Vapor ablation systems and methods

Information

  • Patent Grant
  • 10342593
  • Patent Number
    10,342,593
  • Date Filed
    Friday, January 29, 2016
    3 years ago
  • Date Issued
    Tuesday, July 9, 2019
    14 days ago
Abstract
A vapor delivery system and method is provided that is adapted for treating prostate tissue. The vapor delivery system includes a vapor delivery needle configured to deliver condensable vapor energy to tissue. In one method, the vapor delivery system is advanced transurethrally into the patient to access the prostate tissue. The vapor delivery system includes a generator unit and an inductive heating system to produce a high quality vapor for delivery to tissue. Methods of use are also provided.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

The present invention relates to devices and related methods for treatment of benign prostatic hyperplasia using a minimally invasive approach. More specifically, the present disclosure relates to treating benign prostatic hyperplasia with vapor delivered to the prostate.


BACKGROUND

Benign prostatic hyperplasia (BPH) is a common disorder in middle-aged and older men, with prevalence increasing with age. At age 50, more than one-half of men have symptomatic BPH, and by age 70, nearly 90% of men have microscopic evidence of an enlarged prostate. The severity of symptoms also increase with age with 27% of patients in the 60-70 age bracket having moderate-to-severe symptoms, and 37% of patients in their 70's suffering from moderate-to-severe symptoms.


The prostate early in life is the size and shape of a walnut and prior to the enlargement resulting from BPH, weighs about 20 grams. Prostate enlargement appears to be a normal process. With age, the prostate gradually increases in size to twice or more its normal size. The fibromuscular tissue of the outer prostatic capsule restricts expansion after the gland reaches a certain size. Because of such restriction on expansion, the intracapsular tissue will compress against and constrict the prostatic urethra, thus causing resistance to urine flow.


In the male urogenital anatomy, the prostate gland is located below the bladder and the bladder neck. The walls of the bladder can expand and contract to cause urine flow through the urethra, which extends from the bladder, through the prostate and penis. The portion of urethra that is surrounded by the prostate gland is referred to as the prostatic urethra. The prostate also surrounds the ejaculatory ducts which have an open termination in the prostatic urethra. During sexual arousal, sperm is transported from the testes by the ductus deferens to the prostate which provides fluids that combine with sperm to form semen during ejaculation. On each side of the prostate, the ductus deferens and seminal vesicles join to form a single tube called an ejaculatory duct. Thus, each ejaculatory duct carries the seminal vesicle secretions and sperm into the prostatic urethra.


The prostate glandular structure can be classified into three zones: the peripheral zone, transition zone, and central zone. Peripheral zone PZ comprises about 70% of the volume of a young man's prostate. This sub-capsular portion of the posterior aspect of the prostate gland surrounds the distal urethra and 70 to 80% of cancers originate in the peripheral zone tissue. The central zone CZ surrounds the ejaculatory ducts and contains about 20-25% of the prostate volume. The central zone is often the site of inflammatory processes. The transition zone TZ is the site in which benign prostatic hyperplasia develops, and contains about 5-10% of the volume of glandular elements in a normal prostate, but can constitute up to 80% of such volume in cases of BPH. The transition zone consists of two lateral prostate lobes and the periurethral gland region. There are natural barriers around the transition zone, i.e., the prostatic urethra, the anterior fibromuscular stroma, and a fibrous plane between the transition zone and peripheral zone. The anterior fibromuscular stroma or fibromuscular zone is predominantly fibromuscular tissue.


BPH is typically diagnosed when the patient seeks medical treatment complaining of bothersome urinary difficulties. The predominant symptoms of BPH are an increase in frequency and urgency of urination, and a significant decrease in the rate of flow during urination. BPH can also cause urinary retention in the bladder which in turn can lead to lower urinary tract infection (LUTI). In many cases, the LUTI then can ascend into the kidneys and cause chronic pyelonephritis, and can eventually lead to renal insufficiency. BPH also may lead to sexual dysfunction related to sleep disturbance or psychological anxiety caused by severe urinary difficulties. Thus, BPH can significantly alter the quality of life with aging of the male population.


BPH is the result of an imbalance between the continuous production and natural death (apoptosis) of the glandular cells of the prostate. The overproduction of such cells leads to increased prostate size, most significantly in the transition zone which traverses the prostatic urethra.


In early stage cases of BPH, pharmacological treatments can alleviate some of the symptoms. For example, alpha-blockers treat BPH by relaxing smooth muscle tissue found in the prostate and the bladder neck, which may allow urine to flow out of the bladder more easily. Such drugs can prove effective until the glandular elements cause overwhelming cell growth in the prostate.


More advanced stages of BPH, however, can only be treated by surgical or less-invasive thermal ablation device interventions. A number of methods have been developed using electrosurgical or mechanical extraction of tissue, and thermal ablation or cryoablation of intracapsular prostatic tissue. In many cases, such interventions provide only transient relief, and these treatments often cause significant peri-operative discomfort and morbidity.


In one thermal ablation method, RF energy is delivered to prostate tissue via an elongated RF needle being penetrated into a plurality of locations in a prostate lobe. The elongated RF needle is typically about 20 mm in length, together with an insulator that penetrates into the lobe. The resulting RF treatment thus ablates tissue away from the prostatic urethra and does not target tissue close to, and parallel to, the prostatic urethra. The application of RF energy typically extends for 1 to 3 minutes or longer which allows thermal diffusion of the RF energy to ablate tissue out to the capsule periphery. Such RF energy delivery methods may not create a durable effect, since smooth muscle tissue and alpha adrenergic receptors are not uniformly ablated around the prostatic urethra or within the transition zone. As a result, tissue in the prostate lobes can continue to grow and impinge on the urethra thus limiting long-term effectiveness of the treatment.


