The present invention is directed to improvements in electronic inhalable aerosol devices, or electronic vaping devices, particularly to electronic aerosol devices which utilize a vaporizable material that is vaporized to create an aerosol vapor capable of delivering an active ingredient to a user.
In some aspects of the invention, the device comprises an inhalable aerosol comprising: an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber to generate a vapor; a condenser comprising a condensation chamber in which at least a fraction of the vapor condenses to form the inhalable aerosol; an air inlet that originates a first airflow path that includes the oven chamber; and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber to a user.
In some aspects of the invention the oven is within a body of the device. The device may further comprise a mouthpiece, wherein the mouthpiece comprises at least one of the air inlet, the aeration vent, and the condenser. The mouthpiece may be separable from the oven. The mouthpiece may be integral to a body of the device, wherein the body comprises the oven. The device may further comprise a body that comprises the oven, the condenser, the air inlet, and the aeration vent. The mouthpiece may be separable from the body.
In some aspects of the invention, the oven chamber may comprise an oven chamber inlet and an oven chamber outlet, and the oven further comprises a first valve at the oven chamber inlet, and a second valve at the oven chamber outlet. The aeration vent may comprise a third valve. The first valve, or said second valve may be chosen from the group of a check valve, a clack valve, a non-return valve, and a one-way valve. The third valve may be chosen from the group of a check valve, a clack valve, a non-return valve, and a one-way valve. The first or second valve may be mechanically actuated. The first or second valve may be electronically actuated. The first valve or second valve may be manually actuated. The third valve may be mechanically actuated. The third valve may be mechanically actuated. The third valve may be electronically actuated. The third valve may be manually actuated.
In another aspect of the invention, the device may further comprise a body that comprises at least one of: a power source, a printed circuit board, a switch, and a temperature regulator. The device may further comprise a temperature regulator in communication with a temperature sensor. The temperature sensor may be the heater. The power source may be rechargeable. The power source may be removable. The oven may further comprise an access lid. The vapor forming medium may comprise tobacco. The vapor forming medium may comprise a botanical. The vapor forming medium may be heated in the oven chamber wherein the vapor forming medium may comprise a humectant to produce the vapor, wherein the vapor comprises a gas phase humectant. The vapor may be mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of about 1 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.9 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.8 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.7 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.6 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.5 micron.
In some aspects of the invention, the humectant may comprise glycerol as a vapor-forming medium. The humectant may comprise vegetable glycerol. The humectant may comprise propylene glycol. The humectant may comprise a ratio of vegetable glycerol to propylene glycol. The ratio may be about 100:0 vegetable glycerol to propylene glycol. The ratio may be about 90:10 vegetable glycerol to propylene glycol. The ratio may be about 80:20 vegetable glycerol to propylene glycol. The ratio may be about 70:30 vegetable glycerol to propylene glycol. The ratio may be about 60:40 vegetable glycerol to propylene glycol. The ratio may be about 50:50 vegetable glycerol to propylene glycol. The humectant may comprise a flavorant. The vapor forming medium may be heated to its pyrolytic temperature. The vapor forming medium may heated to 200° C. at most. The vapor forming medium may be heated to 160° C. at most. The inhalable aerosol may be cooled to a temperature of about 50°-70° C. at most, before exiting the aerosol outlet of the mouthpiece.
In an aspect of the invention, the method comprises A method for generating an inhalable aerosol, the method comprising: providing an inhalable aerosol generating device wherein the device comprises: an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol; an air inlet that originates a first airflow path that includes the oven chamber; and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber to a user.
In some aspects of the invention the oven is within a body of the device. The device may further comprise a mouthpiece, wherein the mouthpiece comprises at least one of the air inlet, the aeration vent, and the condenser. The mouthpiece may be separable from the oven. The mouthpiece may be integral to a body of the device, wherein the body comprises the oven. The method may further comprise a body that comprises the oven, the condenser, the air inlet, and the aeration vent. The mouthpiece may be separable from the body.
In some aspects of the invention, the oven chamber may comprise an oven chamber inlet and an oven chamber outlet, and the oven further comprises a first valve at the oven chamber inlet, and a second valve at the oven chamber outlet.
The vapor forming medium may comprise tobacco. The vapor forming medium may comprise a botanical. The vapor forming medium may be heated in the oven chamber wherein the vapor forming medium may comprise a humectant to produce the vapor, wherein the vapor comprises a gas phase humectant. The vapor may comprise particle diameters of average mass of about 1 micron. The vapor may comprise particle diameters of average mass of about 0.9 micron. The vapor may comprise particle diameters of average mass of about 0.8 micron. The vapor may comprise particle diameters of average mass of about 0.7 micron. The vapor may comprise particle diameters of average mass of about 0.6 micron. The vapor may comprise particle diameters of average mass of about 0.5 micron.
In some aspects of the invention, the humectant may comprise glycerol as a vapor-forming medium. The humectant may comprise vegetable glycerol. The humectant may comprise propylene glycol. The humectant may comprise a ratio of vegetable glycerol to propylene glycol. The ratio may be about 100:0 vegetable glycerol to propylene glycol. The ratio may be about 90:10 vegetable glycerol to propylene glycol. The ratio may be about 80:20 vegetable glycerol to propylene glycol. The ratio may be about 70:30 vegetable glycerol to propylene glycol. The ratio may be about 60:40 vegetable glycerol to propylene glycol. The ratio may be about 50:50 vegetable glycerol to propylene glycol. The humectant may comprise a flavorant. The vapor forming medium may be heated to its pyrolytic temperature. The vapor forming medium may heated to 200° C. at most. The vapor forming medium may be heated to 160° C. at most. The inhalable aerosol may be cooled to a temperature of about 50°-70° C. at most, before exiting the aerosol outlet of the mouthpiece.
In an aspect of the invention, the device may be user serviceable. The device may not be user serviceable.
In an aspect of the invention, a method for generating an inhalable aerosol, the method comprising: providing a vaporization device, wherein said device produces a vapor comprising particle diameters of average mass of about 1 micron or less, wherein said vapor is formed by heating a vapor forming medium in an oven chamber to a first temperature below the pyrolytic temperature of said vapor forming medium, and cooling said vapor in a condensation chamber to a second temperature below the first temperature, before exiting an aerosol outlet of said device.
In an aspect of the invention, a method of manufacturing a device for generating an inhalable aerosol comprising: providing said device comprising a mouthpiece comprising an aerosol outlet at a first end of the device; an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein, a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol, an air inlet that originates a first airflow path that includes the oven chamber and then the condensation chamber, an aeration vent that originates a second airflow path that joins the first airflow path prior to or within the condensation chamber after the vapor is formed in the oven chamber, wherein the joined first airflow path and second airflow path are configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.
The method may further comprise providing the device comprising a power source or battery, a printed circuit board, a temperature regulator or operational switches.
In an aspect of the invention a device for generating an inhalable aerosol may comprise a mouthpiece comprising an aerosol outlet at a first end of the device and an air inlet that originates a first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol; and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.
In another aspect of the invention a device for generating an inhalable aerosol may comprise: a mouthpiece comprising an aerosol outlet at a first end of the device, an air inlet that originates a first airflow path, and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; and a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol and wherein air from the aeration vent joins the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol through the aerosol outlet of the mouthpiece to a user.
In another aspect of the invention, a device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle; a cartridge comprising: a fluid storage compartment, and a channel integral to an exterior surface of the cartridge, and an air inlet passage formed by the channel and an internal surface of the cartridge receptacle when the cartridge is inserted into the cartridge receptacle; wherein the channel forms a first side of the air inlet passage, and an internal surface of the cartridge receptacle forms a second side of the air inlet passage.
In another aspect of the invention, a device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle; a cartridge comprising: a fluid storage compartment, and a channel integral to an exterior surface of the cartridge, and an air inlet passage formed by the channel and an internal surface of the cartridge receptacle when the cartridge is inserted into the cartridge receptacle; wherein the channel forms a first side of the air inlet passage, and an internal surface of the cartridge receptacle forms a second side of the air inlet passage.
In some aspects of the invention the channel may comprise at least one of a groove, a trough, a depression, a dent, a furrow, a trench, a crease, and a gutter. The integral channel may comprise walls that are either recessed into the surface or protrude from the surface where it is formed. The internal side walls of the channel may form additional sides of the air inlet passage. The cartridge may further comprise a second air passage in fluid communication with the air inlet passage to the fluid storage compartment, wherein the second air passage is formed through the material of the cartridge. The cartridge may further comprise a heater. The heater may be attached to a first end of the cartridge.
In an aspect of the invention the heater may comprise a heater chamber, a first pair of heater contacts, a fluid wick, and a resistive heating element in contact with the wick, wherein the first pair of heater contacts comprise thin plates affixed about the sides of the heater chamber, and wherein the fluid wick and resistive heating element are suspended therebetween. The first pair of heater contacts may further comprise a formed shape that comprises a tab having a flexible spring value that extends out of the heater to couple to complete a circuit with the device body. The first pair of heater contacts may be a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element. The first pair of heater contacts may contact a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element. The first pair of heater contacts may be press-fit to an attachment feature on the exterior wall of the first end of the cartridge. The heater may enclose a first end of the cartridge and a first end of the fluid storage compartment. The heater may comprise a first condensation chamber. The heater may comprise more than one first condensation chamber. The first condensation chamber may be formed along an exterior wall of the cartridge. The cartridge may further comprise a mouthpiece. The mouthpiece may be attached to a second end of the cartridge. The mouthpiece may comprise a second condensation chamber. The mouthpiece may comprise more than one second condensation chamber. The second condensation chamber may be formed along an exterior wall of the cartridge.
In an aspect of the invention the cartridge may comprise a first condensation chamber and a second condensation chamber. The first condensation chamber and the second condensation chamber may be in fluid communication. The mouthpiece may comprise an aerosol outlet in fluid communication with the second condensation chamber. The mouthpiece may comprise more than one aerosol outlet in fluid communication with more than one the second condensation chamber. The mouthpiece may enclose a second end of the cartridge and a second end of the fluid storage compartment.
In an aspect of the invention, the device may comprise an airflow path comprising an air inlet passage, a second air passage, a heater chamber, a first condensation chamber, a second condensation chamber, and an aerosol outlet. The airflow path may comprise more than one air inlet passage, a heater chamber, more than one first condensation chamber, more than one second condensation chamber, more than one second condensation chamber, and more than one aerosol outlet. The heater may be in fluid communication with the fluid storage compartment. The fluid storage compartment may be capable of retaining condensed aerosol fluid. The condensed aerosol fluid may comprise a nicotine formulation. The condensed aerosol fluid may comprise a humectant. The humectant may comprise propylene glycol. The humectant may comprise vegetable glycerin.
