Vapor recovery system for a fuel dispenser

Information

  • Patent Grant
  • 6357493
  • Patent Number
    6,357,493
  • Date Filed
    Monday, October 23, 2000
    25 years ago
  • Date Issued
    Tuesday, March 19, 2002
    23 years ago
Abstract
A system and method for determining whether a vehicle is equipped with an ORVR system. A processor receives a signal from a fuel pump or the like indicating the fuel being dispensed by the fuel dispenser. The processor is programmed to determine a threshold vapor concentration level based on the signal. Processor further receives a signal from at least one environmental sensor indicating at least one environmental condition to which the fueling operation is exposed. The processor is further programmed to adjust the threshold vapor concentration either up or down dependent upon the environmental condition. Finally, processor receives an actual vapor concentration from a vapor sensor. The processor then compares the actual vapor concentration value with the adjusted threshold vapor concentration value to determine whether the vehicle is equipped with an ORVR system.
Description




FIELD OF THE INVENTION




The present invention is directed to a vapor recovery system within a fuel dispensing environment and, more particularly, to a vapor recovery system that senses at least one environmental condition at the time of the fueling operation to accurately determine the amount of vapor being returned.




BACKGROUND OF THE INVENTION




Petroleum or hydrocarbon based fueling systems have become increasingly regulated by state and federal authorities. One such regulation concerns the recovery of hydrocarbon vapor from the fuel tank of the vehicle being refueled. Absent any intervention, as fuel is introduced into the tank of the vehicle, vapor present in the tank is forced out through the filler neck and into the atmosphere. While there have been many studies as to the exact effect such emissions have on the atmosphere, the consensus appears to be, and certainly lawmakers believe, that such emissions contribute to the depletion of the ozone, may contribute to cancer rates, and are otherwise undesirable.




In response thereto, Stage II vapor recovery systems were promoted. The first systems were referred to as “balance” type systems whereby an accordion like sheath encircled the nozzle of the fuel dispenser and formed a seal around the opening of the fuel tank. Simple pressure forced the vapor out of the tank and down through the sheath into the hose for recovery. Later developments included an active vapor recovery system, such as that sold by the assignee of the present invention, and as explained in U.S. Pat. No. 5,040,577, now Reissue Pat. No. No. 35,238 to Pope. The term “vapor recovery system” used herein is understood to mean the Stage II systems which collect vapors during the fueling operation and direct them to a storage tank.




It is important that the vapor recovery system operates within an efficient range. If the system supplies too much vacuum during the fueling operation, the hydrocarbon vapors will be collected along with an excessive amount of air thereby over-pressurizing the underground storage tank. A relief valve on the storage tank will open at a predetermined pressure setting releasing the pressure and allowing the captured hydrocarbon vapors to escape into the environment. Conversely, an inadequate amount of vacuum prevents hydrocarbon vapors from being captured by the system at the necessary levels allowing the vapors to escape into the atmosphere at the vehicle fuel cap




Still further advancements in the field of vapor recovery led to the development of Onboard Recovery Vapor Recovery (ORVR) vehicles, wherein the vehicle itself is equipped with a vapor recovery system. A typical ORVR vehicle is explained in U.S. Pat. Nos. 4,821,908, and 5,165,379.




One of the disadvantages of the parallel development of vapor recovery is that an ORVR system may compete with the vapor recovery system of the fuel dispenser if the fuel dispenser does not have knowledge of whether the vehicle being refueled is an ORVR-equipped vehicle. In such instances, energy is wasted as both systems try to recover vapors from the fuel tank, and excessive air is pumped into the storage tank as a result of vapor recovery efforts in the face of an ORVR system.




To overcome this problem, it is advantageous that the Stage II vapor recovery system identify whether the vehicle is equipped with an ORVR system. One way to make this determination is for the vapor recovery system to measure the amount of hydrocarbon vapor being returned to the underground storage tank during the fueling operation to determine if the vehicle is recovering vapors itself (i.e. ORVR-equipped vehicle). If the vehicle is ORVR-equipped, the vapor recovery system is shut down or modified. One drawback of this determination method is the amount of hydrocarbon vapors produced during the fueling operation may vary depending upon climatic conditions. Factors such as ambient temperature, vapor temperature measured in the vapor stream as it passes through the vapor recovery passage, vehicle fuel tank temperature, and others may all affect the amount of hydrocarbons produced.




