minimum, thereby decreasing in dead volume. The valve grooves 1336a and 1336b may be formed in a triangular shape so as to secure a flat valve seat surface as illustrated in
Meanwhile, for the plurality of outlet ports 1332a and 1332b is formed along a compression passage (a compression proceeding direction). For convenience of explanation, an outlet port located at an upstream side of the compression passage is referred to as a sub outlet port (or a first outlet port) 1332a, and an outlet port located at a downstream side of the compression passage is referred to as a main outlet port (or a second outlet port) 1332b.
However, the sub outlet port is not necessarily required and may be selectively formed as necessary. For example, the sub outlet port may not be formed on the inner circumferential surface 133a of the cylinder 133 if over compression of a refrigerant is appropriately reduced by forming a long compression period. However, the sub outlet port 1332a may be formed at a front part of the main outlet port 1332b, that is, at an upstream part of the main outlet port 1332b based on the compression proceeding direction in order to minimize an amount of refrigerant over compressed.
Referring to
The center Or of the roller 134 is eccentric with respect to a center Oc of the cylinder 133, that is, a center of the inner space of the cylinder 133 (hereinafter, referred to as “the center of the cylinder”), and one side of the outer circumferential surface 134c of the roller 134 is almost in contact with the inner circumferential surface 133a of the cylinder 133. Here, when an arbitrary point of the cylinder 133 where one side of the outer circumferential surface of the roller 134 is closest to the inner circumferential surface of the cylinder 133 and the roller 134 almost comes into contact with the cylinder 133 is referred to as a contact point P, a central line passing through the contact point P and the center of the cylinder 133 may be a position for a minor axis of the elliptical curve forming the inner circumferential surface 133a of the cylinder 133.
The roller 134 has a plurality of vane slots 1341a, 1341b and 1341c formed in an outer circumferential surface thereof at appropriate places along a circumferential direction. And vanes 1351, 1352 and 1353 are slidably inserted into the vane slots 1341a, 1341b and 1341c, respectively. The vane slots 1341a, 1341b, and 1341c may be formed in a radial direction with respect to the center of the roller 134. In this case, however, it is difficult to sufficiently secure a length of the vane. Therefore, the vane slots 1341a, 1341b, and 1341c may preferably be formed to be inclined at a predetermined inclination angle with respect to the radial direction in that the length of the vane can be sufficiently secured.
Here, a direction to which the vanes 1351, 1352 and 1353 are tilted is an opposite direction to a rotation direction of the roller 134, that is, the front end surface of the vanes 1351, 1352, and 1353 in contact with the inner circumferential surface 133a of the cylinder 133 is tilted in the rotation direction of the roller 134. This is preferable in that a compression start angle can be moved forward in the rotation direction of the roller 134 so that compression can start quickly.
In addition, back pressure chambers 1342a, 1342b and 1342c are formed at inner ends of the vanes 1351, 1352 and 1353, respectively, to introduce oil (or to refrigerant) into a rear side of the vane slots 1341a, 1341b, and 1341c so as to push each vane toward the inner circumferential surface of the cylinder 133. For convenience of explanation, a direction toward the cylinder with respect to a movement direction of the vane is defined as a forward direction, and an opposite direction is defined as a backward direction.
The back pressure chambers 1342a, 1342b and 1342c are hermetically sealed by the main bearing 131 and the sub bearing 132. The back pressure chambers 1342a, 1342b and 1342c may independently communicate with the back pressure pockets 1313 and 1323, or the plurality of back pressure chambers 1342a, 1342b and 1342c may be formed to communicate together through the back pressure pockets 1313 and 1323.
The back pressure pockets 1313 and 1323 may be formed in the main bearing 131 and the sub bearing 132, respectively, as shown in
As described above, the main-side back pressure pocket 1313 is provided with the main-side first pocket 1313a and the main-side second pocket 1313b, and the sub-side back pressure pocket 1323 is provided with the sub-side first pocket 1323a and the sub-side second pocket 1323b. Also, the second pockets of both the main side and the sub side form higher pressure compared to the first pockets. Accordingly, the main-side first pocket 1313a and the sub-side first pocket 1323a communicate with a back pressure chamber to which a vane located relatively at an upstream side (from the discharge stroke to the suction stroke) of the vanes is belonged, and the main-side second pocket 1313b and the sub-side second pocket 1323b communicate with a back pressure chamber to which a vane located relatively at a downstream side (from the suction stroke to the discharge stroke) of the vanes is belonged.