In an aspect of the invention the cartridge may be detachable. In an aspect of the invention the cartridge may be receptacle and the detachable cartridge form a separable coupling. The separable coupling may comprise a friction assembly, a snap-fit assembly or a magnetic assembly. The cartridge may comprise a fluid storage compartment, a heater affixed to a first end with a snap-fit coupling, and a mouthpiece affixed to a second end with a snap-fit coupling.
In an aspect of the invention, a device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle for receiving a cartridge; wherein an interior surface of the cartridge receptacle forms a first side of an air inlet passage when a cartridge comprising a channel integral to an exterior surface is inserted into the cartridge receptacle, and wherein the channel forms a second side of the air inlet passage.
In an aspect of the invention, a device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle for receiving a cartridge; wherein the cartridge receptacle comprises a channel integral to an interior surface and forms a first side of an air inlet passage when a cartridge is inserted into the cartridge receptacle, and wherein an exterior surface of the cartridge forms a second side of the air inlet passage.
In an aspect of the invention, A cartridge for a device for generating an inhalable aerosol comprising: a fluid storage compartment; a channel integral to an exterior surface, wherein the channel forms a first side of an air inlet passage; and wherein an internal surface of a cartridge receptacle in the device forms a second side of the air inlet passage when the cartridge is inserted into the cartridge receptacle.
In an aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment, wherein an exterior surface of the cartridge forms a first side of an air inlet channel when inserted into a device body comprising a cartridge receptacle, and wherein the cartridge receptacle further comprises a channel integral to an interior surface, and wherein the channel forms a second side of the air inlet passage.
The cartridge may further comprise a second air passage in fluid communication with the channel, wherein the second air passage is formed through the material of the cartridge from an exterior surface of the cartridge to the fluid storage compartment.
The cartridge may comprise at least one of: a groove, a trough, a depression, a dent, a furrow, a trench, a crease, and a gutter. The integral channel may comprise walls that are either recessed into the surface or protrude from the surface where it is formed. The internal side walls of the channel may form additional sides of the air inlet passage.
In another aspect of the invention, a device for generating an inhalable aerosol may comprise: a cartridge comprising; a fluid storage compartment; a heater affixed to a first end comprising; a first heater contact, a resistive heating element affixed to the first heater contact; a device body comprising; a cartridge receptacle for receiving the cartridge; a second heater contact adapted to receive the first heater contact and to complete a circuit; a power source connected to the second heater contact; a printed circuit board (PCB) connected to the power source and the second heater contact; wherein the PCB is configured to detect the absence of fluid based on the measured resistance of the resistive heating element, and turn off the device.
The printed circuit board (PCB) may comprise a microcontroller; switches; circuitry comprising a reference resister; and an algorithm comprising logic for control parameters; wherein the microcontroller cycles the switches at fixed intervals to measure the resistance of the resistive heating element relative to the reference resistor, and applies the algorithm control parameters to control the temperature of the resistive heating element.
The micro-controller may instruct the device to turn itself off when the resistance exceeds the control parameter threshold indicating that the resistive heating element is dry.
In another aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment; a heater affixed to a first end comprising: a heater chamber, a first pair of heater contacts, a fluid wick, and a resistive heating element in contact with the wick; wherein the first pair of heater contacts comprise thin plates affixed about the sides of the heater chamber, and wherein the fluid wick and resistive heating element are suspended therebetween.
The first pair of heater contacts may further comprise: a formed shape that comprises a tab having a flexible spring value that extends out of the heater to complete a circuit with the device body. The heater contacts may be configured to mate with a second pair of heater contacts in a cartridge receptacle of the device body to complete a circuit. The first pair of heater contacts may also be a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element. The first pair of heater contacts may be a heat shield that protect the heater chamber from excessive heat produced by the resistive heating element.
In another aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise: a heater comprising; a heater chamber, a pair of thin plate heater contacts therein, a fluid wick positioned between the heater contacts, and a resistive heating element in contact with the wick; wherein the heater contacts each comprise a fixation site wherein the resistive heating element is tensioned therebetween.
In another aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise a heater, wherein the heater is attached to a first end of the cartridge.
The heater may enclose a first end of the cartridge and a first end of the fluid storage compartment. The heater may comprise more than one first condensation chamber. The heater may comprise a first condensation chamber. The condensation chamber may be formed along an exterior wall of the cartridge.
In another aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise a fluid storage compartment; and a mouthpiece, wherein the mouthpiece is attached to a second end of the cartridge.
The mouthpiece may enclose a second end of the cartridge and a second end of the fluid storage compartment. The mouthpiece may comprise a second condensation chamber. The mouthpiece may comprise more than one second condensation chamber. The second condensation chamber may be formed along an exterior wall of the cartridge.
In an aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment; a heater affixed to a first end; and a mouthpiece affixed to a second end; wherein the heater comprises a first condensation chamber and the mouthpiece comprises a second condensation chamber.
The heater may comprise more than one first condensation chamber and the mouthpiece comprises more than one second condensation chamber. The first condensation chamber and the second condensation chamber may be in fluid communication. The mouthpiece may comprise an aerosol outlet in fluid communication with the second condensation chamber. The mouthpiece may comprise two to more aerosol outlets. The cartridge may meet ISO recycling standards. The cartridge may meet ISO recycling standards for plastic waste.
In an aspect of the invention, a device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle; and a detachable cartridge; wherein the cartridge receptacle and the detachable cartridge form a separable coupling, wherein the separable coupling comprises a friction assembly, a snap-fit assembly or a magnetic assembly.
In an aspect of the invention, a method of fabricating a device for generating an inhalable aerosol may comprise: providing a device body comprising a cartridge receptacle; and providing a detachable cartridge; wherein the cartridge receptacle and the detachable cartridge form a separable coupling comprising a friction assembly, a snap-fit assembly or a magnetic assembly.
In an aspect of the invention, a method of fabricating a cartridge for a device for generating an inhalable aerosol may comprise: providing a fluid storage compartment; affixing a heater to a first end with a snap-fit coupling; and affixing a mouthpiece to a second end with a snap-fit coupling.
In an aspect of the invention, A cartridge for a device for generating an inhalable aerosol with an airflow path comprising: a channel comprising a portion of an air inlet passage; a second air passage in fluid communication with the channel; a heater chamber in fluid communication with the second air passage; a first condensation chamber in fluid communication with the heater chamber; a second condensation chamber in fluid communication with the first condensation chamber; and an aerosol outlet in fluid communication with second condensation chamber.
In an aspect of the invention, a cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment; a heater affixed to a first end; and a mouthpiece affixed to a second end; wherein said mouthpiece comprises two or more aerosol outlets.
In an aspect of the invention, a system for providing power to an electronic device for generating an inhalable vapor, the system may comprise; a rechargeable power storage device housed within the electronic device for generating an inhalable vapor; two or more pins that are accessible from an exterior surface of the electronic device for generating an inhalable vapor, wherein the charging pins are in electrical communication with the rechargeable power storage device; a charging cradle comprising two or more charging contacts configured to provided power to the rechargeable storage device, wherein the device charging pins are reversible such that the device is charged in the charging cradle for charging with a first charging pin on the device in contact a first charging contact on the charging cradle and a second charging pin on the device in contact with second charging contact on the charging cradle and with the first charging pin on the device in contact with second charging contact on the charging cradle and the second charging pin on the device in contact with the first charging contact on the charging cradle.
The charging pins may be visible on an exterior housing of the device. The user may permanently disable the device by opening the housing. The user may permanently destroy the device by opening the housing.
Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Provided herein are systems and methods for generating a vapor from a material. The vapor may be delivered for inhalation by a user. The material may be a solid, liquid, powder, solution, paste, gel, or any a material with any other physical consistency. The vapor may be delivered to the user for inhalation by a vaporization device. The vaporization device may be a handheld vaporization device. The vaporization device may be held in one hand by the user.
The vaporization device may comprise one or more heating elements the heating element may be a resistive heating element. The heating element may heat the material such that the temperature of the material increases. Vapor may be generated as a result of heating the material. Energy may be required to operate the heating element, the energy may be derived from a battery in electrical communication with the heating element. Alternatively a chemical reaction (e.g., combustion or other exothermic reaction) may provide energy to the heating element.
One or more aspects of the vaporization device may be designed and/or controlled in order to deliver a vapor with one or more specified properties to the user. For example, aspects of the vaporization device that may be designed and/or controlled to deliver the vapor with specified properties may comprise the heating temperature, heating mechanism, device air inlets, internal volume of the device, and/or composition of the material.
In some cases, a vaporization device may have an “atomizer” or “cartomizer” configured to heat an aerosol forming solution (e.g., vaporizable material). The aerosol forming solution may comprise glycerin and/or propylene glycol. The vaporizable material may be heated to a sufficient temperature such that it may vaporize.
An atomizer may be a device or system configured to generate an aerosol. The atomizer may comprise a small heating element configured to heat and/or vaporize at least a portion of the vaporizable material and a wicking material that may draw a liquid vaporizable material in to the atomizer. The wicking material may comprise silica fibers, cotton, ceramic, hemp, stainless steel mesh, and/or rope cables. The wicking material may be configured to draw the liquid vaporizable material in to the atomizer without a pump or other mechanical moving part. A resistance wire may be wrapped around the wicking material and then connected to a positive and negative pole of a current source (e.g., energy source). The resistance wire may be a coil. When the resistance wire is activated the resistance wire (or coil) may have a temperature increase as a result of the current flowing through the resistive wire to generate heat. The heat may be transferred to at least a portion of the vaporizable material through conductive, convective, and/or radiative heat transfer such that at least a portion of the vaporizable material vaporizes.
Alternatively or in addition to the atomizer, the vaporization device may comprise a “cartomizer” to generate an aerosol from the vaporizable material for inhalation by the user. The cartomizer may comprise a cartridge and an atomizer. The cartomizer may comprise a heating element surrounded by a liquid-soaked poly-foam that acts as holder for the vaporiable material (e.g., the liquid). The cartomizer may be reusable, rebuildable, refillable, and/or disposable. The cartomizer may be used with a tank for extra storage of a vaporizable material.
Air may be drawn into the vaporization device to carry the vaporized aerosol away from the heating element, where it then cools and condenses to form liquid particles suspended in air, which may then be drawn out of the mouthpiece by the user.