SUMMARY OF THE DISCLOSURE

A vapor delivery system is provided, comprising a generator unit including a cradle, a syringe assembly disposed in the cradle and configured to interact with the cradle to deliver a fluid at a controlled rate, an inductive heating system fluidly coupled to the syringe assembly and configured to receive fluid from the syringe assembly, a force sensor disposed in the cradle and configured to contact the cradle and/or syringe assembly to generate an electrical signal proportional to a force exerted on the force sensor by the cradle and/or syringe assembly, and an electronic controller configured to control delivery of fluid and RF power to the inductive heating system for the production of vapor, the electronic controller being further configured to calibrate the electrical signal as representing a fluid pressure within the syringe assembly, the electronic controller being further configured to stop delivery of fluid and/or RF power to the inductive heating system when the fluid pressure falls outside of a desired range of fluid pressures.


In some embodiments, the cradle is arranged such that a distal end of the syringe assembly is held at a higher elevation than a proximal end of the syringe assembly when the syringe assembly is inserted into the cradle.


In one embodiment, the cradle is configured to purge any air from the syringe assembly during a priming procedure in which fluid is forced from the syringe assembly through the vapor delivery system.


In another embodiment, the cradle further comprises a piston coupled to a linear motor, wherein the piston interacts with a plunger of the syringe assembly to deliver fluid from the syringe assembly.


In some embodiments, a contact switch is activated when the syringe assembly is inserted into the cradle.


In one embodiment, the inductive heating system comprises an inner fluid coil surrounded by an outer conductive coil.


A method of controlling a flow of vapor is provided, comprising receiving a syringe assembly into a cradle of a generator unit, delivering a fluid at a controlled rate from the syringe assembly to an inductive heating system fluidly coupled to the syringe assembly, measuring a force exerted on a force sensor that is disposed in the cradle and configured to contact the cradle and/or syringe assembly during fluid delivery, and calibrating the measured force with an electronic controller to represent a fluid pressure within the syringe assembly, and stopping delivery of fluid to the inductive heating system when the fluid pressure falls outside of a desired range of fluid pressures.


A method of treating prostate tissue is provided, comprising inserting a vapor delivery system transurethrally into a patient to access the prostatic urethra of the patient, advancing a vapor delivery needle generally transverse to the vapor delivery system through the prostatic urethra and into a transition zone of the prostate, and delivering vapor through distally facing vapor delivery ports of the vapor delivery needle to direct the vapor distally from the device into the prostate.





BRIEF DESCRIPTION OF THE DRAWINGS

In order to better understand the invention and to see how it may be carried out in practice, some preferred embodiments are next described, by way of non-limiting examples only, with reference to the accompanying drawings, in which like reference characters denote corresponding features consistently throughout similar embodiments in the attached drawings.



FIG. 1 shows one embodiment of a vapor delivery system.



FIGS. 2A-2B show close-up views of a distal portion of the vapor delivery system including a vapor delivery needle.



FIGS. 2C-2D show a normal prostate and an enlarged prostate being treated with a vapor delivery system.



FIGS. 3A-3B show a vapor delivery system including an inductive heating system for producing high quality condensable vapor.



FIG. 4 shows a generator unit configured to control generation of vapor in the inductive heating system.



FIG. 5 shows one embodiment of a syringe assembly that interacts with the generator unit.



FIG. 6 shows a cross-sectional view of a syringe cradle and syringe assembly of the generator unit.



FIG. 7 is a cross-sectional view of a shaft of the vapor delivery system.





DETAILED DESCRIPTION OF THE INVENTION

In general, one method for treating BPH comprises introducing a heated vapor interstitially into the interior of a prostate, wherein the vapor controllably ablates prostate tissue. This method can utilize vapor for applied thermal energy of between 50 calories and 300 calories per each individual vapor treatment (and assumes multiple treatments for each prostate lobe) in an office-based procedure. The method can cause localized ablation of prostate tissue, and more particularly the applied thermal energy from vapor can be localized to ablate tissue adjacent the urethra without damaging prostate tissue that is not adjacent the urethra.


The present disclosure is directed to the treatment of BPH, and more particularly for ablating transitional zone prostate tissue without ablating central or peripheral zone prostate tissue. In one embodiment, the present disclosure is directed to treating a prostate using convective heating in a region adjacent the prostatic urethra. The method of ablative treatment is configured to target smooth muscle tissue, alpha adrenergic receptors, sympathetic nerve structures and vasculature parallel to the prostatic urethra between the bladder neck region and the verumontanum region to a depth of less than 2 cm.


The system can include a vapor delivery mechanism that delivers vapor media, including water vapor. The system can utilize a vapor source configured to provide vapor having a temperature of at least 60-140° C. In another embodiment, the system further comprises a computer controller configured to deliver vapor for an interval ranging from 1 second to 30 seconds.


In some embodiments, the system further comprises a source of a pharmacologic agent or other chemical agent or compound for delivery with the vapor. These agents include, without limitation, an anesthetic, an antibiotic or a toxin such as Botox®, or a chemical agent that can treat cancerous tissue cells. The agent also can be a sealant, an adhesive, a glue, a superglue or the like.



FIG. 1 shows one embodiment of a vapor delivery system. Vapor delivery system 100 can have an elongate shaft 102 configured for insertion into the urethra of a patient and a handle portion 104 for gripping with a human hand. The vapor delivery system 100 can include a vapor delivery needle 106 disposed in the shaft that is configured to extend from a distal portion of the elongate shaft 102. The vapor delivery needle can extend generally perpendicular to or transverse from the shaft, and can include one or more vapor delivery ports configured to deliver a flow of vapor media from the needle into prostate tissue. The vapor delivery system 100 can further include one or more triggers, buttons, levers, or actuation mechanisms 107 configured to actuate the various functions of the system. For example, the actuation mechanism can be configured to extend/retract the vapor delivery needle, and start/stop the flow of vapor, aspiration, and a cooling and/or irrigation fluid such as saline.


