This invention relates generally to dehumidification and more particularly to a vapor compression dehumidifier.
In certain situations, it is desirable to reduce the humidity of air within a structure. For example, in fire and flood restoration applications, it may be desirable to remove water from a damaged structure by placing a portable dehumidifier within the structure. To be effective in these applications, a portable dehumidifier that is capable of operating at high ambient temperatures and low dew points is desirable. Current dehumidifiers, however, have proven inadequate in various respects.
According to embodiments of the present disclosure, disadvantages and problems associated with previous systems may be reduced or eliminated.
In certain embodiments, a dehumidification apparatus comprises an air inlet configured to receive an inlet airflow that is separated into a process airflow and a bypass airflow. The system further comprises an evaporator unit operable to cool the process airflow by facilitating heat transfer from the process airflow to a flow of refrigerant as the process airflow passes through the evaporator unit. The system further comprises a condenser unit operable to reheat the process airflow by facilitating heat transfer from the flow of refrigerant to the process airflow as the process airflow passes through a first portion of the condenser unit. The condenser unit is further operable to heat the bypass airflow by facilitating heat transfer from the flow of refrigerant to the bypass airflow as the bypass airflow passes through a second portion of the condenser unit. The system further comprises a process airflow outlet for discharging the process airflow into the structure and a bypass airflow outlet for discharging the bypass airflow into the structure.
Certain embodiments of the present disclosure may provide one or more technical advantages. For example, the dehumidification apparatus of the present invention divides the inlet airflow into a process airflow and a bypass airflow, and those two airflows are discharged via separated outlets. In other words, once separated, the process airflow and the bypass airflow do not mix within the dehumidification apparatus. As a result of this separation, the process airflow being discharged from the system may have a lower absolute humidity than an airflow consisting of a combination of the process airflow and the bypass airflow (as the bypass airflow does not pass through the evaporator unit). The lower humidity of the process airflow may allow for increased drying potential, which may be beneficial in certain applications (e.g., fire and flood restoration).
Certain embodiments of the present disclosure may include some, all, or none of the above advantages. One or more other technical advantages may be readily apparent to those skilled in the art from the figures, descriptions, and claims included herein.
To provide a more complete understanding of the present invention and the features and advantages thereof, reference is made to the following description taken in conjunction with the accompanying drawings, in which:
As described in detail below with regard to
The above-discussed configuration of dehumidification unit 104 may provide a number of technical advantages. As just one example, separately-discharging the process airflow 106a into the structure 102 may be more effective for drying surfaces onto which it is directed than a mixed airflow (a combination of the process airflow 106a and bypass airflow 106b) as a mixed airflow would have a higher absolute humidity than the process airflow 106a alone. Accordingly, dehumidification unit 104 may be more effective at drying surfaces onto which the process airflow 106 is directed (e.g., the floor of a water-damaged structure 102).
In certain embodiments, system 100 may include one or more air movers 108 positioned within the structure 102. Air movers 108 may distribute the air 106 discharged by dehumidification unit 104 throughout structure 102. Air movers 108 may include standard propeller type fans or any other suitable devices for producing a current of air that may be used to circulate dehumidified process airflow 106a and/or heated bypass airflow 106b throughout structure 102. Although
In certain embodiments, air movers 108 may be positioned within structure 102 such that the dehumidified process airflow 106a exiting dehumidification unit 104 is directed toward a surface in need of drying. Because a surface in need of drying may be commonly found on the floor of structure 102 (e.g., carpet or wood flooring of a water damaged structure 102), the output side of air mover 108 may be configured to direct the dehumidified process airflow 106a exiting dehumidification unit 104 toward the floor of structure 102. In certain embodiments, the output side of air mover 108 may include a modified circle that includes an elongated corner configured to direct air in a generally downward direction. An example of such an air mover may be that sold under the name Phoenix Axial Air Mover with FOCUS™ Technology or Quest Air AMS 30 by Therma-Stor, L.L.C., which is described in U.S. Pat. No. 7,331,759 issued to Marco A. Tejeda and assigned to Technologies Holdings Corp. of Houston, Tex.
Although a particular implementation of system 100 is illustrated and primarily described, the present disclosure contemplates any suitable implementation of system 100, according to particular needs. Moreover, although various components of system 100 have been depicted as being located at particular positions within structure 102, the present disclosure contemplates those components being positioned at any suitable location, according to particular needs.