If the vanes 1351, 1352 and 1353 are defined sequentially as a first vane 1351, a second vane 1352, and a third vane 1353 starting from the contact point P in the compression proceeding direction, an interval corresponding to the circumferential angle is formed between the first vane 1351 and the second vane 1352, between the second vane 1352 and the third vane 1353, and between the third vane 1353 and the first vane 1351.
Accordingly, when a compression chamber formed between the first vane 1351 and the second vane 1352 is a first compression chamber V1, a compression chamber formed between the second vane 1352 and the third vane 1353 is a second compression chamber V2, and a compression chamber formed between the third vane 1353 and the first vane 1351 is a third compression chamber V3, all of the compression chambers V1, V2, and V3 have the same volume at the same crank angle.
The vanes 1351, 1352, and 1353 are formed in a substantially rectangular shape. Here, of both end surfaces of the vane in a lengthwise direction of the vane, a surface in contact with the inner circumferential surface 133a of the cylinder 133 is defined as a front surface of the vane, and a surface facing the back pressure chamber 1342a, 1342b, 1342c is defined as a rear surface of the vane.
The front surface of each of the vanes 1351, 1352 and 1353 is curved so as to be in line contact with the inner circumferential surface 133a of the cylinder 133, and the rear surface of the vane 1351, 1352 and 1353 is formed flat to be inserted into the back pressure chamber 1342a, 1342b, 1342c and to evenly receive back pressure.
In the drawings, reference numerals 110a and 110c (see
In the vane rotary compressor according to the present disclosure, when power is applied to the driving motor 120 so that the rotor 122 of the driving motor 120 and the rotation shaft 123 coupled to the rotor 122 rotate together, the roller 134 rotates together with the rotation shaft 123.
Then the vanes 1351, 1352 and 1353 are pulled out from the respective vane slots 1341a, 1341b, and 1341c by a centrifugal force generated due to the rotation of the roller 134 and back pressure of the back pressure chambers 1342a, 1342b, 1342c provided at the rear side of the vanes 1351, 1352, and 1353. Accordingly, the front surface of each of the vanes 1351, 1352, and 1353 is brought into contact with the inner circumferential surface 133a of the cylinder 133.
Then the compression space V of the cylinder 133 is divided by the plurality of vanes 1351, 1352, and 1353 into a plurality of compression chambers (including a suction chamber or a discharge chamber) V1, V2, and V3 as many as the number of vanes 1351, 1352 and 1353. The volume of each compression chamber V1, V2 and V3 changes according to a shape of the inner circumferential surface 133a of the cylinder 133 and eccentricity of the roller 134 while moving in response to the rotation of the roller 134. A refrigerant filled in each of the compression chambers V1, V2, and V3 then flows along the roller 134 and the vanes 1351, 1352, and 1353 so as to be sucked, compressed and discharged.
This will be described in more detail as follows.
As illustrated in
At this time, the first back pressure chamber 1342a provided at the rear side of the first vane 1351 is exposed to the first pocket 1313a of the main-side back pressure pocket 1313, and the second back pressure chamber 1342b provided at the rear side of the second vane 1352 is exposed to the second pocket 1313b of the main-side back pressure pocket 1313. Accordingly, the first back pressure chamber 1342a forms intermediate pressure and the second back pressure chamber 1342b forms discharge pressure or pressure almost equal to discharge pressure (hereinafter, referred to as “discharge pressure”). The first vane 1351 is pressurized by the intermediate pressure and the second vane 1352 is pressurized by the discharge pressure, respectively, to be brought into close contact with the inner circumferential surface of the cylinder 133.
As illustrated in
At this time, when refrigerant pressure in the first compression chamber V1 rises, the first vane 1351 may be pushed toward the first back pressure chamber 1342a. As a result, the first compression chamber V1 communicates with the preceding third chamber V3, which may cause refrigerant leakage. Therefore, higher back pressure needs to be formed in the first back pressure chamber 1342a in order to prevent the refrigerant leakage.