By way of example, a vehicle being driven for a length of time while the ambient temperature is about 80 degrees Fahrenheit results in a hydrocarbon concentration level of around 50-60%. In another example, the same vehicle is parked in a garage for an extended time and removed and then refueled at a nearby station where the ambient temperature is about 80 degrees Fahrenheit. Although the ambient temperature is the same as the previous example, the fuel in the vehicle's tank may not reflect the ambient temperature and the hydrocarbon concentration is less. Therefore, even if the ambient temperature is at a value of about 80 degrees Fahrenheit it may not equate to a higher hydrocarbon level. In another example, many fuel injected vehicles will have a higher fuel/vapor temperature due to the fuel being recirculated from the injection pump back to the fuel tank itself.




Therefore, there is a need for a vapor recovery system that may receive various inputs that may affect an expected hydrocarbon threshold level. The calculated expected hydrocarbon threshold level that can then be compared to the actual amount of hydrocarbon vapor produced during the fueling operation. This comparison determines whether the vehicle is equipped with an ORVR system.




SUMMARY OF THE INVENTION




The present invention is directed to a system and method of determining whether a vehicle is equipped with an onboard recovery vapor recovery system. The invention determines a threshold vapor concentration level and senses environmental conditions during the fueling process to determine and varies the threshold level upwards or downwards. Additionally, an actual amount of hydrocarbon vapor is sensed. The two values are compared, and the vehicle is calculated to have an ORVR system if the actual value is below the adjusted threshold amount by a predetermined range.




In one embodiment, the method includes determining a fuel flow and a threshold vapor concentration. Environmental conditions are received from sensors at the fueling operation, and the threshold vapor concentration is adjusted upward or downward dependent upon the environmental conditions. The actual vapor concentration within the vapor recovery passage is sensed. Finally, the two values are compared to determine whether the vehicle is equipped with an onboard recovery vapor recovery system.




Within this embodiment, the threshold vapor concentration may be predetermined and based on tested results. Additionally, different types of vapor sensors may sense the actual vapor concentration within the vapor recovery passage. Sensors may include indirect or direct sensors.




A processor may be positioned within the fueling system for receiving signals from the various input devices and making calculations on whether the vehicle is equipped with an ORVR system. The processor may include a memory with look-up tables, or may be programmed to compute values based on predetermined mathematical formulas.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side view illustrating a fuel dispenser constructed in accordance with one embodiment of the present invention;





FIG. 2

is a side view illustrating a fuel dispenser nozzle inserted into a vehicle fuel tank having an ORVR system;





FIG. 3

is a side view illustrating an infrared vapor sensor used in accordance with one embodiment of the present invention;





FIG. 4

is a schematic diagram illustrating the processor and the various inputs received by the processor; and





FIG. 5

is a flowchart illustrating the steps of determining an ORVR vehicle in accordance with one embodiment of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




The present invention relates to a fuel dispenser that uses climatic inputs to determine a hydrocarbon threshold level. During a fueling operation, the system compares the value with an actual hydrocarbon amount with the threshold hydrocarbon level to determinine whether the vehicle is equipped with an ORVR system. The term “threshold amount” refers throughout as the expected amount of hydrocarbon vapor that will be produced during a fueling event as determined by a processor


200


. “Actual amount” is the amount of hydrocarbons actually sensed by a vapor sensor


80


positioned within a vapor recovery passage


8


. The terms “vapor level”, “vapor concentration” and the like are used interchangeably herein.




Referring now to the drawings in general and

FIG. 1

in particular, it will be understood that the illustrations are for the purpose of describing a preferred embodiment of the invention and are not intended to limit the invention thereto. As best seen in

FIG. 1

, in a typical service station, a vehicle


100


is illustrated being fueled from a fuel dispenser or gasoline pump


18


. A spout


28


of nozzle


2


is shown inserted into a filler pipe


22


of a fuel tank


20


during the refueling of the vehicle


100


.




A fuel delivery hose


4


having vapor recovery capability is connected at one end to the nozzle


2


, and at its other end to the fuel dispenser


18


. As shown by the cutaway view of the interior of the fuel delivery hose


4


, a fuel delivery passage


12


is formed within the fuel delivery hose


4


for distributing liquid gasoline pumped from an underground storage tank


5


to the nozzle


2


. A fuel pump


68


delivers the fuel from the underground storage tank


5


to the nozzle


2


. A fuel meter


19


may be positioned along the fuel delivery line for determining the amount of fuel delivered from the underground storage tank


5


. One skilled in the art will recognize that the fuel pump


68


and fuel meter


19


both may be positioned at a variety of locations along the fuel delivery line.




The spout


28


of the nozzle


2


has numerous apertures


29


(see FIG.