In some embodiments, the triggers or actuation mechanisms 107 can be manipulated in such a way as to control varying degrees or flow rates of vapor and/or irrigation. In one specific embodiment, the triggers or actuation mechanisms 107 can comprise a first trigger configured to extend/retract the vapor delivery needle, a second trigger configured to start/stop the flow of vapor, and a third trigger configured to provide a cooling and/or irrigation fluid such as saline. In another embodiment, a single trigger or actuation mechanism can both extend/retract the vapor delivery needle and start/stop the flow of vapor. In one embodiment, a single press or depression of one of the triggers, such as a trigger that provides the cooling and/or irrigation fluid, may provide a standard irrigation flush, while a rapid double press or depression of the trigger may provide a “turbo” irrigation flush in which the flow rate of irrigation is increased over the standard flush flow rate. This feature may be useful, for example, if the physician encounters a blockage, needs additional cooling, or has reduced vision in the urethra and/or prostate due to accumulation of blood or other bodily fluids.


The fluid or irrigation source can provide a fluid, such as saline, through a separate lumen in the shaft to provide irrigation and flushing to tissue during insertion of the system and during vapor delivery to tissue. In some embodiments, the irrigation can be used to clear blood and debris from tissue lumens to increase visibility. The irrigation can also provide cooling to the urethra of the patient, both via direct contact of the irrigation fluid with the urethra as well as cooling the shaft of the vapor delivery system as the fluid flows from the irrigation source through the shaft and into contact with the tissue. Urethral flush can be used during the lesion formation. In one embodiment, the flush rate can be approximately 80 mL/minute, or ranging from 20 to 400 mL/minute. Changes in flush rate will change the amount of tissue cooling (depth) into the urethra and prostate, which can affect lesion size.



FIG. 2A shows a close-up view of the distal portion of the shaft of vapor delivery system 100, including the vapor delivery needle 106 extending beyond the shaft and exposing the vapor delivery ports 108. Vapor delivery ports 108 may be arranged in a pattern that optimizes the delivery of vapor to tissue in a given application. For example, in a system designed for treatment of BPH the delivery ports 108 comprise multiple rows of a plurality of vapor delivery ports. In one specific embodiment, the delivery ports 108 can be spaced at 120 degree intervals around the circumference of the needle, with one row of delivery ports facing distally from the front edge of the needle, as shown in FIG. 2B, to ensure ablation of tissue adjacent to the prostatic urethra. In general, the vapor delivery ports can each have a unique diameter. In one embodiment the vapor delivery ports all have the same diameter.



FIG. 2C shows a normal, healthy prostate, and FIG. 2D shows an enlarged prostate being treated with a vapor delivery system 100. In one embodiment, the vapor delivery system can be inserted into the urethra and advanced to the prostatic urethra through a transurethral approach. The vapor delivery needle 106 can be advanced generally transverse to the shaft of the vapor delivery system and into the prostate tissue. Vapor can be generated by the vapor delivery system and delivered into the prostate through the vapor delivery needle. As described above, the vapor delivery needle can include a row of vapor delivery ports that point distally away from the device when the vapor delivery needle is extended transverse to the shaft of the device. Referring to FIG. 2D, the vapor can be delivered to the prostate through the distally facing vapor delivery ports to ablate prostate tissue distal to the position of the vapor delivery needle in the prostate. The position of the vapor delivery needle and the vapor delivery ports can allow for ablation of transition zone tissue of the prostate extending distally from the position of the vapor delivery needle. For example, in FIG. 2D transition zone tissue is treated that extends under bladder muscular tissue that cannot be safely penetrated by a delivery device needle.


The vapor delivery system 100 can include a vapor source, an aspiration source, a fluid cooling or irrigation source, a light source, and/or an electronic controller configured to control generation and delivery of vapor from the vapor source, through a lumen of the shaft, through the vapor delivery needle, and into prostate tissue. In some embodiments, the electronic controller can be disposed on or in the vapor delivery system, and in other embodiments the electronic controller can be disposed separate from the system.


A vapor source can be provided for generating and delivering a vapor media through the vapor delivery needle to ablate tissue. In one embodiment, the vapor source can be a vapor generator that can deliver a vapor media, such as water vapor, that has a precisely controlled quality to provide a precise amount of thermal energy delivery, for example measured in calories per second. In some embodiments, the vapor source can comprise an inductive heating system disposed in the vapor delivery system (e.g., in the handle) in which a flow media is inductively heated to generate a condensable vapor such as steam.



FIGS. 3A-3B illustrate one embodiment of an inductive heating system 320, comprising an inner fluid coil 322 (shown in FIG. 3A) surrounded by an outer electrically conductive coil 324 (FIG. 3B). The inner fluid coil can be constructed from steel tubing which may be annealed. The inner fluid coil may be soldered or include a solder stripe to insure electrical conductivity between coil windings. The outer conductive coil can be a conductive material, such as electrically insulated copper Litz wire having an overall diameter ranging from 18 gauge to 22 gauge. As shown, the inductive heating system 320 can be disposed within the vapor delivery system, such as within the handle. An inlet portion 326 of the inner fluid coil 322 can receive a fluid, such as sterile water, from an external fluid source. The fluid can pass through the inner fluid coil 322 as AC or RF current is applied to the outer conductive coil 324 via electrical connections 325. Current flowing in the outer conductive coil can induce currents to flow in the inner fluid coil that resistively heat the fluid within the inner fluid coil so as to produce a high quality condensable vapor, which is then delivered to the vapor delivery needle via outlet portion 328.