Referring to the drawings, the first back pressure chamber 1342a is about to enter the main-side second pocket 1313b after passing the main-side first pocket 1313a. Accordingly, back pressure formed in the first back pressure chamber 1342a immediately rises to discharge pressure from intermediate pressure. As the back pressure of the first back pressure chamber 1342a increases, it is possible to suppress the first vane 1351 from being pushed backwards.
As illustrated in
At this time, the volume of the first compression chamber V1 is further decreased so that the refrigerant in the first compression chamber V1 is further compressed. However, the first back pressure chamber 1342a in which the first vane 1351 is accommodated fully communicates with the main-side second pocket 1313b so as to form pressure almost equal to discharge pressure. Accordingly, the first vane 1351 is not pushed by back pressure of the first back pressure chamber 1342a, thereby suppressing leakage between compression chambers.
As illustrated in
At this time, the first back pressure chamber 1342a is about to enter the main-side first pocket 1313a as an intermediate pressure region after passing the main-side second pocket 1313b as a discharge pressure region. Accordingly, back pressure formed in the first back pressure chamber 1342a is to be lowered to intermediate pressure from discharge pressure.
Meanwhile, the second back pressure chamber 1342b is located in the main-side second pocket 1313b, which is the discharge pressure region, and back pressure corresponding to discharge pressure is formed in the second back pressure chamber 1342b.
Referring to
Accordingly, intermediate pressure Pm, which is much lower than the discharge pressure Pd, is formed in the main-side first pocket 1313a, thereby enhancing mechanical efficiency between the cylinder 133 and the vane 135. And as pressure equal to or slightly lower than the discharge pressure Pd is formed in the main-side second pocket 1313b, the vane is properly brought into close contact with the cylinder, thereby enhancing mechanical efficiency while suppressing leakage between compression chambers.
Meanwhile, the first pocket 1313a and the second pocket 1313b of the main-side back pressure pocket 1313 according to this embodiment communicate with the oil flow path 125 via the first oil passage hole 126a, and the first pocket 1323a and the second pocket 1323b of the sub-side back pressure pocket 1323 communicate with the oil flow path 125 via the second oil passage hole 126b.
Referring back to
On the other hand, the main-side and sub-side second pockets 1313b and 1323b communicate with the respective bearing surfaces 1311a and 1321a, which the second pockets face, by the main-side and sub-side second bearing protrusion portions 1314b and 1324b. Accordingly, oil (refrigerant mixed oil) in the main-side and sub-side second pockets 1313b and 1323b flows into the bearing surfaces 1311a and 1321a through the respective oil passage holes 126a and 126b, and is introduced into the respective second pockets 1313b and 1323b via the main-side and sub-side bearing protrusion portions 1314b and 1324b, thereby forming pressure equal to or slightly lower than the discharge pressure.
However, in the embodiment of the present disclosure, the main-side second pocket 1313b and the sub-side second pocket 1323b do not communicate in a fully opened state with the bearing surfaces 1311a and 1321a, which the pockets face, respectively. In other words, the main-side second bearing protrusion portion 1314b and the sub-side second bearing protrusion portion 1324b mostly block the main-side second pocket 1313b and the sub-side second pocket 1323b, however, partially block the respective second pockets 1313b and 1323b with the communication flow paths 1315 and 1325 interposed therebetween.
Meanwhile, the main-side back pressure pocket and the sub-side back pressure pocket according to the embodiment of the present disclosure may be formed as follows.
Referring to
Inner circumferential sides of the main-side first pocket 1313a and the second pocket 1313b are blocked by the main-side first bearing protrusion portion 1314a and the main-side second bearing protrusion portion 1314b, respectively. And inner circumferential sides of the sub-side first pocket 1323a and the second pocket 1323b are blocked by the sub-side first bearing protrusion portion 1324a and the sub-side second bearing protrusion portion 1324b, respectively.
Accordingly, the shaft receiving portion 1311 of the main bearing 131 forms a cylindrical bearing surface 1311a, which is formed by a substantially continuous surface, and the shaft receiving portion 1321 of the sub bearing 132 forms a cylindrical bearing surface 1321a, which is formed by a substantially continuous surface. In addition, the main-side first bearing protrusion portion 1314a and second bearing protrusion portion 1314b, and the sub-side first bearing protrusion portion 1324a and second bearing protrusion portion 1324b form a kind of elastic bearing surface.