2


). The apertures


29


provide an inlet for fuel vapors to enter the vapor recovery path


8


of fuel dispenser


18


from the vehicle's filler pipe


22


. As liquid fuel rushes into the fuel tank


20


during the fueling operation of a vehicle not equipped with an ORVR system, fuel vapors are forced out of the fuel tank


20


through the fill pipe


22


. The fuel dispenser's vapor recovery system pulls fuel vapor through the vapor recovery apertures


29


, along the vapor recovery path


8


and ultimately into the underground tank


5


.




Vapor recovery passage


8


transfers fuel vapors expelled from the vehicle's fuel tank


20


to the underground storage tank


5


. The fuel delivery hose


4


is depicted as having an internal vapor recovery hose


10


for creating a section of the vapor recovery passage


8


. The terms “vapor recovery passage” and “vapor return passage” as used herein refer to the flow path along which vapors recovered from a vehicle travel as they are returned to a storage point. One such storage point is an underground tank


5


, however, other types of storage points to include intermediate vapor collection devices may also be used. Thus, any device installed in a vapor return passage may be installed at various positions along the path described above.




A vapor recovery pump


14


provides a vacuum in the vapor recovery passage


8


for removing fuel vapor during the fueling operation. The terms “fuel vapor” and “hydrocarbon vapor” are used throughout to include vapors produced during the fueling operation that contain hydrocarbons and other potentially harmful or ozone depleting elements. The vapor recovery pump


14


may be placed anywhere along the vapor recovery passage


8


between the nozzle


2


and the underground fuel storage tank


5


. The vapor recovery system using the pump


14


may be any suitable system such as those shown in U.S. Reissue Pat. No. 35,238; and U.S. Pat. Nos. 5,195,564; 5,333,655; or 3,016,928. Various ones of these systems are now in commercial use, recovering fuel vapor during refueling.




The present invention may be applied with either constant speed or variable speed vapor pumps. A constant speed vapor pump includes a mechanism to control vapor return flow usually in the form of at least one valve


56


positioned along the vapor recovery passage


8


. Valve


56


is selectively positionable between a variety of open and closed orientations to control the amount of vapor pressure pulled through the passage


8


. The constant speed vapor pump may be located in each fuel dispenser


18


, or in a central location such as that shown in U.S. Pat No. 5,417,256 entitled “Centralized vacuum assist vapor recovery system,” incorporated herein by reference in its entirety. A variable speed vapor pump may be operated at a variety of speeds to control vapor flow through the passage without the need for valves.




As illustrated in

FIG. 1

, the underground tank


5


includes a vent


17


and a pressure-vacuum vent valve


99


for venting the underground tank


5


to atmosphere. The vent


17


and vent valve


99


allow the underground tank


5


to breathe in order to substantially equalize the ambient and tank pressures. In typical applications, maintaining tank pressure between the limits of pressure and vacuum is sufficient. Typical ranges of pressure and vacuum will range between +3 inches of water to −8 inches of water.




Turning now to

FIG. 2

, there is illustrated a schematic representation of a vehicle fuel tank


20


of a vehicle having an associated ORVR system


24


. These ORVR systems


24


typically have a vapor recovery inlet


26


extending into the tank


20


(as shown) on the filler pipe


22


and communicating with the ORVR system


24


. In the ORVR system of

FIG. 2

, incoming fuel provides a temporary seal in fill neck


22


to prevent vapors from within the tank


20


to escape. This sealing action is often referred to as a liquid seal. As the tank fills, pressure within tank


20


increases and forces vapors into the ORVR system


24


through the vapor recovery inlet


26


. Other ORVR systems may use a check valve


21


along the fill neck


22


to prevent further loss of vapors. The check valve


21


is normally closed and opens when a set amount of gasoline accumulates over the check valve within the fill neck


22


.




Thermometers may be placed at various locations throughout the fuel delivery and vapor recovery systems as illustrated in FIG.


1


. One such thermometer that may be used with the present invention is discussed in U.S. Pat. No. 6,038,922, entitled “Thermometric apparatus and method for determining the concentration of a vapor in a gas stream,” incorporated herein by reference in its entirety, but any suitable thermometer or temperature sensing device may be used with the present invention and is not limited to any particular type or method. An ambient temperature at the fuel dispenser


18


is determined by thermometer


90


that may be placed at numerous locations including an upper section of the fuel dispenser


18


, lower section of the fuel dispenser


18


, along the fuel delivery hose


4


, or nozzle


2


. Additionally, more than one thermometer


90


may be positioned at the fuel dispenser


18


. Each thermometer


90


reading is signaled to the processor


200


which may average the temperature readings, or use one thermometer


90


with the others as backups in the event of failure of the first. Likewise, humidity sensor


91


is positioned within the fuel dispenser environment to sense the humidity levels and signal the results to processor


200


. One example of a humidity sensor is discussed in U.S. Pat. No. 5,752,411 entitled “Method for measuring the air flow component of air/water vapor streams flowing under vacuum,” incorporated herein by reference in its entirety, but any suitable humidity sensor or sensing device may be used with the present invention as it is not limited to any particular type or method.