FIG. 4 illustrates a generator unit 40 configured to provide power and fluid to the inductive heating system for the production of vapor. The generator unit also can connect to the vapor delivery system 100 described above to provide power and other components to the system vital for operation, such as irrigation/cooling fluid, suction, etc. The generator unit can include an electronic controller and a graphical user interface (GUI) 434 to provide operating parameters and controls to the user during vapor therapy. The generator unit can include a syringe cradle 430 adapted to hold syringe assembly 536 for providing fluid, such as sterile water, to the inductive heating system.


The generator unit can also include an electrical connector 432 which can provide RF current to the inductive heating system, electrical signals to and from the switches 107 of the vapor delivery system, measurements of, for example, the temperature of the inductive heating system, and electrical signals to/from a controller of vapor delivery system, for example in its electrical connector, to identify the vapor delivery system, track its history of vapor delivery, and prevent excessive use of a given vapor delivery system. Generator unit 40 may also contain the peristaltic pump 435 that provides a flow of cooling/irrigation fluid such as saline to the vapor delivery system. In operation, flexible tubing 437 can be routed from a bag of sterile saline, through the peristaltic pump, and through tubing into the vapor delivery system. Guides or markers can be provided on the peristaltic pump 435 to insure that the tubing is inserted in a path that provides flow in a direction from the saline bag into the vapor delivery system when the pump is activated normally.



FIG. 5 shows syringe assembly 536 that provides a precise amount of fluid such as sterile water to the vapor delivery system 100 for conversion into vapor. Syringe assembly 536 includes a syringe 537 having exit port 541 that is offset from the center line of the syringe, with luer fitting 542 that connects to sterile water tubing on the vapor delivery system, plunger 538 that moves forward in the syringe to eject water, and backward in the syringe to fill the syringe with water, and accessory rod 540 that removably attaches to plunger 538 during system set-up to fill syringe 537. When syringe 537 has been filled with fluid, accessory rod 540 is discarded, and filled syringe 537 is inserted into the cradle of the generator unit.



FIG. 6 shows a cross-sectional view of the syringe cradle 430 of FIG. 4, with the syringe assembly 536 of FIG. 5 inserted into cradle 430. A contact switch 654 is activated when syringe 537 is inserted into cradle 430 to insure that the syringe is in place when power is delivered to the vapor delivery system. The state of the contact switch is sensed through electrical leads 652. A force sensor 644 is disposed in the cradle such that it contacts and interacts with the cradle and/or syringe assembly 537. When the electronic controller is commanded to deliver sterile water to the vapor delivery system, piston 642 of the cradle engages syringe plunger 538, and a linear motor attached to piston 642 delivers sterile water at a precisely controlled rate from syringe 537 out through luer fitting 542 into fluid tubing connected to the inductive heating system. As sterile water is pushed, syringe 537 impinges on cradle 430, which is free to move laterally within generator 40. Forward movement of cradle 430 is prevented as it impinges upon force sensor 644. Microscopic lateral movement of force sensor 644 is translated into an electrical signal that is proportional to the force exerted on force sensor 644 by cradle 430. The electrical signal is conducted through leads 648 to the electronic controller and calibrated as the water pressure within syringe 537 and throughout the fluid tubing including within the inner coil of the inductive heating system. Water pressure is monitored by the electronic controller of the generator unit 40, and the electronic controller can be configured to stop delivery of RF power and fluid to the inductive heating system if the fluid pressure falls outside of a desired range of pressures, e.g., if the fluid pressure is too low (for example due to a leak in the water line), or too high (for example due to a blockage in the water line).


Cradle 430 is configured to purge any air from the fluid tubing during a priming procedure in which water is forced from the syringe and fills and flushes the system water and vapor lines, exiting from the vapor delivery ports of the vapor delivery device. As shown in FIG. 6, cradle 430 is designed so as to keep the distal end of syringe 537 at a higher elevation than its proximal end when inserted into the cradle, and to keep offset exit port 541 of the syringe at the top of the syringe. This design forces any air in the syringe to move under the influence of gravity to the upper distal end of the syringe and to exit the syringe to be purged from the fluid tubing during the priming procedure. Removal of air from the fluid tubing prevents over heating of the inductive heating system, and prevents loss of water volume and therefore loss of calories delivered to tissue.


The electronic controller of the generator unit can be set to control the various parameters of vapor delivery, for example, the controller can be set to deliver vapor media for a selected treatment interval at a selected flow rate, a selected pressure, or selected vapor quality. Further details on the vapor delivery system, the vapor generator, and how vapor and fluid are delivered to tissue can be found in U.S. Pat. No. 8,273,079 and PCT Publication No. WO 2013/040209, both of which are incorporated by reference. In some embodiments, the electronic controller can also control the aspiration and/or cooling irrigation functions of the vapor delivery system.



FIG. 7 provides a cross sectional view of elongate shaft 102 of vapor delivery system 100 from FIGS. 1-2. Lumen 148 can be configured to accommodate the vapor delivery needle described above and in FIGS. 1-2, to allow for the vapor delivery needle to be advanced from the shaft during vapor delivery. Lumen 115 formed within tube 112 can have a diameter ranging from about 2 to 5 mm for accommodating various endoscopes 118, while at the same time providing an annular space 138 for allowing an irrigation fluid to flow within lumen 115 and outwardly from the shaft into the distal urethra and bladder. The lumen 115 can be sized to accommodate an endoscope or camera to provide additional viewing and feedback to the physician. This endoscope or camera can provide a view of the distal end of the shaft, including a view of the vapor delivery needle when deployed. As can be seen in FIG. 7, the lumen 115 is dimensioned to provide a space 138 for fluid irrigation flow around the endoscope 118. In some embodiments, the annular space 138 can be a separate concentric lumen around the endoscope for irrigation fluid flow. The annular space 138 allows for flow of irrigation fluid from the vapor delivery system into tissue, and also provides cooling to the shaft when vapor is delivered from the vapor delivery needle (disposed in lumen 148) into tissue. Material 144 in FIG. 7 can conduct heat from the vapor delivery needle to the irrigation/cooling fluid flowing in annular space 138, or alternatively, can conduct cooling from the irrigation/cooling fluid to the vapor delivery needle, to prevent over-heating of the patient (particularly the urethra) during vapor therapy.