The first oil groove 1311b is formed on the bearing surface 1311a of the main bearing 131 and the second oil groove 1321b is formed on the bearing surface 1321a of the sub bearing 132.
The main-side second bearing protrusion portion 1314b is provided with the first communication flow path 1315 for communicating the main-side bearing surface 1311a with the main-side second pocket 1313b. And the sub-side second bearing protrusion portion 1324b is provided with the second communication flow path 1325 for communicating the sub-side bearing surface 1321a with the sub-side second pocket 1323b.
The first communication flow path 1315 is formed at a position where it overlaps the main-side second bearing protrusion portion 1315b and the first oil groove 1311b at the same time, and the second communication flow path 1325 is formed at a position where it overlaps the sub-side second bearing protrusion portion 1324b and the second oil groove 1321b at the same time.
As shown in the drawings, the main-side back pressure pocket 1313 and the sub-side back pressure pocket 1323 according to the embodiment of the present disclosure have the same configuration or operation effects. Accordingly, hereinafter, the sub-side back pressure pocket 1323 will be described as a representative example for the sake of convenience, and the description of the sub-side back pressure pocket 1323 will be equally applied to the main-side back pressure pocket 1313.
Referring to
The first pocket 1323a and the second pocket 1323b each formed in an arc shape are arranged along a circumferential direction. Outer wall surfaces of the first pocket 1323a and the second pocket 1323b are determined at the same time when an inner diameter of the cylinder 133 and an outer diameter of the roller 134 are determined. An outer diameter of the first pocket 1323a is the same as of the second pocket 1323b.
However, an arc length of the first pocket 1323a, which is the length between both side wall surfaces of the first pocket 1323a in the circumferential direction, is longer than that of the second pocket 1323b. This is because the first pocket 1323a involves in a suction stroke and most of a compression stroke, whereas the second pocket 1323b involves in the rest of the compression stroke and a discharge stroke.
The first bearing protrusion portion 1324a and the second bearing protrusion portion 1324b may have the same curvature and width. Particularly, since the width T of the first bearing protrusion portion 1324a and the second bearing protrusion portion 1324b serves to seal the first pocket 1323a and the second pocket 1323b, respectively, it is preferable to have a sealing length of about 1.5 mm.
The first bearing protrusion portion 1324a and the second bearing protrusion portion 1324b have the same height in an axial direction but the second communication flow path 1325 may be formed on an upper end surface of the second bearing protrusion portion 1324b.
As shown in
However, in some cases, as shown in
It is much preferable that the second communication flow path 1325 is formed on an upper half of the second bearing protrusion portion 1324b in that oil can be effectively retained in the second pocket 1323b.
In the vane rotary compressor according to the embodiment of the present disclosure, as a continuous bearing surface is substantially formed on the main-side second pocket 1313b and the sub-side second pocket 1323b, behavior of the rotation shaft 123 is stabilized, thereby enhancing mechanical efficiency of the compressor.
In addition, except for the communication flow path, the main-side second pocket 1313b and the sub-side second pocket 1323b are mostly closed by the main-side second bearing protrusion portion 1314b and the sub-side second bearing protrusion portion 1324b. Therefore, the main-side second pocket 1313b and the sub-side second pocket 1323b maintain a constant volume. Accordingly, pressure pulsation of back pressure for supporting the vane in the main-side second pocket 1313b and the sub-side second pocket 1323b can be lowered to stabilize behavior of the vane while suppressing vibration. As a result, collision noise between the vane and the cylinder can be reduced, and leakage between compression chambers can be reduced, thereby improving compression efficiency.
In addition, it is also possible to prevent foreign materials from being introduced into the main-side second pocket 1313b and the sub-side second pocket 1323b and accumulated between the bearing surfaces 1311a and 1321a and the rotation shaft 123 even during long-time operation. This may result in preventing abrasion on the bearings 131 and 132 or the rotation shaft 123.