The vaporization of at least a portion of the vaporizable material may occur at a lower temperatures in the vaporization device compared to temperatures required to generate an inhalable vapor in a cigarette. A cigarette may be a device in which a smokable material is burned to generate an inhalable vapor. The lower temperature of the vaporization device may result in less decomposition and/or reaction of the vaporized material, and therefore produce an aerosol with many fewer chemical components compared to a cigarette. In some cases, the vaporization device may generate an aerosol with fewer chemical components that may be harmful to human health compared to a cigarette. Additionally, the vaporization device aerosol particles may undergo nearly complete evaporation in the heating process, the nearly complete evaporation may yield an average particle size (e.g., diameter) value that may be smaller than the average particle size in tobacco or botanical based effluent.
A vaporization device may be a device configured to extract for inhalation one or more active ingredients of plant material, tobacco, and/or a botanical, or other herbs or blends. A vaporization device may be used with pure chemicals and/or humectants that may or may not be mixed with plant material. Vaporization may be alternative to burning (smoking) that may avoid the inhalation of many irritating and/or toxic carcinogenic by-products which may result from the pyrolytic process of burning tobacco or botanical products above 300° C. The vaporization device may operate at a temperature at or below 300° C.
A vaporizer (e.g., vaporization device) may not have an atomizer or cartomizer. Instead the device may comprise an oven. The oven may be at least partially closed. The oven may have a closable opening. The oven may be wrapped with a heating element, alternatively the heating element may be in thermal communication with the oven through another mechanism. A vaporizable material may be placed directly in the oven or in a cartridge fitted in the oven. The heating element in thermal communication with the oven may heat a vaporizable material mass in order to create a gas phase vapor. The heating element may heat the vaporizable material through conductive, convective, and/or radiative heat transfer. The vapor may be released to a vaporization chamber where the gas phase vapor may condense, forming an aerosol cloud having typical liquid vapor particles with particles having a diameter of average mass of approximately 1 micron or greater. In some cases the diameter of average mass may be approximately 0.1-1 micron.
A used herein, the term “vapor” may generally refer to a substance in the gas phase at a temperature lower than its critical point. The vapor may be condensed to a liquid or to a solid by increasing its pressure without reducing the temperature.
As used herein, the term “aerosol” may generally refer to a colloid of fine solid particles or liquid droplets in air or another gas. Examples of aerosols may include clouds, haze, and smoke, including the smoke from tobacco or botanical products. The liquid or solid particles in an aerosol may have varying diameters of average mass that may range from monodisperse aerosols, producible in the laboratory, and containing particles of uniform size; to polydisperse colloidal systems, exhibiting a range of particle sizes. As the sizes of these particles become larger, they have a greater settling speed which causes them to settle out of the aerosol faster, making the appearance of the aerosol less dense and to shorten the time in which the aerosol will linger in air. Interestingly, an aerosol with smaller particles will appear thicker or denser because it has more particles. Particle number has a much bigger impact on light scattering than particle size (at least for the considered ranges of particle size), thus allowing for a vapor cloud with many more smaller particles to appear denser than a cloud having fewer, but larger particle sizes.
As used herein the term “humectant” may generally refer to as a substance that is used to keep things moist. A humectant may attract and retain moisture in the air by absorption, allowing the water to be used by other substances. Humectants are also commonly used in many tobaccos or botanicals and electronic vaporization products to keep products moist and as vapor-forming medium. Examples include propylene glycol, sugar polyols such as glycerol, glycerin, and honey.
Rapid Aeration
In some cases, the vaporization device may be configured to deliver an aerosol with a high particle density. The particle density of the aerosol may refer to the number of the aerosol droplets relative to the volume of air (or other dry gas) between the aerosol droplets. A dense aerosol may easily be visible to a user. In some cases the user may inhale the aerosol and at least a fraction of the aerosol particles may impinge on the lungs and/or mouth of the user. The user may exhale residual aerosol after inhaling the aerosol. When the aerosol is dense the residual aerosol may have sufficient particle density such that the exhaled aerosol is visible to the user. In some cases, a user may prefer the visual effect and/or mouth feel of a dense aerosol.
A vaporization device may comprise a vaporizable material. The vaporizable material may be contained in a cartridge or the vaporizable material may be loosely placed in one or more cavities the vaporization device. A heating element may be provided in the device to elevate the temperature of the vaporizable material such that at least a portion of the vaporizable material forms a vapor. The heating element may heat the vaporizable material by convective heat transfer, conductive heat transfer, and/or radiative heat transfer. The heating element may heat the cartridge and/or the cavity in which the vaporizable material is stored.
Vapor formed upon heating the vaporizable material may be delivered to the user. The vapor may be transported through the device from a first position in the device to a second position in the device. In some cases, the first position may be a location where at least a portion of the vapor was generated, for example, the cartridge or cavity or an area adjacent to the cartridge or cavity. The second position may be a mouthpiece. The user may suck on the mouthpiece to inhale the vapor.
At least a fraction of the vapor may condense after the vapor is generated and before the vapor is inhaled by the user. The vapor may condense in a condensation chamber. The condensation chamber may be a portion of the device that the vapor passes through before delivery to the user. In some cases, the device may include at least one aeration vent, placed in the condensation chamber of the vaporization device. The aeration vent may be configured to introduce ambient air (or other gas) into the vaporization chamber. The air introduced into the vaporization chamber may have a temperature lower than the temperature of a gas and/or gas/vapor mixture in the condensation chamber. Introduction of the relatively lower temperature gas into the vaporization chamber may provide rapid cooling of the heated gas vapor mixture that was generated by heating the vaporizable material. Rapid cooling of the gas vapor mixture may generate a dense aerosol comprising a high concentration of liquid droplets having a smaller diameter and/or smaller average mass compared to an aerosol that is not rapidly cooled prior to inhalation by the user.
An aerosol with a high concentration of liquid droplets having a smaller diameter and/or smaller average mass compared to an aerosol that is not rapidly cooled prior to inhalation by the user may be formed in a two-step process. The first step may occur in the oven chamber where the vaporizable material (e.g., tobacco and/or botanical and humectant blend) may be heated to an elevated temperature. At the elevated temperature, evaporation may happen faster than at room temperature and the oven chamber may fill with the vapor phase of the humectants. The humectant may continue to evaporate until the partial pressure of the humectant is equal to the saturation pressure. At this point, the gas is said to have a saturation ratio of 1 (S=Ppartial/Psat).
In the second step, the gas (e.g., vapor and air) may exit the oven and enter a condenser or condensation chamber and begin to cool. As the gas phase vapor cools, the saturation pressure may decrease. As the saturation pressure decreases, the saturation ratio may increase and the vapor may begin to condense, forming droplets. In some devices, with the absence of added cooling aeration, the cooling may be relatively slower such that high saturation pressures may not be reached, and the droplets that form in the devices without added cooling aeration may be relatively larger and fewer in numbers. When cooler air is introduced, a temperature gradient may be formed between the cooler air and the relatively warmer gas in the device. Mixing between the cooler air and the relatively warmer gas in a confined space inside of the vaporization device may lead to rapid cooling. The rapid cooling may generate high saturation ratios, small particles, and high concentrations of smaller particles, forming a thicker, denser vapor cloud compared to particles generated in a device without the aeration vents.
For the purpose of this disclosure, when referring to ratios of humectants such as vegetable glycerol or propylene glycol, “about” means a variation of 5%, 10%, 20% or 25% depending on the embodiment.
For the purpose of this disclosure, when referring to a diameter of average mass in particle sizes, “about” means a variation of 5%, 10%, 20% or 25% depending on the embodiment.
A vaporization device configured to rapidly cool a vapor may comprise: a mouthpiece comprising an aerosol outlet at a first end of the device; an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol; an air inlet that originates a first airflow path that includes the oven chamber and then the condensation chamber, an aeration vent that originates a second airflow path that joins the first airflow path prior to or within the condensation chamber after the vapor is formed in the oven chamber, wherein the joined first airflow path and second airflow path are configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.
In some embodiments, the oven is within a body of the device. The oven chamber may comprise an oven chamber inlet and an oven chamber outlet. The oven may further comprise a first valve at the oven chamber inlet, and a second valve at the oven chamber outlet.
The oven may be contained within a device housing. In some cases the body of the device may comprise the aeration vent and/or the condenser. The body of the device may comprise one or more air inlets. The body of the device may comprise a housing that holds and/or at least partially contains one or more elements of the device.
The mouthpiece may be connected to the body. The mouthpiece may be connected to the oven. The mouthpiece may be connected to a housing that at least partially encloses the oven. In some cases, the mouthpiece may be separable from the oven, the body, and/or the housing that at least partially encloses the oven. The mouthpiece may comprise at least one of the air inlet, the aeration vent, and the condenser. The mouthpiece may be integral to the body of the device. The body of the device may comprise the oven.
In some cases, the one or more aeration vents may comprise a valve. The valve may regulate a flow rate of air entering the device through the aeration vent. The valve may be controlled through a mechanical and/or electrical control system.
A vaporization device configured to rapidly cool a vapor may comprise: a body, a mouthpiece, an aerosol outlet, a condenser with a condensation chamber, a heater, an oven with an oven chamber, a primary airflow inlet, and at least one aeration vent provided in the body, downstream of the oven, and upstream of the mouthpiece.
Air may be drawn into the device through a primary air inlet 121. The primary air inlet 121 may be on an end of the device 100 opposite the mouthpiece 102. Alternatively, the primary air inlet 121 may be adjacent to the mouthpiece 102. In some cases, a pressure drop sufficient to pull air into the device through the primary air inlet 121 may be due to a user puffing on the mouthpiece 102.
The vapor forming medium (e.g., vaporizable material) may be heated in the oven chamber by a heater 105, to generate elevated temperature gas phases (vapor) of the tobacco or botanical and humectant/vapor forming components. The heater 105 may transfer heat to the vapor forming medium through conductive, convective, and/or radiative heat transfer. The generated vapor may be drawn out of the oven region and into the condensation chamber 103a, of the condenser 103 where the vapors may begin to cool and condense into micro-particles or droplets suspended in air, thus creating the initial formation of an aerosol, before being drawn out of the mouthpiece through the aerosol outlet 122.