Air inlet 112 may be configured to receive inlet air flow 106 from inside a structure 102. In certain embodiments, inlet air flow 106 may be drawn through air inlet 112 by a supply fan 110. Supply fan 110 may include any suitable component operable to draw inlet air flow 106 into dehumidification unit 104 from within structure 102. For example, supply fan 110 may comprise a backward inclined impeller positioned adjacent to air inlet 112. As a result, supply fan 110 may serve to divide inlet airflow 106 into a process airflow 106a (the portion of the inlet airflow forced downward by supply fan 110) and a bypass airflow 106b (the portion of the inlet airflow 106 forced radially outward by supply fan 110). Moreover, positioning supply fan 110 adjacent to air inlet 112 may allow a single supply fan 110 to push the two separate airflows (process airflow 106a and bypass airflow 106b) through dehumidification unit 104.
The closed refrigeration loop of dehumidification unit may comprise a refrigerant flow 118 (e.g., R410a refrigerant, or any other suitable refrigerant) that passes through a compressor unit 120, a condenser unit 122, an expansion device 124, and an evaporator unit 126. Compressor unit 120 may pressurize refrigerant flow 118, thereby increasing the temperature of refrigerant flow 118. Condenser unit 122, which may include any suitable heat exchanger, may receive the pressurized refrigerant flow 118 from compressor unit 120 and cool the pressurized refrigerant flow 118 by facilitating heat transfer from the refrigerant flow 118 to the process airflow 106a and bypass airflow 106b passing through condenser unit 122 (as described in further detail below). The cooled refrigerant flow 118 leaving condenser unit 122 may enter an expansion device 124 (e.g., capillary tubes or any other suitable expansion device) operable to reduce the pressure of the refrigerant 118, thereby reducing the temperature of refrigerant flow 118. Evaporator unit 126, which may include any suitable heat exchanger, may receive the refrigerant flow 118 from expansion device 124 and facilitate the transfer of heat from process airflow 106a to refrigerant flow 118 as process airflow 106a passes through evaporator unit 126. Refrigerant flow 118 may then pass back to condenser unit 120, and the cycle is repeated.
In certain embodiments, the above-described refrigeration loop may be configured such that the evaporator unit 126 operates in a flooded state. In other words, the refrigerant flow 118 may enter the evaporator unit in a liquid state, and a portion of the refrigerant flow 118 may still be in a liquid state as it exits evaporator unit 126. Accordingly, the phase change of the refrigerant flow 118 (liquid to vapor as heat is transferred to the refrigerant flow 118) occurs across the evaporator unit 126, resulting in nearly constant pressure and temperature across the entire evaporator unit 126 (and, as a result, increased cooling capacity).
In operation of an example embodiment of dehumidification unit 104, inlet airflow 106 may be drawn through air inlet 112 by supply fan 110. Supply fan 110 may cause the inlet airflow 106 to be divided into a process airflow 106a and a bypass airflow 106b. The process airflow 106a passes though evaporator unit 126 in which heat is transferred from process airflow 106a to the cool refrigerant flow 118 passing through evaporator unit 126. As a result, process airflow 106a may be cooled to or below its dew point temperature, causing moisture in the process airflow 106a to condense (thereby reducing the absolute humidity of process airflow 106). In certain embodiments, the liquid condensate from process airflow 106a may be collected in a drain pan 128 connected to a condensate reservoir 130. Additionally, condensate reservoir 130 may include a condensate pump operable to move collected condensate, either continually or at periodic intervals, out of dehumidification unit 104 (e.g., via a drain hose) to a suitable drainage or storage location.
The dehumidified process airflow 106a leaving evaporator unit 126 may enter condenser unit 122. Condenser unit 122 may facilitate heat transfer from the hot refrigerant flow passing through the condenser unit 122 to the process airflow 106a. This may serve to reheat the process airflow 106a, thereby decreasing the relative humidity of process airflow 106a. In addition, refrigerant flow 118 may be cooled prior to entering expansion device 124, which may result in the refrigerant flow 118 having a lower temperature as it passes through the evaporator unit 126. Because the refrigerant flow 118 may have a lower temperature in the evaporator unit 126, the evaporator unit 126 may be able to cool the process airflow 106a to lower temperatures and the water removal capacity of evaporator unit 126 may be increased (as the evaporator unit 126 will be able to cool dryer air to or below its dew point temperature).
The reheated process airflow 106a exiting condenser unit 122 may be routed through dehumidifier unit 104 and exhausted back into the structure via process airflow outlet 114. In certain embodiments, process airflow 106a may pass over compressor unit 120 prior to being exhausted. Because compressor unit 120 generates heat as it compresses refrigerant flow 118, the compressor unit may serve to further heat the process airflow 106a, thereby further reducing the relative humidity of the process airflow 106a. In certain embodiments, process airflow outlet 114 may be oriented such that the warm, dry process airflow 106a exiting dehumidification unit 104 may be directed toward the floor of the structure 102. This may be advantageous because, in certain applications (e.g., fire and flood restoration), materials in need of drying may often be located on the floor of the structure (e.g., carpet or wood flooring).
