Claims
- 1. A vapor compression system comprising:
a compressor for increasing the pressure and temperature of a heat transfer fluid; a condenser for liquefying the heat transfer fluid; an evaporator for transferring heat from ambient surroundings to the heat transfer fluid; an expansion valve having an inlet and an outlet for expanding the heat transfer fluid; a discharge line connecting the compressor to the condenser; a liquid line connecting the condenser to the inlet of the expansion valve; a saturated vapor line connecting the outlet of the expansion valve to the evaporator; a heat source applied to the saturated vapor line, wherein the heat source is sufficient to vaporize a portion of the heat transfer fluid before the heat transfer fluid enters the evaporator; and a suction line connecting the evaporator to the compressor.
- 2. The vapor compression system of claim 1, wherein the heat source comprises an active heat source.
- 3. The vapor compression system of claim 1, further comprising a metering device mounted to the suction line and operatively connected to the expansion valve.
- 4. The vapor compression system of claim 3, wherein the metering device comprises a temperature sensor.
- 5. The vapor compression system of claim 1, wherein the condenser transfers heat to the ambient surroundings, and wherein the heat source comprises the heat transferred to the ambient surroundings from the condenser.
- 6. The vapor compression system of claim 1, wherein the discharge line transfers heat to the ambient surroundings, and wherein the heat source comprises the heat transferred to the ambient surroundings from the discharge line.
- 7. The vapor compression system of claim 1, wherein the heat source comprises heat generated from an electrical heat source.
- 8. The vapor compression system of claim 1, wherein a portion of the heat transfer fluid is in a liquid state upon exiting the evaporator.
- 9. The vapor compression system of claim 1, wherein at least about 5% of the of the heat transfer fluid is vaporized before the heat transfer fluid enters the evaporator, and wherein at least about 1% of the heat transfer fluid is in a liquid state upon exiting the evaporator.
- 10. The vapor compression system of claim 1, further comprising a control unit and a refrigeration case, wherein the compressor and the condenser are located within the control unit, and wherein the evaporator, the expansion valve, and the temperature sensor are located within the refrigeration case.
- 11. The vapor compression system of claim 1, wherein the compressor comprises a plurality of compressors each coupled to the suction line by an input manifold and each discharging into a collector manifold connected to the discharge line.
- 12. The vapor compression system of claim 1, wherein the expansion valve comprises a multifunctional valve having a first expansion chamber and a second expansion chamber and a passageway coupling the first expansion chamber to the second expansion chamber, such that liquefied heat transfer fluid undergoes a first volumetric expansion in the first expansion chamber and a second volumetric expansion in the second expansion chamber.
- 13. A vapor compression system comprising:
a compressor for increasing the pressure and temperature of a heat transfer fluid; a condenser for liquefying the heat transfer fluid; an evaporator for transferring heat from ambient surroundings to the heat transfer fluid; a multifunctional valve having a first inlet and a second inlet and an outlet; a discharge line connecting the compressor to the second inlet of the multifunctional valve; a liquid line connecting the condenser to the first inlet of the multifunctional valve; a saturated vapor line connecting the outlet of the multifunctional valve to the inlet of the evaporator, wherein a heat source is applied to the saturated vapor line; a suction line connecting the evaporator to the compressor; and a metering device mounted to the suction line and operatively connected to the multifunctional valve, wherein the heat source is sufficient to vaporize a portion of the heat transfer fluid before the heat transfer fluid enters the evaporator.
- 14. The vapor compression system of claim 13, wherein the multifunctional valve comprises:
a first passageway coupled to the first inlet, the first passageway gated by a first solenoid valve; a second passageway coupled to the second inlet, the second passageway gated by a second solenoid valve; and a mechanical metering valve positioned in the first passageway and activated by the temperature sensor.
- 15. The vapor compression system of claim 13, further comprising a control unit and a refrigeration case, wherein the compressor and the condenser are located within the control unit, and wherein the evaporator, the multifunctional valve, and the temperature sensor are located within the refrigeration case.