In some cases, relatively cooler air may be introduced into the condensation chamber 103a, through an aeration vent 107 such that the vapor condenses more rapidly compared to a vapor in a device without the aeration vent 107. Rapidly cooling the vapor may create a denser aerosol cloud having particles with a diameter of average mass of less than or equal to about 1 micron, and depending on the mixture ratio of the vapor-forming humectant, particles with a diameter of average mass of less than or equal to about 0.5 micron
In another aspect, the present invention provides a device for generating an inhalable aerosol said device comprising a body with a mouthpiece at one end, an attached body at the other end comprising a condensation chamber, a heater, an oven, wherein the oven comprises a first valve in the airflow path at the primary airflow inlet of the oven chamber, and a second valve at the outlet end of the oven chamber, and at least one aeration vent provided in the body, downstream of the oven, and upstream of the mouthpiece.
The body may comprise an oven region 204, with an oven chamber 204a having a first constricting valve 208 in the primary air inlet of the oven chamber and a second constricting valve 209 at the oven chamber outlet. The oven chamber 204a may be sealed with a tobacco or botanical and/or humectant/vapor forming medium 206 therein. The seal may be an air tight and/or liquid tight seal. The heater may be provided to the oven chamber with a heater 205. The heater 205 may be in thermal communication with the oven, for example the heater may be surrounding the oven chamber during the vaporization process. Heater may contact the oven. The heater may be wrapped around the oven. Before inhalation and before air is drawn in through a primary air inlet 221, pressure may build in the sealed oven chamber as heat is continually added. The pressure may build due to a phase change of the vaporizable material. Elevated temperature gas phases (vapor) of the tobacco or botanical and humectant/vapor forming components may be achieved by continually adding heat to the oven. This heated pressurization process may generate even higher saturation ratios when the valves 208, 209 are opened during inhalation. The higher saturation ratios may cause relatively higher particle concentrations of gas phase humectant in the resultant aerosol. When the vapor is drawn out of the oven region and into the condensation chamber 203a of the condenser 203, for example by inhalation by the user, the gas phase humectant vapors may be exposed to additional air through an aeration vent 207, and the vapors may begin to cool and condense into droplets suspended in air. As described previously the aerosol may be drawn through the mouthpiece 222 by the user. This condensation process may be further refined by adding an additional valve 210, to the aeration vent 207 to further control the air-vapor mixture process.
In some embodiments of the vaporization device, components of the device are user serviceable, such as the power source or battery. These components may be replaceable or rechargeable.
In yet another aspect, the invention provides a device for generating an inhalable aerosol said device comprising a first body, a mouthpiece having an aerosol outlet, a condensation chamber within a condenser and an airflow inlet and channel, an attached second body, comprising a heater and oven with an oven chamber, wherein said airflow channel is upstream of the oven and the mouthpiece outlet to provide airflow through the device, across the oven, and into the condensation chamber where an auxiliary aeration vent is provided.
In some aspects of the invention, the device comprises a mouthpiece comprising an aerosol outlet at a first end of the device and an air inlet that originates a first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein, a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol, an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.
In some aspects of the invention, the device may comprise a mouthpiece comprising an aerosol outlet at a first end of the device, an air inlet that originates a first airflow path, and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein, a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol and wherein air from the aeration vent joins the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol through the aerosol outlet of the mouthpiece to a user, as illustrated in exemplary
In some aspects of the invention, the device may comprise a body with one or more separable components. For example, the mouthpiece may be separably attached to the body comprising the condensation chamber, a heater, and an oven, as illustrated in exemplary
In some aspects of the invention, the device may comprise a body with one or more separable components. For example, the mouthpiece may be separably attached to the body. The mouthpiece may comprise the condensation chamber, and may be attached to or immediately adjacent to the oven and which is separable from the body comprising a heater, and the oven, as illustrated in exemplary
In other aspects of the invention, the at least one aeration vent may be located in the condensation chamber of the condenser, as illustrated in exemplary
In some embodiments of the invention, the device may further comprise at least one of: a power source, a printed circuit board, a switch, and a temperature regulator. Alternately, one skilled in the art would recognize that each configuration previously described will also accommodate said power source (battery), switch, printed circuit board, or temperature regulator as appropriate, in the body.
In some embodiments of the invention, the device may be disposable when the supply of pre-packaged aerosol-forming media is exhausted. Alternatively, the device may be rechargeable such that the battery may be rechargeable or replaceable, and/or the aerosol-forming media may be refilled, by the user/operator of the device. Still further, in other embodiments of the invention, the device may be rechargeable such that the battery may be rechargeable or replaceable, and/or the operator may also add or refill a tobacco or botanical component, in addition to a refillable or replaceable aerosol-forming media to the device.
As illustrated in
In other embodiments of the invention, each aerosol configuration produced by mixing the gas phase vapors with the cool air may comprise a different range of particles, for example; with a diameter of average mass of less than or equal to about 0.9 micron; less than or equal to about 0.8 micron; less than or equal to about 0.7 micron; less than or equal to about 0.6 micron; and even an aerosol comprising particle diameters of average mass of less than or equal to about 0.5 micron.
The possible variations and ranges of aerosol density are great in that the possible number of combinations of temperature, pressure, tobacco or botanical choices and humectant selections are numerous. However, by excluding the tobacco or botanical choices and limiting the temperatures ranges and the humectant ratios to those described herein, the inventor has demonstrated that this device will produce a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to about 1 micron.
In some embodiments of the invention, the humectant comprises glycerol or vegetable glycerol as a vapor-forming medium.
In still other embodiments of the invention, the humectant comprises propylene glycol as a vapor-forming medium.
In preferred embodiments of the invention, the humectant may comprise a ratio of vegetable glycerol to propylene glycol as a vapor-forming medium. The ranges of said ratio may vary between a ratio of about 100:0 vegetable glycerol to propylene glycol and a ratio of about 50:50 vegetable glycerol to propylene glycol. The difference in preferred ratios within the above stated range may vary by as little as 1, for example, said ratio may be about 99:1 vegetable glycerol to propylene glycol. However, more commonly said ratios would vary in increments of about 5, for example, about 95:5 vegetable glycerol to propylene glycol; or about 85:15 vegetable glycerol to propylene glycol; or about 55:45 vegetable glycerol to propylene glycol.
In a preferred embodiment the ratio for the vapor forming medium will be between the ratios of about 80:20 vegetable glycerol to propylene glycol, and about 60:40 vegetable glycerol to propylene glycol.
In a most preferred embodiment, the ratio for the vapor forming medium will be about 70:30 vegetable glycerol to propylene glycol.
In any of the preferred embodiments, the humectant may further comprise flavoring products. These flavorings may include enhancers comprising cocoa solids, licorice, tobacco or botanical extracts, and various sugars, to name but a few.
In some embodiments of the invention, the tobacco or botanical is heated in the oven up to its pyrolytic temperature, which as noted previously is most commonly measured in the range of 300-1000° C.
In preferred embodiments, the tobacco or botanical is heated to about 300° C. at most. In other preferred embodiments, the tobacco or botanical is heated to about 200° C. at most. In still other preferred embodiments, the tobacco or botanical is heated to about 160° C. at most. It should be noted that in these lower temperature ranges (<300° C.), pyrolysis of tobacco or botanical does not typically occur, yet vapor formation of the tobacco or botanical components and flavoring products does occur. In addition, vapor formation of the components of the humectant, mixed at various ratios will also occur, resulting in nearly complete vaporization, depending on the temperature, since propylene glycol has a boiling point of about 180°-190° C. and vegetable glycerin will boil at approximately 280°-290° C.
In still other preferred embodiments, the aerosol produced by said heated tobacco or botanical and humectant is mixed with air provided through an aeration vent.
In still other preferred embodiments, the aerosol produced by said heated tobacco or botanical and humectant mixed with air, is cooled to a temperature of about 50°-70° C. at most, and even as low as 35° C. before exiting the mouthpiece, depending on the air temperature being mixed into the condensation chamber. In some embodiments, the temperature is cooled to about 35°-55° C. at most, and may have a fluctuating range of ±about 10° C. or more within the overall range of about 35°-70° C.
In yet another aspect, the invention provides a vaporization device for generating an inhalable aerosol comprising a unique oven configuration, wherein said oven comprises an access lid and an auxiliary aeration vent located within the airflow channel immediately downstream of the oven and before the aeration chamber. In this configuration, the user may directly access the oven by removing the access lid, providing the user with the ability to recharge the device with vaporization material.
In addition, having the added aeration vent in the airflow channel immediately after the oven and ahead of the vaporization chamber provides the user with added control over the amount of air entering the aeration chamber downstream and the cooling rate of the aerosol before it enters the aeration chamber.
As noted in
Provided herein is a method for generating an inhalable aerosol, the method comprising: providing an vaporization device, wherein said device produces a vapor comprising particle diameters of average mass of about 1 micron or less, wherein the vapor is formed by heating a vapor forming medium in an oven chamber of the device to a first temperature below the pyrolytic temperature of the vapor forming medium, and cooling the vapor in a condensation chamber to a temperature below the first temperature, before exiting an aerosol outlet of said device.
In some embodiments the vapor may be cooled by mixing relatively cooler air with the vapor in the condensation chamber during the condensation phase, after leaving the oven, where condensation of the gas phase humectants occurs more rapidly due to high saturation ratios being achieved at the moment of aeration, producing a higher concentration of smaller particles, with fewer by-products, in a denser aerosol, than would normally occur in a standard vaporization or aerosol generating device.
In some embodiments, formation of an inhalable aerosol is a two step process. The first step occurs in the oven where the tobacco or botanical and humectant blend is heated to an elevated temperature. At the elevated temperature, evaporation happens faster than at room temperature and the oven chamber fills with the vapor phase of the humectants. The humectant will continue to evaporate until the partial pressure of the humectant is equal to the saturation pressure. At this point, the gas is said to have a saturation ratio of 1 (S=Ppartial/Psat).
In the second step, the gas leaves the oven chamber, passes to a condensation chamber in a condenser and begins to cool. As the gas phase vapor cools, the saturation pressure also goes down, causing the saturation ratio to rise, and the vapor to condensate, forming droplets. When cooling air is introduced, the large temperature gradient between the two fluids mixing in a confined space leads to very rapid cooling, causing high saturation ratios, small particles, and higher concentrations of smaller particles, forming a thicker, denser vapor cloud.
Provided herein is a method for generating an inhalable aerosol comprising: a vaporization device having a body with a mouthpiece at one end, and an attached body at the other end comprising; a condenser with a condensation chamber, a heater, an oven with an oven chamber, and at least one aeration vent provided in the body, downstream of the oven, and upstream of the mouthpiece, wherein tobacco or botanical comprising a humectant is heated in said oven chamber to produce a vapor comprising gas phase humectants.