A vapor thermometer


95


may be positioned within the vapor recovery passage


8


for sensing the vapor temperature. Thermometer


95


may be placed within the nozzle


2


as illustrated in

FIG. 2

for determining the temperature of the vapors emanating during the fueling operation. In one embodiment, thermometer


95


is positioned within the spout


28


that affords it some protection as it is shielded from contact with the nozzle receptacle, and the vehicle fuel tank


20


. Thermometers may also be positioned along the vapor recovery passage


8


at a point between the nozzle


2


and the underground storage tank


5


. Additionally, more than one thermometer


95


may be positioned within the vapor recovery system in the event of damage to a first thermometer


95


, or to use an average of the temperatures.




A vapor sensor


80


is positioned along the vapor recovery passage


8


to determine the amount of actual fuel vapor. Vapor sensor


80


may be positioned at a variety of locations along the passage


8


from the nozzle


2


, to directly upstream of the storage tank


5


. Additionally, more than one vapor sensor


80


may be positioned along the vapor recovery passage


8


. By way of example, a first vapor sensor


80


may be positioned upstream of the vapor pump


14


adjacent to the fuel delivery hose


4


and a second vapor sensor


80


positioned downstream of the vapor pump


14


adjacent to the storage tank


5


application Ser. No. 09/442,263 entitled “Vapor Flow And Hydrocarbon Concentration Sensor For Improved Vapor Recovery In Fuel Dispensers,” and application Ser. No. 09/188,860 entitled “Hydrocarbon Vapor Sensing,” both assigned to the same assignee of the present invention and both incorporated herein by reference in its entirety, disclose various locations for the vapor sensor


80


in and proximate to a fuel dispenser


18


that all are possible locations of the vapor sensor


80


for the present invention.





FIG. 3

illustrates one embodiment of a sensor


100


as being an infrared sensor positioned within the sensor chamber


91


. Sensor includes an infrared emitter


152


and an infrared detector


154


like that described in “Infrared Light Sources” dated February 2000 and manufactured by Ion Optics, Inc. that is herein incorporated by reference in its entirety. Preferably, the infrared emitter


152


is either a solid state or a black body radiator with an appropriate filter, if required. The infrared emitter


152


irradiates to the infrared detector


154


through a cross-section of sampled vapor within the vapor recovery passage


8


. The infrared detector


154


is either solid state or pyro-electric infrared (PIR). The attenuation in the infrared spectrum


156


caused by the absorption of infrared by hydrocarbons is detected by the detector


154


.




The infrared emitter


152


contains a window


160


through which the infrared spectrum


156


emitted by the infrared emitter


152


passes. The primary purpose of the window


160


is to provide a barrier to prevent the infrared emitter


152


from being contaminated by the vapor. In order for the infrared spectrum


156


to pass through for detection by the infrared detector


154


, the window


160


allows light of the infrared spectrum


156


to pass through. The wavelength of the infrared spectrum


156


wavelengths is approximately 4 micrometers and the hydrocarbon vapor is sensed at approximately 3.3 to 3.4 micrometers. The preferred embodiment uses a window


160


constructed out of sapphire because it does not attenuate the infrared spectrum


156


materially at this wavelength. However, windows


160


made out of germanium, calcium flouride or silicon may be better for infrared spectrums


156


with longer wavelengths. Similarly, the infrared detector


154


also has a window


162


to allow the infrared spectrum


156


to pass through for the same reasons as discussed above. U.S. patent application Ser. No. 09,442,263 discloses the sensor and is herein incorporated by reference in its entirety.




A vapor sensor, such as an infrared sensor illustrated in

FIG. 3

, is generally referred to as an indirect sensor because the vapor does not contact the actual sensor. The infrared spectrum


156


travels through the vapor recovery passage


8


as the actual sensor remains outside of the passage. Alternatively, sensor


80


may be a direct sensor in which it placed within the vapor recovery passage


8


and vapor directly contacts the sensor. Alternatively, a chamber containing the sensor may extend from the vapor recovery passage


8


. Vapors enter the chamber and contact the sensor


80


, but liquid fuel collected in the line does not contact and foul the sensor. This embodiment is disclosed in U.S. patent application Ser. No. 09/188,860, and U.S. Pat. No. 5,116,759, both herein incorporated by reference in their entirety.