- 16. The vapor compression system of claim 13, wherein the compressor comprises a plurality of compressors each coupled to the suction line by an input manifold and each discharging into a collector manifold connected to the discharge line.
- 17. The vapor compression system of claim 13, further comprising:
a plurality of evaporators; a plurality of multifunctional valves; a plurality of saturated vapor lines, wherein each saturated vapor line connects one of the plurality of multifunctional valves to one of the plurality of evaporators, and wherein a heat source is applied to each one of the plurality of saturated vapor lines; a plurality of suction lines, wherein each suction line connects one of the plurality of evaporators to the compressor, wherein each of the plurality of suction lines has a temperature sensor mounted thereto for relaying a signal to a selected one of the plurality of multifunctional valves.
- 18. A method for operating a vapor compression system comprising:
providing a compressor for compressing a heat transfer fluid to a relatively high temperature and pressure and flowing the heat transfer fluid through a discharge line to a condenser; flowing the heat transfer fluid from the condenser through a liquid line to the inlet of an expansion valve; receiving the heat transfer fluid at the inlet of the expansion valve in a liquid state; converting the heat transfer fluid to a low pressure state at the expansion valve, wherein the heat transfer fluid undergoes volumetric expansion at the expansion valve; flowing the heat transfer fluid from the outlet of the expansion valve through a saturated vapor line to the inlet of an evaporator; applying a heat source to the saturated vapor line; receiving the heat transfer fluid at the inlet of the evaporator in a saturated vapor state, wherein the flow rate of the heat transfer fluid in the saturated vapor line and the heat source applied to the saturated vapor line is sufficient to vaporize a portion of the heat transfer fluid to form a saturated vapor before the heat transfer fluid enters the evaporator, and wherein the saturated vapor substantially fills the evaporator; and returning the saturated vapor to the compressor through a suction line.
- 19. The method of claim 18, wherein flowing the heat transfer fluid to the saturated vapor line comprises:
measuring the temperature of the heat transfer fluid in the suction line at a point in close proximity to the compressor; and relaying a signal to the expansion valve.
- 20. The method of claim 18, wherein at least about 5% of the of the heat transfer fluid is vaporized before the heat transfer fluid enters the evaporator, and wherein a portion of the heat transfer fluid is in a liquid state upon exiting the evaporator.
- 21. The method of claim 20, wherein at least about 1% of the heat transfer fluid is in a liquid state upon exiting the evaporator.
- 22. A vapor compression system for transferring heat from an ambient atmosphere by flowing a heat transfer fluid comprising:
a compressor; a condenser; a discharge line coupling the compressor to the condenser; an evaporator; a suction line coupling the evaporator to the compressor; an expansion valve; a liquid line coupling the condenser to the expansion valve; a saturated vapor line coupling the expansion valve to the evaporator; and a heat source applied to the saturated vapor line, wherein the heat source is sufficient to substantially convert the heat transfer fluid into a saturated vapor prior to delivery to the evaporator.
- 23. The vapor compression system of claim 22, wherein the expansion valve comprises a multifunctional valve having a first expansion chamber and a second expansion chamber and a passageway coupling the first expansion chamber to the second expansion chamber, such that liquefied heat transfer fluid undergoes a first volumetric expansion in the first expansion chamber and a second volumetric expansion in the second expansion chamber.
- 24. The vapor compression system of claim 23, wherein the multifunctional valve further comprises a second passageway coupling the discharge line from the compressor to the saturated vapor line, and a gate valve positioned in the second passageway such that hot vapor from the compressor can flow to the saturated vapor line when the gate valve is opened.
- 25. A recovery valve for generating a substantially saturated vapor comprising:
an first inlet providing fluid ingress for a heat transfer fluid to a common chamber; an first outlet providing fluid egress for the heat transfer fluid from the common chamber; an expansion valve positioned adjacent to the inlet, the expansion valve volumetrically expanding the heat transfer fluid into the common chamber; and a heat source applied to the common chamber, wherein the heat source is sufficient to vaporize a portion of the heat transfer fluid before the heat transfer fluid enters the evaporator.