Although particular embodiments of the present invention have been described above in detail, it will be understood that this description is merely for purposes of illustration and the above description of the invention is not exhaustive. Specific features of the invention are shown in some drawings and not in others, and this is for convenience only and any feature may be combined with another in accordance with the invention. A number of variations and alternatives will be apparent to one having ordinary skills in the art. Such alternatives and variations are intended to be included within the scope of the claims. Particular features that are presented in dependent claims can be combined and fall within the scope of the invention. The invention also encompasses embodiments as if dependent claims were alternatively written in a multiple dependent claim format with reference to other independent claims.

Claims
  • 1. A vapor delivery system, comprising: a generator unit;a cradle disposed in the generator unit;a syringe assembly disposed in the cradle and configured to interact with the cradle to deliver a fluid at a controlled rate, wherein a barrel of the syringe assembly directly contacts the cradle;an inductive heating system fluidly coupled to the syringe assembly and configured to receive fluid from the syringe assembly;a force sensor disposed in the cradle and configured to contact the cradle and/or the syringe assembly to generate an electrical signal proportional to a force exerted on the force sensor by the cradle and/or the syringe assembly; andan electronic controller configured to control delivery of fluid and RF power to the inductive heating system for the production of vapor, to calibrate the electrical signal as representing a fluid pressure within the syringe assembly, and to stop delivery of the fluid and/or the RF power to the inductive heating system when the fluid pressure falls outside of a predetermined range of fluid pressures.
  • 2. The system of claim 1, wherein the cradle is arranged such that a distal end of the syringe assembly is held at a higher elevation than a proximal end of the syringe assembly.
  • 3. The system of claim 2, wherein the cradle is configured to purge any air from the syringe assembly during a priming procedure.
  • 4. The system of claim 1, wherein the cradle further comprises a piston coupled to a linear motor, wherein the piston interacts with a plunger of the syringe assembly to deliver fluid from the syringe assembly.
  • 5. The system of claim 1, wherein a contact switch is activated by the contact between the barrel and the cradle.
  • 6. The system of claim 1, wherein the inductive heating system comprises an inner fluid coil surrounded by an outer conductive coil.
  • 7. A vapor delivery system, comprising: a generator unit;a cradle disposed in the generator unit;a syringe assembly disposed in the cradle and configured to interact with the cradle to deliver a fluid at a controlled rate;an inductive heating system fluidly coupled to the syringe assembly and configured to receive fluid from the syringe assembly;a force sensor disposed between the cradle and the generator and configured to generate an electrical signal proportional to a force exerted on the force sensor by the cradle; andan electronic controller configured to control delivery of fluid and RF power to the inductive heating system for the production of vapor, to calibrate the electrical signal as representing a fluid pressure within the syringe assembly, and to stop delivery of the fluid and/or the RF power to the inductive heating system when the fluid pressure falls outside of a predetermined range of fluid pressures.
  • 8. The system of claim 7, wherein at least a portion of the cradle is free to move in a lateral direction perpendicular to a longitudinal axis of the syringe assembly, and wherein the force exerted is a lateral force.
  • 9. The system of claim 7, wherein the cradle further comprises a piston coupled to a linear motor, wherein the piston is configured to interact with a plunger of the syringe assembly to deliver fluid from the syringe assembly.
  • 10. The system of claim 9, wherein the interaction of the plunger and the syringe assembly causes the force to be exerted on the force sensor by the cradle.
  • 11. The system of claim 7, wherein the cradle is arranged such that a distal end of the syringe assembly is located at a higher elevation than a proximal end of the syringe assembly.
  • 12. The system of claim 11, wherein the cradle is configured to purge any air from the syringe assembly during a priming procedure.
  • 13. The system of claim 7, wherein a barrel of the syringe directly contacts the cradle.
  • 14. A vapor delivery system, comprising: a generator unit;a cradle disposed in the generator unit;a syringe assembly disposed in the cradle and configured to interact with the cradle to deliver a fluid at a controlled rate;an inductive heating system fluidly coupled to the syringe assembly and configured to receive fluid from the syringe assembly;a force sensor disposed in the cradle and configured to contact the cradle and/or the syringe assembly to generate an electrical signal proportional to a lateral force exerted on the force sensor by the cradle and/or the syringe assembly in a lateral direction, wherein the lateral direction is a direction perpendicular to a longitudinal axis of the syringe assembly; andan electronic controller configured to control delivery of fluid and RF power to the inductive heating system for the production of vapor, to calibrate the electrical signal as representing a fluid pressure within the syringe assembly, and to stop delivery of the fluid and/or the RF power to the inductive heating system when the fluid pressure falls outside of a predetermined range of fluid pressures.
  • 15. The system of claim 14, wherein at least a portion of the cradle is free to move laterally within the generator unit.
  • 16. The system of claim 14, wherein the cradle further comprises a piston coupled to a linear motor, wherein the piston is configured to interact with a plunger of the syringe assembly to deliver fluid from the syringe assembly.
  • 17. The system of claim 16, wherein the interaction of the plunger and the syringe assembly causes the lateral force to be exerted on the force sensor by the cradle.
  • 18. The system of claim 14, wherein the force sensor is disposed between the cradle and the generator.
  • 19. The system of claim 14, wherein a barrel of the syringe directly contacts the cradle.
  • 20. The system of claim 14, wherein the cradle is arranged such that a distal end of the syringe assembly is held at a higher elevation than a proximal end of the syringe assembly.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of US Provisional Patent Application No. 62/109,540, filed Jan. 29, 2015, titled “VAPOR ABLATION SYSTEMS AND METHODS”, which is incorporated by reference in its entirety.