Sensor


80


may monitor either the hydrocarbon or other element normally found in air such as oxygen concentration. By way of example, U.S. Pat. No. 5,832,967 discloses a direct sensor and oxygen sensor, and is incorporated by reference herein in its entirety. It will be readily understood that any particular hydrocarbon content of the vapor flow has a corresponding oxygen content. That is, if the hydrocarbon content is 5% then the remain 95% is comprised of air further comprising oxygen, nitrogen, and other elements normally found in air. Knowing the concentration of an element normally found in air, such as oxygen, allows the system to determine the amount of hydrocarbon. For example, if air is comprised of 15% oxygen and the concentration of oxygen measured in the vapor recovery passage


8


is 3%, the concentration of hydrocarbon would be approximately 80% since a 3% oxygen concentration equals approximately a 20% air concentration. The hydrocarbon concentration is 100% minus the air concentration. Just as an oxygen sensor is used in this example, a nitrogen sensor or other sensor of an air element may be used as well. Thus, the control of the vapor recovery system described herein above may be achieved by monitoring the oxygen content of the vapor flow as well as the hydrocarbon content thereof. A system for using vapor flow oxygen content in this fashion is disclosed in United Kingdom published patent application 2 316 060 (“the '060 patent publication”), the content of which is incorporated herein by reference. The '060 patent publication system relies on the expected increased oxygen content of the return vapor flow from an ORVR vehicle to halt operation of a vacuum pump. The system and method disclosed in U.S. Pat. No. 5,782,275, which is herein incorporated by reference in its entirety, could also be adapted for use with an oxygen sensor by including an additional component that would convert information regarding oxygen content to hydrocarbon content. This component could include a hard wired device included as part of the sensor


80


itself, or, alternatively, software instructions contained in the processor


200


. In its broadest aspect then, the present invention includes the provision of a vapor sensor in fluid communication with the return vapor flow. This sensor could be a hydrocarbon sensor or an oxygen sensor. The term “vapor sensor” and the like used throughout is meant to include both a hydrocarbon sensor and an oxygen sensor.




Processor


200


receives data from at least the vapor sensor


80


and processes whether the vehicle is equipped with an ORVR system. Processor


200


may be a microprocessor with an associated memory or the like and also operates to control the vast majority of the various functions of the fuel dispenser


18


including, but not limited to fuel transaction authorization, encryption associated with fuel transaction authorization, fuel grade selection, display and/or audio control. Processor


200


may actually comprise two or more microprocessors that may communicate with one another. Recent advances in the technology associated with the fuel dispenser


18


now enable the fuel dispenser


18


to act as an Internet interface, provide content, allow music downloads, or other functionality.





FIG. 4

illustrates a schematic illustration of the inputs received and accessible to the processor


200


. Vapor sensor


80


, ambient thermometer


90


, and vapor thermometer


95


each send signals to the processor


200


indicative of the sensed environment. Clock


204


maintains the time of day, and may also include a calendar function.




Fuel pump


68


signals the amount of fuel dispensed during a fueling operation. In one embodiment, a fuel pulse is generated as fuel is dispensed for a precise volume of fuel dispensed. Processor


200


accumulates the pulse count and, based on the fuel pulse count and fuel volume per pulse, may determine the amount of fuel dispensed. Fuel meter


19


operates in a like manner to indicate the amount of fuel flowing through the fuel delivery line. Fuel meter


19


may be the only source of fuel flow information, or may provide a redundant fuel flow reading to the processor


200


that is used in combination with the fuel pump


68


.




Processor


200


is programmed to compute a threshold amount of vapor produced during a steady-state fueling operation in which the flow rate is relatively constant. By way of example, processor


200


correlates 1000 pulses per minute as a flow rate of one gallon per minute, which in turn produces a certain vapor concentration. In one embodiment, the threshold level of vapor concentration is a predetermined amount calculated in laboratory testing. This value is stored in memory


202


which processor


200


accesses upon being signaled of fuel flow. The threshold level is then supplemented by variable values stored within memory


202


.




In one embodiment, memory


202


includes at least one look-up table


300


having pre-computed dependent values for the threshold amounts of vapor concentration produced during the fueling process. Look-up techniques are disclosed in U.S. Pat. No. 5,592,979, which is herein incorporated by reference in its entirety.