- 26. The recovery valve of claim 25, wherein the heat transfer fluid in the common chamber is transformed from a low quality liquid vapor mixture to a high quality liquid vapor mixture through the addition of heat from the heat source.
- 27. The recovery valve of claim 25, wherein the heat source comprises an active heat source.
- 28. The recovery valve of claim 27, wherein the active heat source comprises heat transferred to the ambient surroundings from a compressor.
- 29. The recovery valve of claim 25, further comprising:
a second inlet, the second inlet providing fluid ingress for a high temperature heat transfer fluid to a second passageway, the second passageway adjacent the common chamber; and a second outlet, the second outlet providing fluid egress for the high temperatures heat transfer fluid from the second passageway.
- 30. The recovery valve of claim 29, wherein the second inlet is connected to a discharge line of a compressor.
- 31. The recovery valve of claim 29, wherein the second outlet is connected to an inlet of a condenser.
- 32. The recovery valve of claim 25, further comprising:
a third inlet, the third inlet providing fluid ingress for a high temperature heat transfer fluid to the common chamber; a first gating valve have capable of terminating the flow of the heat transfer fluid through the common chamber when in a closed position, the first gating valve positioned near the first inlet of the common chamber; and a second gating valve capable of allowing the flow of the high temperature heat transfer fluid through the common chamber when in an open position, the second gating valve positioned near the third inlet of the common chamber.
- 33. The recovery valve of claim 32, wherein the recovery valve is capable of defrosting an evaporator by placing the first gating valve in the closed position and the second gating valve in the open position.
- 34. A vapor compression system comprising:
a compressor for increasing the pressure and temperature of a heat transfer fluid; a condenser for liquefying the heat transfer fluid; an evaporator for transferring heat from ambient surroundings to the heat transfer fluid; a recovery valve having an inlet and an outlet for expanding the heat transfer fluid; a discharge line connecting the compressor to the condenser; a liquid line connecting the condenser to the inlet of the recovery valve; a saturated vapor line connecting the outlet of the recovery valve to the evaporator; a heat source applied to the recovery valve, wherein the heat source is sufficient to vaporize a portion of the heat transfer fluid before the heat transfer fluid enters the evaporator; and a suction line connecting the evaporator to the compressor.
- 35. A method for operating a vapor compression system comprising:
providing a compressor for compressing a heat transfer fluid to a relatively high temperature and pressure and flowing the heat transfer fluid through a discharge line to a condenser; flowing the heat transfer fluid from the condenser through a liquid line to the inlet of an expansion valve; receiving the heat transfer fluid at the inlet of the expansion valve in a liquid state; converting the heat transfer fluid to a low pressure state at the expansion valve, wherein the heat transfer fluid undergoes volumetric expansion at the expansion valve; flowing the heat transfer fluid from the outlet of the expansion valve through a saturated vapor line to the inlet of an evaporator; applying a heat source to the heat transfer fluid after the heat transfer fluid passes through the expansion valve and before the heat transfer fluid enters the evaporator; receiving the heat transfer fluid at the inlet of the evaporator, wherein the heat source applied to the heat transfer fluid is sufficient to vaporize a portion of the heat transfer fluid to form a saturated vapor before the heat transfer fluid enters the evaporator, and wherein the saturated vapor substantially fills the evaporator; and returning the saturated vapor to the compressor through a suction line.
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] Related subject matter is disclosed in commonly-owned, co-pending patent application entitled “VAPOR COMPRESSION SYSTEM AND METHOD” Ser. No. 09/228,696, filed on Jan. 12, 1999.
Continuations (1)
|
Number |
Date |
Country |
Parent |
09431830 |
Nov 1999 |
US |
Child |
09731311 |
Dec 2000 |
US |