As previously described, a vaporization device having an auxiliary aeration vent located in the condensation chamber capable of supplying cool air (relative to the heated gas components) to the gas phase vapors and tobacco or botanical components exiting the oven region, may be utilized to provide a method for generating a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to about 1 micron.
In another aspect, provided herein is a method for generating an inhalable aerosol comprising: a vaporization device, having a body with a mouthpiece at one end, and an attached body at the other end comprising: a condenser with a condensation chamber, a heater, an oven with an oven chamber, wherein said oven chamber further comprises a first valve in the airflow path at the inlet end of the oven chamber, and a second valve at the outlet end of the oven chamber; and at least one aeration vent provided in said body, downstream of the oven, and upstream of the mouthpiece wherein tobacco or botanical comprising a humectant is heated in said oven chamber to produce a vapor comprising gas phase humectants.
As illustrated in exemplary
In some embodiments of any one of the inventive methods, the first, second and/or third valve is a one-way valve, a check valve, a clack valve, or a non-return valve. The first, second and/or third valve may be mechanically actuated. The first, second and/or third valve may be electronically actuated. The first, second and/or third valve may be automatically actuated. The first, second and/or third valve may be manually actuated either directly by a user or indirectly in response to an input command from a user to a control system that actuates the first, second and/or third valve.
In other aspects of the inventive methods, said device further comprises at least one of: a power source, a printed circuit board, or a temperature regulator.
In any of the preceding aspects of the inventive method, one skilled in the art will recognize after reading this disclosure that this method may be modified in a way such that any one, or each of these openings or vents could be configured to have a different combination or variation of mechanisms or electronics as described to control airflow, pressure and temperature of the vapor created and aerosol being generated by these device configurations, including a manually operated opening or vent with or without a valve.
The possible variations and ranges of aerosol density are great in that the possible number of temperature, pressure, tobacco or botanical choices and humectant selections and combinations are numerous. However, by excluding the tobacco or botanical choices and limiting the temperatures to within the ranges and the humectant ratios described herein, the inventor has demonstrated a method for generating a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to 1 micron.
In some embodiments of the inventive methods, the humectant comprises a ratio of vegetable glycerol to propylene glycol as a vapor-forming medium. The ranges of said ratio will vary between a ratio of about 100:0 vegetable glycerol to propylene glycol and a ratio of about 50:50 vegetable glycerol to propylene glycol. The difference in preferred ratios within the above stated range may vary by as little as 1, for example, said ratio may be about 99:1 vegetable glycerol to propylene glycol. However, more commonly said ratios would vary in increments of 5, for example, about 95:5 vegetable glycerol to propylene glycol; or about 85:15 vegetable glycerol to propylene glycol; or about 55:45 vegetable glycerol to propylene glycol.
Because vegetable glycerol is less volatile than propylene glycol, it will recondense in greater proportions. A humectant with higher concentrations of glycerol will generate a thicker aerosol. The addition of propylene glycol will lead to an aerosol with a reduced concentration of condensed phase particles and an increased concentration of vapor phase effluent. This vapor phase effluent is often perceived as a tickle or harshness in the throat when the aerosol is inhaled. To some consumers, varying degrees of this sensation may be desirable. The ratio of vegetable glycerol to propylene glycol may be manipulated to balance aerosol thickness with the right amount of “throat tickle.”
In a preferred embodiment of the method, the ratio for the vapor forming medium will be between the ratios of about 80:20 vegetable glycerol to propylene glycol, and about 60:40 vegetable glycerol to propylene glycol.
In a most preferred embodiment of the method, the ratio for the vapor forming medium will be about 70:30 vegetable glycerol to propylene glycol. On will envision that there will be blends with varying ratios for consumers with varying preferences.
In any of the preferred embodiments of the method, the humectant further comprises flavoring products. These flavorings include enhancers such as cocoa solids, licorice, tobacco or botanical extracts, and various sugars, to name a few.
In some embodiments of the method, the tobacco or botanical is heated to its pyrolytic temperature.
In preferred embodiments of the method, the tobacco or botanical is heated to about 300° C. at most.
In other preferred embodiments of the method, the tobacco or botanical is heated to about 200° C. at most. In still other embodiments of the method, the tobacco or botanical is heated to about 160° C. at most.
As noted previously, at these lower temperatures, (<300° C.), pyrolysis of tobacco or botanical does not typically occur, yet vapor formation of the tobacco or botanical components and flavoring products does occur. As may be inferred from the data supplied by Baker et al., an aerosol produced at these temperatures is also substantially free from Hoffman analytes or at least 70% less Hoffman analytes than a common tobacco or botanical cigarette and scores significantly better on the Ames test than a substance generated by burning a common cigarette. In addition, vapor formation of the components of the humectant, mixed at various ratios will also occur, resulting in nearly complete vaporization, depending on the temperature, since propylene glycol has a boiling point of about 180°-190° C. and vegetable glycerin will boil at approximately 280°-290° C.
In any one of the preceding methods, said inhalable aerosol produced by tobacco or a botanical comprising a humectant and heated in said oven produces an aerosol comprising gas phase humectants is further mixed with air provided through an aeration vent.
In any one of the preceding methods, said aerosol produced by said heated tobacco or botanical and humectant mixed with air, is cooled to a temperature of about 50°-70° C., and even as low as 35° C., before exiting the mouthpiece. In some embodiments, the temperature is cooled to about 35°-55° C. at most, and may have a fluctuating range of ±about 10° C. or more within the overall range of about 35°-70° C.
In some embodiments of the method, the vapor comprising gas phase humectant may be mixed with air to produce an aerosol comprising particle diameters of average mass of less than or equal to about 1 micron.
In other embodiments of the method, each aerosol configuration produced by mixing the gas phase vapors with the cool air may comprise a different range of particles, for example; with a diameter of average mass of less than or equal to about 0.9 micron; less than or equal to about 0.8 micron; less than or equal to about 0.7 micron; less than or equal to about 0.6 micron; and even an aerosol comprising particle diameters of average mass of less than or equal to about 0.5 micron.
Cartridge Design and Vapor Generation from Material in Cartridge
In some cases, a vaporization device may be configured to generate an inhalable aerosol. A device may be a self-contained vaporization device. The device may comprise an elongated body which functions to complement aspects of a separable and recyclable cartridge with air inlet channels, air passages, multiple condensation chambers, flexible heater contacts, and multiple aerosol outlets. Additionally, the cartridge may be configured for ease of manufacture and assembly.
Provided herein is a vaporization device for generating an inhalable aerosol. The device may comprise a device body, a separable cartridge assembly further comprising a heater, at least one condensation chamber, and a mouthpiece. The device provides for compact assembly and disassembly of components with detachable couplings; overheat shut-off protection for the resistive heating element; an air inlet passage (an enclosed channel) formed by the assembly of the device body and a separable cartridge; at least one condensation chamber within the separable cartridge assembly; heater contacts; and one or more refillable, reusable, and/or recyclable components.
Provided herein is a device for generating an inhalable aerosol comprising: a device body comprising a cartridge receptacle; a cartridge comprising: a storage compartment, and a channel integral to an exterior surface of the cartridge, and an air inlet passage formed by the channel and an internal surface of the cartridge receptacle when the cartridge is inserted into the cartridge receptacle. The cartridge may be formed from a metal, plastic, ceramic, and/or composite material. The storage compartment may hold a vaporizable material.
Provided herein is a device for generating an inhalable aerosol. The device may comprise a body that houses, contains, and or integrates with one or more components of the device. The device body may comprise a cartridge receptacle. The cartridge receptacle may comprise a channel integral to an interior surface of the cartridge receptacle; and an air inlet passage formed by the channel and an external surface of the cartridge when the cartridge is inserted into the cartridge receptacle. A cartridge may be fitted and/or inserted into the cartridge receptacle. The cartridge may have a fluid storage compartment. The channel may form a first side of the air inlet passage, and an external surface of the cartridge forms a second side of the air inlet passage. The channel may comprise at least one of: a groove; a trough; a track; a depression; a dent; a furrow; a trench; a crease; and a gutter. The integral channel may comprise walls that are either recessed into the surface or protrude from the surface where it is formed. The internal side walls of the channel may form additional sides of the air inlet passage. The channel may have a round, oval, square, rectangular, or other shaped cross section. The channel may have a closed cross section. The channel may be about 0.1 cm, 0.5 cm, 1 cm, 2 cm, or 5 cm wide. The channel may be about 0.1 mm, 0.5 mm, 1 mm, 2 mm, or 5 mm deep. The channel may be about 0.1 cm, 0.5 cm, 1 cm, 2 cm, or 5 cm long. There may be at least 1 channel.
In some embodiments, the cartridge may further comprise a second air passage in fluid communication with the air inlet passage to the fluid storage compartment, wherein the second air passage is formed through the material of the cartridge.
Referring to
The device body may further comprise a rechargeable battery, a printed circuit board (PCB) 24 containing a microcontroller with the operating logic and software instructions for the device, a pressure switch 27 for sensing the user's puffing action to activate the heater circuit, an indicator light 26, charging contacts (not shown), and an optional charging magnet or magnetic contact (not shown). The cartridge may further comprise a heater 36. The heater may be powered by the rechargeable battery. The temperature of the heater may be controlled by the microcontroller. The heater may be attached to a first end of the cartridge.
In some embodiments, the heater may comprise a heater chamber 37, a first pair of heater contacts 33, 33′, a fluid wick 34, and a resistive heating element 35 in contact with the wick. The first pair of heater contacts may comprise thin plates affixed about the sides of the heater chamber. The fluid wick and resistive heating element may be suspended between the heater contacts.
In some embodiments, there may be two or more resistive heating elements 35, 35′ and two or more wicks 34, 34′. In some of the embodiments, the heater contact 33 may comprise: a flat plate; a male contact; a female receptacle, or both; a flexible contact and/or copper alloy or another electrically conductive material. The first pair of heater contacts may further comprise a formed shape that may comprise a tab (e.g., flange) having a flexible spring value that extends out of the heater to complete a circuit with the device body. The first pair of heater contact may be a heat sink that absorb and dissipate excessive heat produced by the resistive heating element. Alternatively, the first pair of heater contacts may be a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element. The first pair of heater contacts may be press-fit to an attachment feature on the exterior wall of the first end of the cartridge. The heater may enclose a first end of the cartridge and a first end of the fluid storage compartment.
As illustrated in the exploded assembly of
In some cases, the cartridge (e.g., pod) is configured for ease of manufacturing and assembly. The cartridge may comprise an enclosure. The enclosure may be a tank. The tank may comprise an interior fluid storage compartment 32. The interior fluid storage compartment 32 which is open at one or both ends and comprises raised rails on the side edges 45b and 46b. The cartridge may be formed from plastic, metal, composite, and/or a ceramic material. The cartridge may be rigid or flexible.