Another embodiment features the vapor temperature within the vapor recovery passage


8


to be most reliable for determining the hydrocarbon concentration. In one example, a vehicle being driven from some undetermined mileage at an ambient temperature of about 80 degrees Fahrenheit refuels resulting in a hydrocarbon concentration level of about 50-60%. The same vehicle in another example may be stored in cooled and shaded garage before being removed and refueled at a nearby gas station where the ambient temperature is about 80 degrees Fahrenheit. The hydrocarbon concentration level will be below the previous example, even though the ambient temperature is the same.




Other methods of calculated the expected vapor concentration may be included in the present invention. Another method includes a single complex look-up table that factors in a plurality of the received variables. Variables may include the hydrocarbon concentration, and environmental conditions. The complex table need only be accessed by processor


200


once to determine the expected levels. An advantage of having only one complex table is the reduced processing time for processor


200


to calculate an updated vapor level. However, the complex table may require more space within memory


202


.




Another method may include mathematical equations for determining the threshold and variable vapor concentration amounts. Values obtained from the fuel flow meter


19


or fuel pump


68


, along with any environmental conditions from sensors, are input into equations for determining the threshold vapor concentration.




It should be recognized that the present invention uses environmental inputs for sensors and other devices that may affect vapor concentration levels to adjust the vapor concentration threshold level and that the present invention in not limited to any particular method or manner of calculation of processing to determine any adjustment to the vapor concentration threshold level based on the environmental inputs.





FIG. 5

illustrates the steps of a fueling process and setting the vapor pump rate. Processor


200


receives a fueling request from an operator (block


302


). This may include receipt of a valid credit card number from the user, toggling a switch on the exterior of the fuel dispenser


18


, touch pad input on an input display, or other well know activation requests. Thereafter, processor


200


activates the fuel pump and fuel is dispensed at the rate the operator squeezes the handle on the nozzle


2


with the fuel flow rate signaled to the processor


200


.




The vapor recovery pump


14


is activated (block


304


) once fuel is dispensed by the fuel pump


68


. Upon the initial dispensing of fuel into the vehicle tank


20


, a large plume of vapors which has been housed in the tank


20


is often released through the fuel tank neck


22


. This initial plume may occur too early in the fueling process for the processor


200


to receive accurate readings from the sensors to set the vapor pump


14


at the expected rate. To ensure this initial plume is captured, vapor pump


14


may be activated at an initial setting and then reduced to a lower rate thereafter.




Upon receiving a fuel flow rate, processor


200


determines the initial threshold vapor concentration level (block


312


). Determining this level may include accessing the value from a look-up table


300


stored in memory, or calculating the level from a formula. Processor


200


receives signals sent from the sensors


90


,


91


,


95


indicating the ambient temperature, vapor temperature, humidity levels, and other climatic environmental conditions (block


314


). From these signals, processor


200


accesses the look-up table or tables within memory


202


and determines variations in the threshold levels. Processor


200


than adjusts the threshold level based on these variations (block


316


). As before, processor


200


may also include these variables in a mathematical formula to determine the adjusted vapor concentration level. The actual vapor concentration within the vapor recovery passage


8


is signaled from the hydrocarbon sensor


80


(block


318


).




Processor


200


next compares the adjusted hydrocarbon level with the obtained amount from the sensor


80


(Decision


320


). If the actual vapor concentration level is less than the adjusted threshold, processor


200


assumes that the vehicle is equipped with an ORVR system (block


322


). Processor


200


may allow for a range of acceptance that allows for slight variations in the results. The range of acceptance may vary depending upon the specific embodiment. By way of example, if the actual concentration is at least 5% less than the adjusted value, processor


200


may assume the vehicle has an ORVR system. After determining an ORVR system exists, processor


200


may then determine whether the vapor pump


14


should remain activated and at what appropriate setting (block


324


). An actual concentration level of less than a predetermined amount may allow the processor


200


to completely deactivate the vapor pump


14


as the ORVR system is adequately collecting the vapors. Alternatively, an actual reading above the predetermined level may result in the vapor pump


14


remaining activated and being set at a level corresponding to the actual amount. Processor


200


may be further programmed to set the vapor pump speed at an appropriate level depending upon a calculation of the threshold amounts and actual vapors levels. U.S. Pat No. 5,592,979, already incorporated herein, discloses several manners of determining this level.




When the actual vapor concentration is greater than or at least within a range of the adjusted threshold, processor


200


assumes the vehicle is not equipped with an ORVR system (block


326


). Processor


200


may take one reading during the fueling operation and set the vapor pump


14


in accordance with the results. Another embodiment provides for processor


200


to take readings throughout the fueling operation and constantly test for the existence of an ORVR system, and to ensure that produced vapors are being captured (block


332


).