The bypass airflow 106b may bypass the evaporator unit 126 and pass directly through the condenser unit 122. The portion of the condenser unit 122 through which bypass airflow 106b passes may be separated from the portion of condenser unit 122 through which process airflow 106a passes such that separation between the two airflows is maintained within dehumidification unit 104. As discussed above with regard to process airflow 106a, condenser unit 122 may facilitate heat transfer from the hot refrigerant flow 118 passing through condenser unit 122 to bypass airflow 106b. This may serve to cool the refrigerant flow 118 prior to entering expansion device 124, which may result in the refrigerant flow 118 having a lower temperature as it passes through the evaporator unit 126 (thereby increasing the water removal capacity of the evaporator unit 126, as discussed above). Moreover, because a portion of the inlet airflow 106 bypasses evaporator unit 126 (i.e., bypass airflow 106b), the volume of air flowing through evaporator unit 126 (i.e., process airflow 106a) is reduced. As a result, the temperature drop of process airflow 106a passing across the evaporator unit 126 is increased, allowing the evaporator unit 126 to cool process airflow 106a to lower temperatures (which may increase the water removal capacity of evaporator unit 126 as the evaporator unit 126 will be able to cool dryer air to or below its dew point temperature).
In certain embodiments, bypass airflow 106b may pass through the hottest portion of condenser unit 122 (the portion at which the refrigerant flow is received from compressor unit 120). In such embodiments, the temperature differential between the refrigerant flow 118 and the bypass airflow 106b may be maximized, resulting in the highest possible amount of heat transfer from refrigerant flow 118 to bypass airflow 106b.
The heated bypass airflow 106b exiting condenser unit 122 may be routed through dehumidifier unit 104 and exhausted back into the structure via bypass airflow outlet 116. In certain embodiments, bypass airflow 106b may be routed adjacent to process airflow 106a such that heat may be transferred from bypass airflow 106b to process airflow 106a (as bypass airflow 106b will be at a higher temperature than process airflow 106a due to the fact that (1) bypass airflow 106b does not pass through evaporator unit 126, and (2) bypass airflow 106b passes through the hottest portion of condenser unit 122). For example, bypass airflow 106b may be separated from process airflow 106a by a thin wall 132 through which heat transfer may take place. Because this heat transfer may serve to further heat process airflow 106a, the relative humidity of process airflow 106a may be decreased. In certain embodiments, bypass airflow outlet 116 may be oriented such that the heated bypass airflow 106b exiting dehumidification unit 104 may be directed toward the floor of the structure 102. This may be advantageous because, in certain applications (e.g., fire and flood restoration), materials in need of drying may often be located on the floor of the structure (e.g., carpet or wood flooring).
In certain embodiments, dehumidification unit 104 may additionally include a bypass damper 134 configured to modulate the proportion of inlet airflow 106 that is included in process airflow 106a vs. bypass airflow 106b. For example, bypass damper 134 may be communicatively coupled to a controller 136, the controller 136 being operable to control the position of bypass damper 134 (as described in further detail below). Controller 136 may include one or more computer systems at one or more locations. Each computer system may include any appropriate input devices (such as a keypad, touch screen, mouse, or other device that can accept information), output devices, mass storage media, or other suitable components for receiving, processing, storing, and communicating data. Both the input devices and output devices may include fixed or removable storage media such as a magnetic computer disk, CD-ROM, or other suitable media to both receive input from and provide output to a user. Each computer system may include a personal computer, workstation, network computer, kiosk, wireless data port, personal data assistant (PDA), one or more processors within these or other devices, or any other suitable processing device. In short, controller 136 may include any suitable combination of software, firmware, and hardware.
Controller 136 may additionally include one or more processing modules 138. Processing modules 138 may each include one or more microprocessors, controllers, or any other suitable computing devices or resources and may work, either alone or with other components of dehumidification unit 104, to provide a portion or all of the functionality described herein. Controller 136 may additionally include (or be communicatively coupled to via wireless or wireline communication) memory 140. Memory 140 may include any memory or database module and may take the form of volatile or non-volatile memory, including, without limitation, magnetic media, optical media, random access memory (RAM), read-only memory (ROM), removable media, or any other suitable local or remote memory component.
For example, controller 136 may be configured to receive a signal from a humidistat 142 operable to measure the humidity of inlet airflow 106. As the humidity of inlet airflow 106 decreases, controller 136 may modulate bypass damper 134 such that the proportion of inlet airflow 106 that becomes bypass airflow 106b is increased. Increasing the proportion of bypass airflow 106b may (1) increase the cooling of refrigerant flow 118 in condenser unit 122, thereby decreasing the temperature in evaporator unit 126, and (2) decrease the volume of process airflow 106a passing through evaporator unit 126. As a result, the process airflow 106a may be cooled to a lower temperature, allowing moisture to be condensed from process airflows 106a having a lower absolute humidity.