US Referenced Citations (288)
Number Name Date Kind
408899 Small Aug 1889 A
1719750 Bridge et al. Jul 1929 A
4672963 Barken Jun 1987 A
4920982 Goldstein May 1990 A
4950267 Ishihara et al. Aug 1990 A
5117482 Hauber May 1992 A
5222185 McCord, Jr. Jun 1993 A
5249585 Turner et al. Oct 1993 A
5300099 Rudie Apr 1994 A
5312399 Hakky et al. May 1994 A
5330518 Neilson et al. Jul 1994 A
5366490 Edwards et al. Nov 1994 A
5370609 Drasler et al. Dec 1994 A
5370675 Edwards et al. Dec 1994 A
5370677 Rudie et al. Dec 1994 A
5385544 Edwards et al. Jan 1995 A
5409453 Lundquist et al. Apr 1995 A
5413588 Rudie et al. May 1995 A
5421819 Edwards et al. Jun 1995 A
5435805 Edwards et al. Jul 1995 A
5464437 Reid et al. Nov 1995 A
5470308 Edwards et al. Nov 1995 A
5470309 Edwards et al. Nov 1995 A
5484400 Edwards et al. Jan 1996 A
5499998 Meade Mar 1996 A
5531676 Edwards et al. Jul 1996 A
5531763 Mastri et al. Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5542916 Hirsch et al. Aug 1996 A
5545171 Sharkey et al. Aug 1996 A
5549644 Lundquist et al. Aug 1996 A
5554110 Edwards et al. Sep 1996 A
5556377 Rosen et al. Sep 1996 A
5558673 Edwards et al. Sep 1996 A
5588960 Edwards et al. Dec 1996 A
5591125 Edwards et al. Jan 1997 A
5599294 Edwards et al. Feb 1997 A
5601591 Edwards et al. Feb 1997 A
5628770 Thome et al. May 1997 A
5630794 Lax et al. May 1997 A
5645528 Thome Jul 1997 A
5667488 Lundquist et al. Sep 1997 A
5672153 Lax et al. Sep 1997 A
5709680 Yates et al. Jan 1998 A
5720718 Rosen et al. Feb 1998 A
5720719 Edwards et al. Feb 1998 A
5776176 Rudie Jul 1998 A
5792070 Kauphusman et al. Aug 1998 A
5797903 Swanson et al. Aug 1998 A
5800486 Thome et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5830179 Mikus et al. Nov 1998 A
5843144 Rudie et al. Dec 1998 A
5849011 Jones et al. Dec 1998 A
5861021 Thome et al. Jan 1999 A
5871481 Kannenberg et al. Feb 1999 A
5873877 McGaffigan et al. Feb 1999 A
5897553 Mulier et al. Apr 1999 A
5899932 Dann et al. May 1999 A
5938692 Rudie Aug 1999 A
5944715 Goble et al. Aug 1999 A
5951515 Osterlind Sep 1999 A
5957922 Imran Sep 1999 A
5964752 Stone Oct 1999 A
5964756 McGaffigan et al. Oct 1999 A
5976123 Baumgardner et al. Nov 1999 A
5987360 McGrath et al. Nov 1999 A
5990465 Nakaoka et al. Nov 1999 A
6007571 Neilson et al. Dec 1999 A
6009351 Flachman Dec 1999 A
6017358 Yoon et al. Jan 2000 A
6017361 Mikus et al. Jan 2000 A
6036631 McGrath et al. Mar 2000 A
6036713 Kieturakis Mar 2000 A
6053909 Shadduck Apr 2000 A
6063081 Mulier et al. May 2000 A
6067475 Graves et al. May 2000 A
6077257 Edwards et al. Jun 2000 A
6113593 Tu et al. Sep 2000 A
6122551 Rudie et al. Sep 2000 A
6123083 McGrath et al. Sep 2000 A
6147336 Oshijima et al. Nov 2000 A
6148236 Dann Nov 2000 A
6156036 Sussman et al. Dec 2000 A
6161049 Rudie et al. Dec 2000 A
6179805 Sussman et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6206847 Edwards et al. Mar 2001 B1
6210404 Shadduck Apr 2001 B1
6223085 Dann et al. Apr 2001 B1
6231591 Desai May 2001 B1
6235022 Hallock May 2001 B1
6238389 Paddock et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6241702 Lundquist et al. Jun 2001 B1
6258087 Edwards et al. Jul 2001 B1
6272384 Simon et al. Aug 2001 B1
6287297 Woodruff et al. Sep 2001 B1
6302903 Mulier et al. Oct 2001 B1
6312391 Ramadhyani et al. Nov 2001 B1
6315777 Comben Nov 2001 B1
6348039 Flachman et al. Feb 2002 B1
6398759 Sussman et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6423027 Gonon Jul 2002 B1
6440127 McGovern et al. Aug 2002 B2
6461296 Desai Oct 2002 B1
6494902 Hoey et al. Dec 2002 B2
6496737 Rudie et al. Dec 2002 B2
6508816 Shadduck Jan 2003 B2
6517534 McGovern et al. Feb 2003 B1
6524270 Bolmsjo et al. Feb 2003 B1
6537248 Mulier et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6544211 Andrew et al. Apr 2003 B1
6551300 McGaffigan Apr 2003 B1
6565561 Goble et al. May 2003 B1
6575929 Sussman et al. Jun 2003 B2
6575968 Eggers et al. Jun 2003 B1
6579270 Sussman et al. Jun 2003 B2
6589201 Sussman et al. Jul 2003 B1