In the vane rotary compressor according to the embodiment of the present disclosure, when a high-pressure refrigerant such as R32, R410a, and CO2 is used, the radial supporting force to the rotation shaft 123 can increase as described above although surface pressure against the bearing may be higher than that when a medium to low pressure refrigerant such as R134a is used. Also, as for the high-pressure refrigerant, surface pressure against the vane rises as well, which may cause leakage between compression chambers or vibration. However, contact force between the vanes 1351, 1352 and 1353 and the cylinder 133 can be appropriately maintained by maintaining back pressure of the back pressure chambers according to each vane. As a result, leakage between compression chambers and vane vibration can be suppressed. Therefore, reliability of the vane rotary compressor using the high-pressure refrigerant can be enhanced.
In the vane rotary compressor according to the embodiment of the present disclosure, the radial supporting force to the rotation shaft can be enhanced even under a low-temperature heating condition, a high pressure ratio condition, and a high-speed operation condition.
Hereinafter, description will be given of another embodiment of a communication flow path in a vane rotary compressor according to the present disclosure.
Referring to
The second communication flow path 1325, as described above, is formed so as to overlap the second oil groove 1321b. As illustrated in
However, as shown in
As a result, oil can be quickly and smoothly introduced into the second pocket 1323b to be effectively stored in the second pocket 1323b. In this way, oil can be supplied to the back pressure chamber communicating with the second pocket 1323b without interruption.
Meanwhile, the first and second bearing protrusion portions can provide a sort of elastic bearing effect by the first pocket and the second pocket. Since the first and second bearing protrusion portions form a ring-shaped strip along the circumferential direction, substantially a discontinuous bearing surface is formed. Accordingly, a high elastic bearing effect can be expected.
To enhance the elastic bearing effect, preferably, a width of the first and the second bearing protrusion portions is as thin and deep as possible while ensuring a minimum sealing distance between the first and the second bearing protrusion portions.
Here, the first pocket and the second pocket may be made different in size, but description will be given under assumption of having the same size for convenience of explanation. This will be equally applied to the first bearing protrusion portion and the second bearing protrusion portion.
Referring to
Referring to
The elastic bearing ratio rises slowly from 6 to 10 as illustrated in the graph. This is because the axial depth H of the bearing protrusion portion 1324 is formed to be too long (deep) comparted to its radial width so that the depth (length) of the bearing protrusion 1324 is much longer than its width, resulting in insufficient elastic force. Therefore, the elastic bearing ratio according to the embodiment of the present disclosure is preferably set to satisfy 2≤H/T≤6.
Table 1 below shows the comparison results of a case of employing the elastic bearing and a case without employing the elastic bearing on a critical load, a coefficient of friction, discharge pressure, and a pressure ratio. The case without employing the elastic bearing means a case without employing a back pressure pocket.
As can be seen in Table 1, a critical load on a bearing is improved by about 114%, a coefficient of friction is reduced by about 49%, discharge pressure is increased by about 46%, and a pressure ratio is increased by about 13% in the present disclosure employing an elastic bearing, compared to the related art without employing an elastic bearing.
From the results above, it can be seen that employment of the back pressure pocket according to the present disclosure improves all the critical load, friction coefficient, discharge pressure, and pressure ratio. In particular, considering the increase in discharge pressure, is the present disclosure may be suitable for an eco-friendly high-pressure refrigerant such as R32, R410a, and CO2, which has low ozone depletion potential (ODP) and global warming index (GWP).
Referring back to
For this purpose, when a depth of the back pressure pocket is H and a thickness of the flange portion is L, it is preferable to satisfy H−L≥2. For example, if the thickness of the flange portion is 10 to 12 mm, then an axial depth of the back pressure pocket can be approximately 8 to 10 mm. Therefore, the minimum thickness of the flange portion needs to be at least 2 mm or larger to maintain reliability when applying the coupling force described above.
Meanwhile, the aforementioned embodiments exemplarily illustrate a single-cylinder type vane rotary compressor, but in some cases, the elastic bearing structure employing the back pressure pockets may also be applicable to a twin-cylinder type vane rotary compressor in which a plurality of cylinders are arranged in an axial direction. In this case, however, an intermediate plate may be provided between the plurality of cylinders, and the back pressure pockets may be formed on both axial side surfaces of the intermediate plate, respectively.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0137651 | Nov 2018 | KR | national |