The tank may further comprise a set of first heater contact plates 33 formed from copper alloy or another electrically conductive material, having a thin cut-out 33b below the contact tips 33a (to create a flexible tab) which are affixed to the sides of the first end of the tank and straddle the open-sided end 53 of the tank. The plates may affix to pins, or posts as shown in
As will be further clarified below, the combination of the open-sided end 53, the protruding tips 33a of the contact plates 33, the fluid wick 34 having a resistive heating element 35, enclosed in the open end of the fluid storage tank, under the heater 36, with a thin mixing zone therein, creates a efficient heater system. In addition, the primary condensation channel covers 45a which slide over the rails 45b on the sides of the tank create an integrated, easily assembled, primary condensation chamber 45, all within the heater at the first end of the cartridge 30 or pod 30a.
In some embodiments of the device, as illustrated in
Depending on the size of the heater and/or heater chamber, the heater may have more than one wick 34 and resistive heating element 35.
In some embodiments, the first pair of heater contacts 33 further comprises a formed shape that comprises a tab 33a having a flexible spring value that extends out of the heater. In some embodiments, the cartridge 30 comprises heater contacts 33 which are inserted into the cartridge receptacle 21 of the device body 20 wherein, the flexible tabs 33a insert into a second pair of heater contacts 22 to complete a circuit with the device body. The first pair of heater contacts 33 may be a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element 35. The first pair of heater contacts 33 may be a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element 35. The first pair of heater contacts may be press-fit to an attachment feature on the exterior wall of the first end of the cartridge. The heater 36 may enclose a first end of the cartridge and a first end of the fluid storage compartment 32a. The heater may comprise a first condensation chamber 45. The heater may comprise at least one additional condensation chamber 45, 45′, 45″, etc. The first condensation chamber may be formed along an exterior wall of the cartridge.
In still other embodiments of the device, the cartridge may further comprise a mouthpiece 31, wherein the mouthpiece comprises at least one aerosol outlet channel/secondary condensation chamber 46; and at least one aerosol outlet 47. The mouthpiece may be attached to a second end of the cartridge. The second end of the cartridge with the mouthpiece may be exposed when the cartridge is inserted in the device. The mouthpiece may comprise more than one second condensation chamber 46, 46′, 46″, etc. The second condensation chamber is formed along an exterior wall of the cartridge.
The mouthpiece 31 may enclose the second end of the cartridge and interior fluid storage compartment. The partially assembled (e.g., mouthpiece removed) unit may be inverted and filled with a vaporizable fluid through the opposite, remaining (second) open end. Once filled, a snap-on mouthpiece 31 that also closes and seals the second end of the tank is inserted over the end. It also comprises raised internal edges (not shown), and aerosol outlet channel covers 46a that may slide over the rails 46b located on the sides of the second half of the tank, creating aerosol outlet channels/secondary condensation chambers 46. The aerosol outlet channels/secondary condensation chambers 46 slide over the end of primary condensation chamber 45, at a transition area 57, to create a junction for the vapor leaving the primary chamber and proceed out through the aerosol outlets 47, at the end of the aerosol outlet channels 46 and user-end of the mouthpiece 31.
The cartridge may comprise a first condensation chamber and a second condensation chamber 45, 46. The cartridge may comprise more than one first condensation chamber and more than one second condensation chamber 45, 46, 45′, 46′, etc.
In some embodiments of the device, a first condensation chamber 45 may be formed along the outside of the cartridge fluid storage compartment 31. In some embodiments of the device an aerosol outlet 47 exists at the end of aerosol outlet chamber 46. In some embodiments of the device, a first and second condensation chamber 45, 46 may be formed along the outside of one side of the cartridge fluid storage compartment 31. In some embodiments the second condensation chamber may be an aerosol outlet chamber. In some embodiments another pair of first and/or second condensation chambers 45′, 46′ is formed along the outside of the cartridge fluid storage compartment 31 on another side of the device. In some embodiments another aerosol outlet 47′ will also exist at the end of the second pair of condensation chambers 45′, 46′.
In any one of the embodiments, the first condensation chamber and the second condensation chamber may be in fluid communication as illustrated in
In some embodiments, the mouthpiece may comprise an aerosol outlet 47 in fluid communication with the second condensation chamber 46. The mouthpiece may comprise more than one aerosol outlet 47, 47′ in fluid communication with more than one the second condensation chamber 46, 46′. The mouthpiece may enclose a second end of the cartridge and a second end of the fluid storage compartment.
In each of the embodiments described herein, the cartridge may comprise an airflow path comprising: an air inlet passage; a heater; at least a first condensation chamber; an aerosol outlet chamber, and an outlet port. In some of the embodiments described herein, the cartridge comprises an airflow path comprising: an air inlet passage; a heater; a first condensation chamber; a secondary condensation chamber; and an outlet port.
In still other embodiments described herein the cartridge may comprise an airflow path comprising at least one air inlet passage; a heater; at least one first condensation chamber; at least one secondary condensation chamber; and at least one outlet port.
As illustrated in
As illustrated in
Alternatively, the device may have an airflow path comprising: an air inlet passage 50, 51; a second air passage 41; a heater chamber 37; a first condensation chamber 45; a second condensation chamber 46; and/or an aerosol outlet 47.
In some cases, the devise may have an airflow path comprising: more than one air inlet passage; more than one second air passage; a heater chamber; more than one first condensation chamber; more than one second condensation chamber; and more than one aerosol outlet as clearly illustrated in
In any one of the embodiments described herein, the heater 36 may be in fluid communication with the internal fluid storage compartment 32a.
In each of the embodiments described herein, the fluid storage compartment 32 is in fluid communication with the heater chamber 37, wherein the fluid storage compartment is capable of retaining condensed aerosol fluid, as illustrated in
In some embodiments of the device, the condensed aerosol fluid may comprise a nicotine formulation. In some embodiments, the condensed aerosol fluid may comprise a humectant. In some embodiments, the humectant may comprise propylene glycol. In some embodiments, the humectant may comprise vegetable glycerin.
In some cases, the cartridge may be detachable from the device body. In some embodiments, the cartridge receptacle and the detachable cartridge may form a separable coupling. In some embodiments the separable coupling may comprise a friction assembly. As illustrated in
In other embodiments, the separable coupling may comprise a snap-fit or snap-lock assembly. In still other embodiments the separable coupling may comprise a magnetic assembly.
In any one of the embodiments described herein, the cartridge components may comprise a snap-fit or snap-lock assembly, as illustrated in
In some embodiments of the device 10, the cartridge 30 may comprise: a fluid storage compartment 32; a heater 36 affixed to a first end with a snap-fit coupling 39a, 39b; and a mouthpiece 31 affixed to a second end with a snap-fit coupling 39c, 39d (not shown—but similar to 39a and 39b). The heater 36 may be in fluid communication with the fluid storage compartment 32. The fluid storage compartment may be capable of retaining condensed aerosol fluid. The condensed aerosol fluid may comprise a nicotine formulation. The condensed aerosol fluid may comprise a humectant. The humectant may comprise propylene glycol and/or vegetable glycerin.
Provided herein is a device for generating an inhalable aerosol comprising: a device body 20 comprising a cartridge receptacle 21 for receiving a cartridge 30; wherein an interior surface of the cartridge receptacle forms a first side of an air inlet passage 51 when a cartridge comprising a channel integral 40 to an exterior surface is inserted into the cartridge receptacle 21, and wherein the channel forms a second side of the air inlet passage 51.
Provided herein is a device for generating an inhalable aerosol comprising: a device body 20 comprising a cartridge receptacle 21 for receiving a cartridge 30; wherein the cartridge receptacle comprises a channel integral to an interior surface and forms a first side of an air inlet passage when a cartridge is inserted into the cartridge receptacle, and wherein an exterior surface of the cartridge forms a second side of the air inlet passage 51.
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising: a fluid storage compartment 32; a channel integral 40 to an exterior surface, wherein the channel forms a first side of an air inlet passage 51; and wherein an internal surface of a cartridge receptacle 21 in the device forms a second side of the air inlet passage 51 when the cartridge is inserted into the cartridge receptacle.
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising a fluid storage compartment 32, wherein an exterior surface of the cartridge forms a first side of an air inlet channel 51 when inserted into a device body 10 comprising a cartridge receptacle 21, and wherein the cartridge receptacle further comprises a channel integral to an interior surface, and wherein the channel forms a second side of the air inlet passage 51.
In some embodiments, the cartridge further comprises a second air passage 41 in fluid communication with the channel 40, wherein the second air passage 41 is formed through the material of the cartridge 32 from an exterior surface of the cartridge to the internal fluid storage compartment 32a.
In some embodiments of the device body cartridge receptacle 21 or the cartridge 30, the integral channel 40 comprises at least one of: a groove; a trough; a depression; a dent; a furrow; a trench; a crease; and a gutter.
In some embodiments of the device body cartridge receptacle 21 or the cartridge 30, the integral channel 40 comprises walls that are either recessed into the surface or protrude from the surface where it is formed.
In some embodiments of the device body cartridge receptacle 21 or the cartridge 30, the internal side walls of the channel 40 form additional sides of the air inlet passage 51.
Provided herein is a device for generating an inhalable aerosol comprising: a cartridge comprising; a fluid storage compartment; a heater affixed to a first end comprising; a first heater contact, a resistive heating element affixed to the first heater contact; a device body comprising; a cartridge receptacle for receiving the cartridge; a second heater contact adapted to receive the first heater contact and to complete a circuit; a power source connected to the second heater contact; a printed circuit board (PCB) connected to the power source and the second heater contact; wherein the PCB is configured to detect the absence of fluid based on the measured resistance of the resistive heating element, and turn off the device.
Referring now to
In some embodiments, the printed circuit board (PCB) further comprises: a microcontroller; switches; circuitry comprising a reference resister; and an algorithm comprising logic for control parameters; wherein the microcontroller cycles the switches at fixed intervals to measure the resistance of the resistive heating element relative to the reference resistor, and applies the algorithm control parameters to control the temperature of the resistive heating element.
As illustrated in the basic block diagram of
In some embodiments, the micro-controller instructs the device to turn itself off when the resistance exceeds the control parameter threshold indicating that the resistive heating element is dry.