As another example, controller 136 may be configured to receive a signal from a temperature probe (not depicted) configured to measure the temperature of the refrigerant flow at one or more locations within the refrigerant loop. In response to the measured temperature of refrigerant flow 118, controller 136 may modulate bypass damper 134 such that a desired refrigerant flow temperature is maintained.
In certain embodiments, the above-discussed components of dehumidification unit 104 may be arranged in a portable cabinet. For example, the above-discussed components of dehumidification unit 104 may be arranged in a portable cabinet having wheels 144 such that the dehumidification unit 104 may be easily be moved (i.e., rolled) into a structure 102 in order to dehumidify the air within the structure 102. In addition, the portable cabinet may be designed such that is may be easily stored when not in use. For example, the portable cabinet may include a storage pocket 146 for storing one or more components associated with dehumidification unit 104 when dehumidification unit 104 is not in use (e.g., a power cord and/or a drain hose). As another example, depressions may be formed in the top of the portable cabinet of dehumidification unit 104, the depressions being sized such that they may receive the wheels 144 of a second dehumidification unit 104. As a result, multiple dehumidification units 104 may be stacked when not in use.
Although a particular implementation of dehumidification unit 104 is illustrated and primarily described, the present disclosure contemplates any suitable implementation of dehumidification unit 104, according to particular needs. Moreover, although various components of dehumidification unit 104 have been depicted as being located at particular positions within the portable cabinet and relative to one another, the present disclosure contemplates those components being positioned at any suitable location, according to particular needs.
Although the present disclosure has been described with several embodiments, diverse changes, substitutions, variations, alterations, and modifications may be suggested to one skilled in the art, and it is intended that the disclosure encompass all such changes, substitutions, variations, alterations, and modifications as fall within the spirit and scope of the appended claims.
This application is a continuation of U.S. application Ser. No. 14/592,982 filed Jan. 9, 2015 and entitled “Vapor Compression Dehumidifier” which is a continuation of U.S. Ser. No. 13/468,852, filed May 10, 2012, entitled “Vapor Compression Dehumidifier” which is now U.S. Pat. No. 8,938,981 issued Jan. 27, 2015 the disclosure of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2438120 | Freygang | Mar 1948 | A |
2682758 | Harris | Jul 1954 | A |
3880224 | Weil | Apr 1975 | A |
4250629 | Lewis | Feb 1981 | A |
5634353 | Hallin et al. | Jun 1997 | A |
5901565 | Morton, Jr. | May 1999 | A |
5927090 | Ladendorf | Jul 1999 | A |
7086242 | Maeda | Aug 2006 | B2 |
7194870 | O'Brien et al. | Mar 2007 | B1 |
7246503 | O'Brien et al. | Jul 2007 | B1 |
7281389 | O'Brien | Oct 2007 | B1 |
7540166 | O'Brien et al. | Jun 2009 | B2 |
7779643 | Simons | Aug 2010 | B2 |
7913501 | Ellis et al. | Mar 2011 | B2 |
8069681 | Cink et al. | Dec 2011 | B1 |
20020119044 | O'Connor, Jr. | Aug 2002 | A1 |
20040253098 | Hancock | Dec 2004 | A1 |
20050257551 | Landry | Nov 2005 | A1 |
20080104974 | Dickmann | May 2008 | A1 |
20090205354 | Brown | Aug 2009 | A1 |
20100212334 | DeMonte | Aug 2010 | A1 |
20100275630 | DeMonte | Nov 2010 | A1 |
20100304654 | Kakizaki et al. | Dec 2010 | A1 |
20150204586 | Burg | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
87 07 953 | Jul 1988 | DE |
09-089297 | Apr 1997 | JP |
2937090 | Aug 1999 | JP |
2002-188827 | Jul 2002 | JP |
3 804866 | Aug 2006 | JP |
Entry |
---|
Owner's Manual—Phoenix R150 LGR Dehumidifier, Installation, Operation and Service Instructions, Therma-Stor LLC, Phoenix™ Restoration Equipment, Jan. 2012. |
Phoenix R150 Small Size, “Large” Performance, Phoenix™ Restoration Equipment, Sep. 2011. |
EP Communication for Application No. 13167342.8-1605 /2662638; 15 pages, dated Nov. 21, 2017. |
Communication pursuant to Article 94(3) EPC received from European Patent Office, Application No. 13167342.8, dated Oct. 11, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170122578 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14592982 | Jan 2015 | US |
Child | 15405459 | US | |
Parent | 13468852 | May 2012 | US |
Child | 14592982 | US |