Inconsistent results of the processor may further be logged either within memory


202


, or a communication sent to a remote location. The date and time of the inconsistent result obtained from clock


204


may further be included to assist in determining causes and possible solutions of any problems. Repetitive inconsistencies may indicate a need for service with at least one component of the system which is causing inaccurate vapor recovery results. One example of an inconsistency is an actual vapor level greatly higher than the adjusted threshold. This indicates that either the threshold amount was not accurately calculated, or the vapor sensor is malfunctioning.




The present invention may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changed coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.



Claims
  • 1. A method of determining whether a vehicle is equipped with an onboard recovery vapor recovery system, said method comprising the steps of:a) determining fuel flow and determining a threshold vapor concentration; b) receiving an input from a sensor indicative of an environmental condition; c) adjusting the threshold vapor concentration by a factor based on the input; d) sensing an actual vapor concentration emanating from the vehicle; and e) comparing the adjusted threshold vapor concentration with the actual vapor concentration to determine whether the vehicle is equipped with an onboard recovery vapor recovery system.
  • 2. The method of claim 1, wherein the threshold vapor concentration is predetermined and based on tested results.
  • 3. The method of claim 2, wherein sensing the environmental conditions is performed by sensors positioned within the fuel dispenser environment.
  • 4. The method of claim 1, wherein sensing the actual vapor concentration is performed with a vapor sensor.
  • 5. The method of claim 1, wherein determining the vehicle is equipped with an onboard recovery vapor recovery system when the actual vapor concentration is below a predetermined level of the adjusted threshold vapor concentration.
  • 6. The method of claim 1, wherein sensing the actual vapor concentration is performed indirectly.
  • 7. The method of claim 1, wherein sensing the actual vapor concentration is performed directly.
  • 8. The method of claim 1, wherein the threshold vapor concentration and the input are accessed from memory.
  • 9. A method of determining a vehicle having an ORVR system, said method comprising the steps of:a) operatively connecting a fuel flow meter to a processor, the fuel flow meter sending signals to the processor indicative of a fuel flow rate and the processor determining a threshold vapor concentration; b) operatively connecting an environmental sensor to the processor, the processor adjusting the threshold vapor concentration a predetermined amount based upon signals received from the environmental sensor; c) operatively connecting a vapor sensor to the processor, the vapor sensor sending a signal of an actual vapor concentration; d) comparing the actual vapor concentration with the adjusted threshold vapor concentration and determining the vehicle is equipped with an ORVR system when a difference in the concentrations exceeds a predetermined amount.
  • 10. A system for determining a vehicle having a vapor recovery system, said system comprising:a. a vapor recovery line, said line extending between a first end positioned adjacent to a fuel nozzle and a second end terminating within a storage tank; b. a fuel pump operatively connected to a fuel line for pumping fuel to the vehicle; c. a vapor pump operatively connected to said vapor recovery line, said pump drawing vapor into said first end and delivering the vapor into the storage tank; d. an environmental sensor for determining an environmental variable; e. a vapor sensor positioned within said vapor recovery line for determining an actual vapor concentration; and f. a processor for receiving signals from said fuel pump, said vapor pump, and said environmental sensor, said processor accessing a memory having a threshold vapor level stored therein corresponding to said signal received from said fuel pump, said processor accessing said memory to retrieve a factor variable stored therein to adjust said threshold vapor level, and said processor comparing said adjusted threshold vapor level with said actual vapor concentration to determine whether the vehicle is equipped with an ORVR system.