6607529 Jones et al. Aug 2003 B1
6638275 McGaffigan et al. Oct 2003 B1
6640139 Ueberle Oct 2003 B1
6669694 Shadduck Dec 2003 B2
6676628 Sussman et al. Jan 2004 B2
6706039 Mulier et al. Mar 2004 B2
6716252 Lazarovitz et al. Apr 2004 B2
6719738 Mehier Apr 2004 B2
6726696 Houser et al. Apr 2004 B1
6730079 Lovewell May 2004 B2
6736810 Hoey et al. May 2004 B2
6740108 Just et al. May 2004 B1
6760616 Hoey et al. Jul 2004 B2
6780178 Palanker et al. Aug 2004 B2
6827718 Hutchins et al. Dec 2004 B2
6855141 Lovewell Feb 2005 B2
6887237 McGaffigan May 2005 B2
6905475 Hauschild et al. Jun 2005 B2
6911028 Shadduck Jun 2005 B2
6969376 Takagi et al. Nov 2005 B2
6974455 Garabedian et al. Dec 2005 B2
7014652 Cioanta et al. Mar 2006 B2
7041121 Williams et al. May 2006 B1
7066935 Swoyer et al. Jun 2006 B2
7089064 Manker et al. Aug 2006 B2
7130697 Chornenky et al. Oct 2006 B2
7238182 Swoyer et al. Jul 2007 B2
7247155 Hoey et al. Jul 2007 B2
7261709 Swoyer et al. Aug 2007 B2
7261710 Elmouelhi et al. Aug 2007 B2
7322974 Swoyer et al. Jan 2008 B2
7328068 Spinelli et al. Feb 2008 B2
7328069 Gerber Feb 2008 B2
7335197 Sage et al. Feb 2008 B2
7340300 Christopherson et al. Mar 2008 B2
7369894 Gerber May 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7437194 Skwarek et al. Oct 2008 B2
7470228 Connors et al. Dec 2008 B2
7549987 Shadduck Jun 2009 B2
7865250 Mrva et al. Jan 2011 B2
7894913 Boggs et al. Feb 2011 B2
7959577 Schmitz et al. Jun 2011 B2
8048069 Skwarek et al. Nov 2011 B2
8216217 Sharkey et al. Jul 2012 B2
8244327 Fichtinger et al. Aug 2012 B2
8251985 Hoey et al. Aug 2012 B2
8272383 Hoey et al. Sep 2012 B2
8273079 Hoey et al. Sep 2012 B2
8301264 Achenbach et al. Oct 2012 B2
8313485 Shadduck Nov 2012 B2
8372065 Hoey et al. Feb 2013 B2
8388611 Shadduck et al. Mar 2013 B2
8409109 Tiesma et al. Apr 2013 B2
8419723 Shadduck et al. Apr 2013 B2
8550743 Bonde et al. Oct 2013 B2
8585692 Shadduck et al. Nov 2013 B2
8632530 Hoey et al. Jan 2014 B2
8740957 Masotti Jun 2014 B2
8801702 Hoey et al. Aug 2014 B2
8900223 Shadduck Dec 2014 B2
9198708 Hoey et al. Dec 2015 B2
20020078956 Sharpe et al. Jun 2002 A1
20020111617 Cosman et al. Aug 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20030069575 Chin et al. Apr 2003 A1
20030092689 Escandon et al. May 2003 A1
20030097126 Woloszko et al. May 2003 A1
20030130575 Desai Jul 2003 A1
20030206730 Golan Nov 2003 A1
20040006334 Beyar et al. Jan 2004 A1
20040068306 Shadduck Apr 2004 A1
20040186422 Rioux et al. Sep 2004 A1
20040230316 Cioanta et al. Nov 2004 A1
20040267340 Cioanta et al. Dec 2004 A1
20050096629 Gerber et al. May 2005 A1
20050124915 Eggers et al. Jun 2005 A1
20050149020 Jahng Jul 2005 A1
20050159676 Taylor et al. Jul 2005 A1
20060089636 Christopherson et al. Apr 2006 A1
20060135955 Shadduck Jun 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060224154 Shadduck et al. Oct 2006 A1
20060224169 Weisenburgh, II et al. Oct 2006 A1
20060253069 Li et al. Nov 2006 A1
20060276871 Lamson et al. Dec 2006 A1
20070032785 Diederich et al. Feb 2007 A1
20070038089 Hatano et al. Feb 2007 A1
20070142846 Catanese, III et al. Jun 2007 A1
20070179491 Kratoska et al. Aug 2007 A1
20070197864 Dejima et al. Aug 2007 A1
20070213703 Naam et al. Sep 2007 A1
20080021484 Catanese, III et al. Jan 2008 A1
20080021485 Catanese, III et al. Jan 2008 A1
20080033232 Catanese, III et al. Feb 2008 A1
20080033458 McLean et al. Feb 2008 A1
20080033488 Catanese, III et al. Feb 2008 A1
20080039833 Catanese, III et al. Feb 2008 A1
20080039872 Catanese, III et al. Feb 2008 A1
20080039874 Catanese, III et al. Feb 2008 A1
20080039875 Catanese, III et al. Feb 2008 A1
20080039876 Catanese, III et al. Feb 2008 A1
20080039893 McLean et al. Feb 2008 A1
20080039894 Catanese, III et al. Feb 2008 A1
20080046045 Yon et al. Feb 2008 A1
20080110457 Barry et al. May 2008 A1
20080132826 Shadduck et al. Jun 2008 A1
20080188811 Kim Aug 2008 A1
20080208187 Bhushan et al. Aug 2008 A1
20080214956 Briggs et al. Sep 2008 A1
20080217325 Von Buren et al. Sep 2008 A1