In still other embodiments, the printed circuit board further comprises logic capable of detecting the presence of condensed aerosol fluid in the fluid storage compartment and is capable of turning off power to the heating contact(s) when the condensed aerosol fluid is not detected. When the microcontroller is running the PID temperature control algorithm 70, the difference between a set point and the coil temperature (error) is used to control power to the coil so that the coil quickly reaches the set point temperature, [between 200° C. and 400° C.]. When the over-temperature algorithm is used, power is constant until the coil reaches an over-temperature threshold, [between 200° C. and 400° C.]; (
The essential components of the device used to control the resistive heating element coil temperature are further illustrated in the circuit diagram of
The battery powers the microcontroller. The microcontroller turns on Q2 for 1 ms every 100 ms so that the voltage between R REF and R_COIL (a voltage divider) may be measured by the MCU at V_MEAS. When Q2 is off, the control law controls Q1 with PWM (pulse width modulation) to power the coil (battery discharges through Q1 and R_COIL when Q1 is on).
In some embodiments of the device, the device body further comprises at least one: second heater contact; a power switch; a pressure sensor; and an indicator light.
In some embodiments of the device body, the second heater contact 22 may comprise: a female receptacle; or a male contact, or both, a flexible contact; or copper alloy or another electrically conductive material.
In some embodiments of the device body, the battery supplies power to the second heater contact, pressure sensor, indicator light and the printed circuit board. In some embodiments, the battery is rechargeable. In some embodiments, the indicator light 26 indicates the status of the device and/or the battery or both.
In some embodiments of the device, the first heater contact and the second heater contact complete a circuit that allows current to flow through the heating contacts when the device body and detachable cartridge are assembled, which may be controlled by an on/off switch. Alternatively, the device can be turned on an off by a puff sensor. The puff sensor may comprise a capacitive membrane. The capacitive membrane may be similar to a capacitive membrane used in a microphone.
In some embodiments of the device, there is also an auxiliary charging unit for recharging the battery 23 in the device body. As illustrated in
In some cases the microcontroller on the PCB may be configured to monitor the temperature of the heater such that the vaporizable material is heated to a prescribed temperature. The prescribed temperature may be an input provided by the user. A temperature sensor may be in communication with the microcontroller to provide an input temperature to the microcontroller for temperature regulation. A temperature sensor may be a thermistor, thermocouple, thermometer, or any other temperature sensors. In some cases, the heating element may simultaneously perform as both a heater and a temperature sensor. The heating element may differ from a thermistor by having a resistance with a relatively lower dependence on temperature. The heating element may comprise a resistance temperature detector.
The resistance of the heating element may be an input to the microcontroller. In some cases, the resistance may be determined by the microcontroller based on a measurement from a circuit with a resistor with at least one known resistance, for example, a Wheatstone bridge. Alternatively, the resistance of the heating element may be measured with a resistive voltage divider in contact with the heating element and a resistor with a known and substantially constant resistance. The measurement of the resistance of the heating element may be amplified by an amplifier. The amplifier may be a standard op amp or instrumentation amplifier. The amplified signal may be substantially free of noise. In some cases, a charge time for a voltage divider between the heating element and a capacitor may be determined to calculate the resistance of the heating element. In some cases, the microcontroller must deactivate the heating element during resistance measurements. The resistance of the heating element may be directly proportional to the temperature of the heating element such that the temperature may be directly determine from the resistance measurement. Determining the temperature directly from the heating element resistance measurement rather than from an additional temperature sensor may generate a more accurate measurement because unknown contact thermal resistance between the temperature sensor and the heating element is eliminated. Additionally, the temperature measurement may be determined directly and therefore faster and without a time lag associated with attaining equilibrium between the heating element and a temperature sensor in contact with the heating element.
Provided herein is a device for generating an inhalable aerosol comprising: a cartridge comprising a first heater contact; a device body comprising; a cartridge receptacle for receiving the cartridge; a second heater contact adapted to receive the first heater contact and to complete a circuit; a power source connected to the second heater contact; a printed circuit board (PCB) connected to the power source and the second heater contact; and a single button interface; wherein the PCB is configured with circuitry and an algorithm comprising logic for a child safety feature.
In some embodiments, the algorithm requires a code provided by the user to activate the device. In some embodiments; the code is entered by the user with the single button interface. In still further embodiments the single button interface is the also the power switch.
Provided herein is a cartridge 30 for a device 10 for generating an inhalable aerosol comprising: a fluid storage compartment 32; a heater 36 affixed to a first end comprising: a heater chamber 37, a first pair of heater contacts 33, a fluid wick 34, and a resistive heating element 35 in contact with the wick; wherein the first pair of heater contacts 33 comprise thin plates affixed about the sides of the heater chamber 37, and wherein the fluid wick 34 and resistive heating element 35 are suspended therebetween.
Depending on the size of the heater or heater chamber, the heater may have more than one wick 34, 34′ and resistive heating element 35, 35′.
In some embodiments, the first pair of heater contacts further comprise a formed shape that comprises a tab 33a having a flexible spring value that extends out of the heater 36 to complete a circuit with the device body 20.
In some embodiments, the heater contacts 33 are configured to mate with a second pair of heater contacts 22 in a cartridge receptacle 21 of the device body 20 to complete a circuit.
In some embodiments, the first pair of heater contacts is also a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element.
In some embodiments, the first pair of heater contacts is a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element.
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising: a heater 36 comprising; a heater chamber 37, a pair of thin plate heater contacts 33 therein, a fluid wick 34 positioned between the heater contacts 33, and a resistive heating element 35 in contact with the wick; wherein the heater contacts 33 each comprise a fixation site 33c wherein the resistive heating element 35 is tensioned therebetween.
As will be obvious to one skilled in the art after reviewing the assembly method illustrated in
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising a heater 36 attached to a first end of the cartridge.
In some embodiments, the heater encloses a first end of the cartridge and a first end of the fluid storage compartment 32, 32a.
In some embodiments, the heater comprises a first condensation chamber 45.
In some embodiments, the heater comprises more than one first condensation chamber 45, 45′.
In some embodiments, the condensation chamber is formed along an exterior wall of the cartridge 45b.
As noted previously, and described in
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising a fluid storage compartment 32 and a mouthpiece 31, wherein the mouthpiece is attached to a second end of the cartridge and further comprises at least one aerosol outlet 47.
In some embodiments, the mouthpiece 31 encloses a second end of the cartridge 30 and a second end of the fluid storage compartment 32, 32a.
Additionally, as clearly illustrated in
In other embodiments, the mouthpiece comprises more than one second condensation chamber 46, 46′.
In some preferred embodiments, the second condensation chamber is formed along an exterior wall of the cartridge 46b.
In each of the embodiments described herein, the cartridge 30 comprises an airflow path comprising: an air inlet channel and passage 40, 41, 42; a heater chamber 37; at least a first condensation chamber 45; and an outlet port 47. In some of the embodiments described herein, the cartridge 30 comprises an airflow path comprising: an air inlet channel and passage 40, 41, 42; a heater chamber 37; a first condensation chamber 45; a second condensation chamber 46; and an outlet port 47.
In still other embodiments described herein the cartridge 30 may comprise an airflow path comprising at least one air inlet channel and passage 40, 41, 42; a heater chamber 37; at least one first condensation chamber 45; at least one second condensation chamber 46; and at least one outlet port 47.
In each of the embodiments described herein, the fluid storage compartment 32 is in fluid communication with the heater 36, wherein the fluid storage compartment is capable of retaining condensed aerosol fluid.
In some embodiments of the device, the condensed aerosol fluid comprises a nicotine formulation. In some embodiments, the condensed aerosol fluid comprises a humectant. In some embodiments, the humectant comprises propylene glycol. In some embodiments, the humectant comprises vegetable glycerin.
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising: a fluid storage compartment 32; a heater 36 affixed to a first end; and a mouthpiece 31 affixed to a second end; wherein the heater comprises a first condensation chamber 45 and the mouthpiece comprises a second condensation chamber 46.
In some embodiments, the heater comprises more than one first condensation chamber 45, 45′ and the mouthpiece comprises more than one second condensation chamber 46, 46′.
In some embodiments, the first condensation chamber and the second condensation chamber are in fluid communication. As illustrated in
In some embodiments, the mouthpiece comprises an aerosol outlet 47 in fluid communication with the second condensation chamber 46.
In some embodiments, the mouthpiece comprises two or more aerosol outlets 47, 47′.
In some embodiments, the mouthpiece comprises two or more aerosol outlets 47, 47′ in fluid communication with the two or more second condensation chambers 46, 46′.
In any one of the embodiments, the cartridge meets ISO recycling standards.
In any one of the embodiments, the cartridge meets ISO recycling standards for plastic waste.
And in still other embodiments, the plastic components of the cartridge are composed of polylactic acid (PLA), wherein the PLA components are compostable and or degradable.
Provided herein is a device for generating an inhalable aerosol 10 comprising a device body 20 comprising a cartridge receptacle 21; and a detachable cartridge 30; wherein the cartridge receptacle and the detachable cartridge form a separable coupling, and wherein the separable coupling comprises a friction assembly, a snap-fit assembly or a magnetic assembly.
In other embodiments of the device, the cartridge is a detachable assembly. In any one of the embodiments described herein, the cartridge components may comprise a snap-lock assembly such as illustrated by snap features 39a and 39b. In any one of the embodiments, the cartridge components are recyclable.
Provided herein is a method of fabricating a device for generating an inhalable aerosol comprising: providing a device body comprising a cartridge receptacle; and providing a detachable cartridge; wherein the cartridge receptacle and the detachable cartridge form a separable coupling comprising a friction assembly, a snap-fit assembly or a magnetic assembly when the cartridge is inserted into the cartridge receptacle.
Provided herein is a method of making a device 10 for generating an inhalable aerosol comprising: providing a device body 20 with a cartridge receptacle 21 comprising one or more interior coupling surfaces 21a, 21b, 21c . . . ; and further providing a cartridge 30 comprising: one or more exterior coupling surfaces 36a, 36b, 36c, . . . , a second end and a first end; a tank 32 comprising an interior fluid storage compartment 32a; at least one channel 40 on at least one exterior coupling surface, wherein the at least one channel forms one side of at least one air inlet passage 51, and wherein at least one interior wall of the cartridge receptacle forms at least one side one side of at least one air inlet passage 51 when the detachable cartridge is inserted into the cartridge receptacle.
In some embodiments of the method, the cartridge 30 is assembled with a [protective] removable end cap 38 to protect the exposed heater contact tabs 33a protruding from the heater 36.