  • 11. The system of claim 10, wherein said vapor sensor is a hydrocarbon sensor.
  • 12. The system of claim 10, wherein said vapor sensor is an infrared sensor.
  • 13. The system of claim 10, wherein said vapor sensor is an oxygen sensor.
  • 14. The system of claim 10, wherein said vapor pump operates at a constant speed.
  • 15. The system of claim 10, wherein said vapor pump operates at a variable speed.
  • 16. The system of claim 10, wherein said environmental sensor determines an ambient temperature external to the vapor recovery line.
  • 17. The system of claim 10, wherein said environmental sensor is positioned within the vapor recovery line for determining the temperature of the vapor.
  • 18. An apparatus for detecting a vehicle having a vapor recovery system, said apparatus comprising:a) a fuel dispenser configured to deliver fuel to a fuel tank of a vehicle, said fuel dispenser providing a first signal indicative of a fuel flow rate; b) an environmental sensor positioned about said fuel dispenser, said environmental sensor providing a second signal indicative of an environmental condition; c) a vapor sensor positioned within said vapor recovery system for sensing vapor concentration and providing a signal indicative of the vapor concentration; and d) a processor configured to determine whether said vehicle is equipped with the vapor recovery system based on a value dependent on said first and second signals compared to said vapor concentration signal.
  • 19. The method of claim 18, wherein the environmental sensor is a temperature sensor positioned within a vapor recovery line.
US Referenced Citations (90)
Number Name Date Kind
3016928 Brandt Jan 1962 A
3735634 Clinton et al. May 1973 A
4147096 Caswell Apr 1979 A
4166485 Wokas Sep 1979 A
4215565 Zanker Aug 1980 A
4543819 Chin et al. Oct 1985 A
4566504 Furrow et al. Jan 1986 A
4570686 Devine Feb 1986 A
4611729 Gerstenmaier et al. Sep 1986 A
4653334 Capone Mar 1987 A
4687033 Furrow et al. Aug 1987 A
4749009 Faeth Jun 1988 A
4827987 Faeth May 1989 A
4842027 Faeth Jun 1989 A
4871450 Goodrich et al. Oct 1989 A
4938251 Furrow et al. Jul 1990 A
4967809 Faeth Nov 1990 A
4986445 Young et al. Jan 1991 A
5013434 Furrow May 1991 A
5027499 Prohaska Jul 1991 A
5040576 Faeth Aug 1991 A
5040577 Pope Aug 1991 A
5116759 Klainer et al. May 1992 A
5129433 Faeth Jul 1992 A
5143258 Mittermaier Sep 1992 A
5156199 Hartsell, Jr. et al. Oct 1992 A
5165379 Thompson Nov 1992 A
5195564 Spalding Mar 1993 A
5203384 Hansen Apr 1993 A
5240045 Faeth Aug 1993 A
5267470 Cook Dec 1993 A
5269353 Nanaji et al. Dec 1993 A
5323817 Spalding Jun 1994 A
5332008 Todd et al. Jul 1994 A
5332011 Spalding Jul 1994 A
5333654 Faeth Aug 1994 A
5333655 Bergamini et al. Aug 1994 A
5355915 Payne Oct 1994 A
5365985 Todd et al. Nov 1994 A
5386812 Curran et al. Feb 1995 A
5417256 Hartsell, Jr. et al. May 1995 A
5450883 Payne et al. Sep 1995 A
5452621 Aylesworth et al. Sep 1995 A
5460054 Tran Oct 1995 A
5464466 Nanaji et al. Nov 1995 A
5500369 Kiplinger Mar 1996 A
5507325 Finlayson Apr 1996 A
RE35238 Pope May 1996 E
5542458 Payne et al. Aug 1996 A
5563339 Compton et al. Oct 1996 A
5563341 Fenner et al. Oct 1996 A
5568828 Harris Oct 1996 A
5571310 Nanaji Nov 1996 A
5590697 Benjey et al. Jan 1997 A
5592979 Payne et al. Jan 1997 A
5625156 Serrels et al. Apr 1997 A
5626649 Nanaji May 1997 A
5663492 Alapati et al. Sep 1997 A
5671785 Andersson Sep 1997 A
5720325 Grantham Feb 1998 A
5752411 Harpster May 1998 A
5755854 Nanaji May 1998 A
5780245 Maroteaux Jul 1998 A
5782275 Hartsell, Jr. et al. Jul 1998 A
5803136 Hartsell, Jr. Sep 1998 A
5832967 Andersson Nov 1998 A
5843212 Nanaji Dec 1998 A
5850857 Simpson Dec 1998 A
5857500 Payne et al. Jan 1999 A
5860457 Andersson Jan 1999 A
5868175 Duff et al. Feb 1999 A
5878790 Janssen Mar 1999 A
5889202 Alapati et al. Mar 1999 A
5898108 Mieczkowski et al. Apr 1999 A
5911248 Keller Jun 1999 A
5913343 Andersson Jun 1999 A
5942980 Hoben et al. Aug 1999 A
5944067 Andersson Aug 1999 A
5956259 Hartsell, Jr. et al. Sep 1999 A
5988232 Koch et al. Nov 1999 A
5992395 Hartsell, Jr. et al. Nov 1999 A
6026866 Nanaji Feb 2000 A
6037184 Matilainen et al. Mar 2000 A
6038922 Mauze et al. Mar 2000 A
6065507 Nanaji May 2000 A
6070453 Myers Jun 2000 A
6082415 Rowland et al. Jul 2000 A
6102085 Nanaji Aug 2000 A
6103532 Koch et al. Aug 2000 A
6123118 Nanaji Sep 2000 A
Foreign Referenced Citations (2)
Number Date Country
2316060 Feb 1998 GB
WO0050850 Aug 2000 WO