This invention relates generally to internal combustion engines, and more specifically concerns a system for injecting water vapor into the combustion chambers of the engine as part of the combustion process.
Historically, there have been many attempts to improve the performance of internal combustion engines, including attempting to increase gas mileage by injecting water into the engine's combustion chambers. Most of these attempts, however, have proved to be unsuccessful and/or any improved results have not been sustainable over an extended period of operation. Further, in some cases, engines have actually been damaged during extended operations with water injection systems.
In addition, those water injection systems which have been successful in improving the efficiency of engines, with improved gas mileage, are usually complex and expensive, particularly in the regulation of the amount of water directed into the engine, relative to the speed of the engine.
Hence, a simple, inexpensive, self-regulating system for using water vapor in internal combustion engines, to improve performance, is desirable.
Accordingly, the present invention is a vapor injection system for an internal combustion engine, comprising: a source of water; a generator system for converting water into a vapor; a connecting line for directing the vapor into a stream of air from an air filter portion of the engine, wherein the resulting mixture of air and vapor is directed to a turbocharger for the engine; an air/vapor injector system for moving the resulting air/vapor mixture from the turbocharger into the combustion chambers of the engine in turn during a compression portion of the engine cycle, the air/vapor mixture being converted to steam in the combustion chambers; and a fuel injector system for delivering fuel into the combustion chambers in turn after the previously injected air/vapor mixture has been converted to steam in the combustion chambers, wherein the resulting combination of the steam and fuel is then ignited during the combustion phase of the engine cycle.
In the embodiment of the present invention shown and described herein, water is first converted into a vapor/cold mist and then is combined with the flow of air from the air filter of the vehicle to the intake of the engine. The combination of air and vapor is then directed into the individual combustion chambers of an engine during the compression portion of the cycle. The air/water vapor mixture is compressed and heated in the combustion chambers. Fuel is injected into each combustion chamber when the piston reaches top dead center and the mixture is then ignited.
This system increases the efficiency of the engine, typically resulting in an improvement in mileage within the range of 10%-20%, for both gas and diesel internal combustion engines, as well as substantially reducing or even eliminating nitrous oxide emissions from the exhaust of the engine. No carbon dioxide is produced during the process.
More particularly, referring now to
The ultrasonic generator 12 is powered by a 12 volt DC to 120 volt AC inverter 18 and a transformer 20 which produces an output voltage appropriate for the generator. A timer 22 provides in the embodiment shown a short time delay after the engine is initially turned on by key switch 23 before the ultrasonic generator begins operation.
Water is supplied to the agitation chamber 11 from a water supply tank 30. Water from tank 30 is directed through a water filter 32 and then moved by a pump 34 to a heat exchanger 36. Water from the heat exchanger is pumped through input 38 into agitation chamber 11. The level of water 16 in the agitation chamber is prevented from increasing beyond a selected height by an overflow/return line 40 which extends back to the water supply tank 30. In the embodiment shown, water supply tank 30 is mounted physically below the position of the agitation chamber/ultrasonic generator combination. This provides a proper overflow to maintain the water level at the desired depth within agitation chamber 11.
The gaseous colloid produced within agitation chamber 11 by action of ultrasonic generator 12 is directed through connecting line 42 to a standby chamber 44, also referred to as a “cloud chamber”. The gaseous colloid which is directed to the cloud chamber has a small enough droplet size that it “floats” in the atmosphere of the chamber, resulting in a vapor/cold mist. If the mist condenses within the cloud chamber, the resulting liquid exits through a drain opening 46. The vapor/cold mist in cloud chamber 44 moves out of chamber 44 through an exit line 45 to an air intake line 46, which is the line from the engine air filter 48 to the intake manifold of the engine. The vapor/mist mixes with the moving air in intake line 46, resulting in a moving air/vapor mixture. This mixture is directed to a turbocharger 50 for the engine. The turbocharger 50 is connected to the intake manifold (not shown) of the engine.
A valve 47 is positioned at the entry to air intake line 46. This valve ensures that there is enough air in the agitation chamber for proper operation of the system. Valve 47 is held closed normally by a spring (not shown), which opens the valve when a high flow of air is demanded by the engine and closes the valve when the demand for air decreases. Proper spring pressure is important to maintain a lower air pressure in the lines and in the vapor generator (cloud chamber) 44. This can also be accomplished through the use of sensors and associated electronic control of the valve operation.
The pressure in the cloud chamber 44 and inlet line 46 must be low enough that the vapor will not change back into water. Further, the size of line 46 must be the correct size to accommodate the required amount of vapor. If the vapor becomes too dense, it will change back to water. Hence, the size of the intake line 46, the amount of the vapor in line 46 and chamber 44, and the air pressure in the line, relative to the outside air pressure, are interrelated. They are selected to prevent the vapor from changing back to water.
In operation of the embodiment shown, the air/vapor mixture in the intake line 46 is injected into each combustion chamber in the engine in turn during the compression stroke of that chamber. The mixture in the chamber is compressed and heated. Typically, the temperature of the mixture in the chamber will reach 700° F., with the air/vapor mixture being converted to steam. When the piston in the chamber reaches top dead center position in the operating cycle, fuel is injected into the chamber. The resulting mixture of steam and fuel is then ignited, completing the combustion process.
The system of the present embodiment is self-regulating in operation, i.e. as the stream of air in intake line 46 from air filter 48 increases or decreases, due to a change in the demand of the engine, the vacuum in the line also correspondingly increases or decreases. As the vacuum increases, so does the amount of vapor directed into the engine. Correspondingly, as the vacuum decreases, the amount of vapor decreases. This self-regulation occurs because of the location and manner in which the water vapor/mist is combined with air from the air filter in inlet line 46, between the air filter 48 and turbocharger 50, as well as the operation of valve 47.
As indicated above, the present system results in an improvement in gas mileage of the internal combustion engine (gas or diesel) in the range of 10%-20%, which is a significant improvement. The temperature in the combustion chambers is reduced, as well as that of the exhaust gases. This results in the fuel withstanding pre-combustion without decomposing into products that will ignite before the actual ignition part of the cycle, referred to as pre-ignition, which results in knocking. The computer system maintaining exhaust temperature will thus move to an optimum setting, resulting in improved fuel economy. The elimination of pre-ignition opens up the possibility of using higher compression engines with lead-free fuel. Furthermore, emissions from the diesel engine are decreased, notably the amount of nitrous oxide. No carbon dioxide is produced. Still further, in a gas engine, “pre-ignition” is significantly reduced or eliminated.
Hence, a new system for injecting water vapor into an internal combustion engine, which is also self-regulating, has been disclosed.
Although a preferred embodiment of the invention has been disclosed here for purposes of illustration, it should be understood that various changes, modifications and substitutions may be incorporated in the embodiment without departing from the spirit of the invention, which is defined by the claims which follow.