20080249399 Appling et al. Oct 2008 A1
20080262491 Swoyer et al. Oct 2008 A1
20080269737 Elmouelhi et al. Oct 2008 A1
20080269862 Elmouelhi et al. Oct 2008 A1
20080275440 Kratoska et al. Nov 2008 A1
20080297287 Shachar et al. Dec 2008 A1
20080312497 Elmouelhi et al. Dec 2008 A1
20090018553 McLean et al. Jan 2009 A1
20090054871 Sharkey et al. Feb 2009 A1
20090138001 Barry et al. May 2009 A1
20090149846 Hoey et al. Jun 2009 A1
20090199855 Davenport Aug 2009 A1
20090216220 Hoey et al. Aug 2009 A1
20090227998 Aljuri et al. Sep 2009 A1
20090306640 Glaze et al. Dec 2009 A1
20100016757 Greenburg et al. Jan 2010 A1
20100049031 Fruland et al. Feb 2010 A1
20100094270 Sharma Apr 2010 A1
20100114083 Sharma May 2010 A1
20100179416 Hoey et al. Jul 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100204688 Hoey et al. Aug 2010 A1
20100256636 Fernandez et al. Oct 2010 A1
20100262133 Hoey et al. Oct 2010 A1
20100262137 Nye et al. Oct 2010 A1
20100286679 Hoey et al. Nov 2010 A1
20100292767 Hoey et al. Nov 2010 A1
20100298948 Hoey et al. Nov 2010 A1
20110060328 Skwarek et al. Mar 2011 A1
20110077628 Hoey et al. Mar 2011 A1
20110106072 Sundquist et al. May 2011 A1
20110160648 Hoey Jun 2011 A1
20110264176 Jackson et al. Oct 2011 A1
20110319759 Liu et al. Dec 2011 A1
20120259271 Shadduck et al. Oct 2012 A1
20120265276 Curley Oct 2012 A1
20120323167 Hoey et al. Dec 2012 A1
20130006231 Sharma et al. Jan 2013 A1
20130066308 Landman Mar 2013 A1
20130072855 Sherry et al. Mar 2013 A1
20130074847 Hoey et al. Mar 2013 A1
20130172867 Shadduck et al. Jul 2013 A1
20130261692 Cardinal et al. Oct 2013 A1
20140039356 Sachs et al. Feb 2014 A1
20140200568 Sharma Jul 2014 A1
20140276713 Hoey et al. Sep 2014 A1
20140288543 Hoey et al. Sep 2014 A1
20140354381 Kohlhafer Dec 2014 A1
20150025515 Hoey et al. Jan 2015 A1
20150025516 Hoey et al. Jan 2015 A1
20150126990 Sharma et al. May 2015 A1
20150157384 Hoey et al. Jun 2015 A1
20160015445 Hoey et al. Jan 2016 A1
20160081736 Hoey et al. Mar 2016 A1
20170056089 Hoey et al. Mar 2017 A1
Foreign Referenced Citations (26)
Number Date Country
2061443 Sep 1990 CN
2418844 Feb 2001 CN
101072544 Nov 2007 CN
101257855 Sep 2008 CN
101006939 Nov 2008 CN
101491458 Jul 2009 CN
101803947 Aug 2010 CN
7-507696 Aug 1995 JP
8-501957 Mar 1996 JP
8-504613 May 1996 JP
11-318925 Nov 1999 JP
200014663 Jan 2000 JP
2000005191 Jan 2000 JP
2001500763 Jan 2001 JP
2005137916 Jun 2005 JP
WO 9210142 Jun 1992 WO
WO 0124715 Apr 2001 WO
WO 03088851 Oct 2003 WO
WO 03096871 Nov 2003 WO
2005102416 Nov 2005 WO
WO 2006004482 Jan 2006 WO
WO 2008083407 Jul 2008 WO
WO2010080467 Jul 2010 WO
WO2013160772 Oct 2013 WO
WO2015089190 Jun 2015 WO
WO2017106843 Jun 2017 WO
Non-Patent Literature Citations (8)
Entry
US 5,326,343 A, 07/1994, Rudie et al. (withdrawn)
Hoey et al.; U.S. Appl. No. 15/851,333 entitled “Vapor ablation systems and methods,” filed Dec. 21, 2017.
Hoey et al.; U.S. Appl. No. 15/864,957 entitled “Transperineal Vapor ablation systems and methods,” filed Jan. 8, 2018.
Hoey et al.; U.S. Appl. No. 15/900,295 entitled “Systems and methods for prostate treatment,” filed Feb. 20, 2018.
Hastings et al.; U.S. Appl. No. 15/035,944 entitled “Vapor ablation systems and methods,” filed May 11, 2016.
Hoey et al.; U.S. Appl. No. 15/154,536 entitled “Systems and methods for treating the bladder with condensable vapor,” filed May 13, 2016.
Hai; Photoselective Vaporization Prostatectomy: A Palliative Treatment Option for Men with Urinary Obstruction Secondary to Prostate Cancer; PCRI Prost.Cancer Rsrch.Inst. Reprint.from PCRI Insights Nov. 2005, vol. 8(4); Dwnld from http://www.prostate-cancer.org/pcricms/node/233 on May 10, 2012; 4 pages.
Nguyen et al; Updated results of magnetic resonance imaging guided partial prostate brachytherapy for favorable risk prostate cancer: implications for focal therapy; J. Urol.; 188(4); pp. 1151-1156; Oct. 2012.
Related Publications (1)
Number Date Country
20160220296 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
62109540 Jan 2015 US