Provided herein is a method of fabricating a cartridge for a device for generating an inhalable aerosol comprising: providing a fluid storage compartment; affixing a heater to a first end with a snap-fit coupling; and affixing a mouthpiece to a second end with a snap-fit coupling.
Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 with an airflow path comprising: a channel 50 comprising a portion of an air inlet passage 51; a second air passage 41 in fluid communication with the channel; a heater chamber 37 in fluid communication with the second air passage; a first condensation chamber 45 in fluid communication with the heater chamber; a second condensation chamber 46 in fluid communication with the first condensation chamber; and an aerosol outlet 47 in fluid communication with second condensation chamber.
Provided herein is a device 10 for generating an inhalable aerosol adapted to receive a removable cartridge 30, wherein the cartridge comprises a fluid storage compartment [or tank] 32; an air inlet 41; a heater 36, a [protective] removable end cap 38, and a mouthpiece 31.
Charging
In some cases, the vaporization device may comprise a power source. The power source may be configured to provide power to a control system, one or more heating elements, one or more sensors, one or more lights, one or more indicators, and/or any other system on the electronic cigarette that requires a power source. The power source may be an energy storage device. The power source may be a battery or a capacitor. In some cases, the power source may be a rechargeable battery.
The battery may be contained within a housing of the device. In some cases the battery may be removed from the housing for charging. Alternatively, the battery may remain in the housing while the battery is being charged. Two or more charge contact may be provided on an exterior surface of the device housing. The two or more charge contacts may be in electrical communication with the battery such that the battery may be charged by applying a charging source to the two or more charge contacts without removing the battery from the housing.
A user may place the electronic smoking device in a charging cradle. The charging cradle may be a holder with charging contact configured to mate or couple with the charging pins on the electronic smoking device to provide charge to the energy storage device in the electronic vaporization device from a power source (e.g., wall outlet, generator, and/or external power storage device).
As shown in
In some cases the charging cradle may be configured to be a smart charger. The smart charger may put the battery of the device in series with a USB input to charge the device at a higher current compared to a typical charging current. In some cases, the device may charge at a rate up to about 2 amps (A), 4 A, 5 A, 6 A, 7 A, 10 A, or 15 A. In some cases, the smart charger may comprise a battery, power from the battery may be used to charge the device battery. When the battery in the smart charger has a charge below a predetermined threshold charge, the smart charger may simultaneously charge the battery in the smart charger and the battery in the device.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is a continuation of U.S. patent application Ser. No. 14/581,666, filed Dec. 23, 2014 and entitled “VAPORIZATION DEVICE SYSTEMS AND METHODS”, which claims priority to U.S. Provisional Patent Application Ser. No. 61/936,593, filed Feb. 6, 2014, and U.S. Provisional Patent Application Ser. No. 61/937,755, filed Feb. 10, 2014, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
D143295 | Fisher | Dec 1945 | S |
3085145 | Wray, Jr. | Apr 1963 | A |
3271719 | Smith, Jr. | Sep 1966 | A |
3918451 | Steil | Nov 1975 | A |
3934117 | Schladitz | Jan 1976 | A |
4171000 | Uhle | Oct 1979 | A |
D260690 | Stutzer | Sep 1981 | S |
D267590 | Varma | Jan 1983 | S |
4492480 | Wadso et al. | Jan 1985 | A |
D280494 | Abel | Sep 1985 | S |
4548454 | Zeller et al. | Oct 1985 | A |
4745705 | Yamamoto et al. | May 1988 | A |
D299066 | Newell et al. | Dec 1988 | S |
4793365 | Sensabaugh, Jr. et al. | Dec 1988 | A |
4811731 | Newell et al. | Mar 1989 | A |
D303722 | Marlow et al. | Sep 1989 | S |
4947874 | Brooks et al. | Aug 1990 | A |
4947875 | Brooks et al. | Aug 1990 | A |
D310349 | Rowen | Sep 1990 | S |
4993436 | Bloom, Jr. | Feb 1991 | A |
5042509 | Banerjee et al. | Aug 1991 | A |
5117482 | Hauber | May 1992 | A |
5144962 | Counts et al. | Sep 1992 | A |
D336346 | Miller et al. | Jun 1993 | S |
5259786 | Huang | Nov 1993 | A |
5261424 | Sprinkel, Jr. | Nov 1993 | A |
5269327 | Counts et al. | Dec 1993 | A |
H001271 | Shouse | Jan 1994 | H |
5345951 | Serrano et al. | Sep 1994 | A |
5479948 | Counts et al. | Jan 1996 | A |
D368552 | Adams | Apr 1996 | S |
D371633 | Chenard | Jul 1996 | S |
D379810 | Giordano, Jr. et al. | Jun 1997 | S |
D382146 | Sandy | Aug 1997 | S |
5661329 | Hiramoto et al. | Aug 1997 | A |
5682050 | Williams | Oct 1997 | A |
D397504 | Zelenik | Aug 1998 | S |
D398150 | Vonarburg | Sep 1998 | S |
D405007 | Naas, Sr. | Feb 1999 | S |
D405413 | Segers | Feb 1999 | S |
5865185 | Collins et al. | Feb 1999 | A |
D411332 | Zelenik | Jun 1999 | S |
D412279 | Brice | Jul 1999 | S |
D422884 | Lafond | Apr 2000 | S |
D424236 | Reed | May 2000 | S |
6090082 | King et al. | Jul 2000 | A |
D433532 | Higgins et al. | Nov 2000 | S |
6155268 | Takeuchi | Dec 2000 | A |
6196218 | Voges | Mar 2001 | B1 |
6203339 | Nieminen | Mar 2001 | B1 |
6283610 | Alajajian | Sep 2001 | B1 |
D450313 | Koinuma | Nov 2001 | S |
D450662 | Kwok | Nov 2001 | S |
6516796 | Cox et al. | Feb 2003 | B1 |
D478569 | Hussaini et al. | Aug 2003 | S |
D478897 | Tsuge | Aug 2003 | S |
6637430 | Voges et al. | Oct 2003 | B1 |
6708846 | Fuchs et al. | Mar 2004 | B1 |
6743030 | Lin et al. | Jun 2004 | B2 |
6772756 | Shayan | Aug 2004 | B2 |
D500301 | Deguchi | Dec 2004 | S |
D500302 | Deguchi | Dec 2004 | S |
D505922 | Mayo et al. | Jun 2005 | S |
D506447 | Mayo et al. | Jun 2005 | S |
D506731 | Mayo et al. | Jun 2005 | S |
6909840 | Harwig et al. | Jun 2005 | B2 |
D507244 | Mayo et al. | Jul 2005 | S |
7019491 | Bozzone et al. | Mar 2006 | B2 |
D523171 | Mitten et al. | Jun 2006 | S |
D525948 | Blair et al. | Aug 2006 | S |
D528992 | Hobart et al. | Sep 2006 | S |
D529044 | Andre et al. | Sep 2006 | S |
D530340 | Andre et al. | Oct 2006 | S |
D531190 | Lee et al. | Oct 2006 | S |
D532927 | Sann | Nov 2006 | S |
D534921 | Andre et al. | Jan 2007 | S |
D535261 | Daniels | Jan 2007 | S |
D535308 | Andre et al. | Jan 2007 | S |
7173222 | Cox et al. | Feb 2007 | B2 |
D539813 | Chen | Apr 2007 | S |
D540749 | Kaule | Apr 2007 | S |
7214075 | He et al. | May 2007 | B2 |
D545303 | Chang | Jun 2007 | S |
D545490 | Tai | Jun 2007 | S |
D545904 | Chen et al. | Jul 2007 | S |
D546782 | Poulet et al. | Jul 2007 | S |
7275941 | Bushby | Oct 2007 | B1 |
D556154 | Poulet et al. | Nov 2007 | S |
D557209 | Ahlgren et al. | Dec 2007 | S |
D558060 | Sir et al. | Dec 2007 | S |
7318435 | Pentafragas | Jan 2008 | B2 |
D566709 | Kim et al. | Apr 2008 | S |
D568298 | Lundgren et al. | May 2008 | S |
D571556 | Raile | Jun 2008 | S |
D573474 | Beam et al. | Jul 2008 | S |
D576619 | Udagawa et al. | Sep 2008 | S |
D577019 | Udagawa et al. | Sep 2008 | S |
D577150 | Bryman et al. | Sep 2008 | S |
D579934 | Okamoto et al. | Nov 2008 | S |
D585077 | Sheba et al. | Jan 2009 | S |
D589941 | Maier et al. | Apr 2009 | S |
D591758 | Lee | May 2009 | S |
D607403 | Hara et al. | Jan 2010 | S |
7646613 | Ligtenberg et al. | Jan 2010 | B2 |
D610588 | Chen | Feb 2010 | S |
D611409 | Green et al. | Mar 2010 | S |
D616753 | Beam et al. | Jun 2010 | S |
7726320 | Robinson et al. | Jun 2010 | B2 |
7793861 | Bankers et al. | Sep 2010 | B2 |
7802569 | Yeates et al. | Sep 2010 | B2 |
D624880 | Felegy, Jr. et al. | Oct 2010 | S |
D631055 | Gilbert et al. | Jan 2011 | S |
D631458 | Liao et al. | Jan 2011 | S |
D631885 | Maier | Feb 2011 | S |
D634735 | Maier | Mar 2011 | S |
7905236 | Bryman et al. | Mar 2011 | B2 |
7913688 | Cross et al. | Mar 2011 | B2 |
D639303 | Ni et al. | Jun 2011 | S |
D639782 | Kim | Jun 2011 | S |
D641718 | Sakai | Jul 2011 | S |
D645817 | Sasada et al. | Sep 2011 | S |
D647247 | Jones | Oct 2011 | S |
D649708 | Oneil | Nov 2011 | S |
D649932 | Symons | Dec 2011 | S |
D656496 | Andre et al. | Mar 2012 | S |
D661991 | Brummelhuis et al. | Jun 2012 | S |
D664636 | Robinson et al. | Jul 2012 | S |
D669530 | Hung | Oct 2012 | S |
D670659 | Ishikawa et al. | Nov 2012 | S |
D674748 | Ferber et al. | Jan 2013 | S |
D676741 | van Landsveld et al. | Feb 2013 | S |
D681445 | van Landsveld et al. | May 2013 | S |
D682841 | Suetake et al. | May 2013 | S |
D686987 | Vanstone et al. | Jul 2013 | S |
D687042 | Yoneta et al. | Jul 2013 | S |
8485099 | Skidmore et al. | Jul 2013 | B2 |
8485180 | Smutney et al. | Jul 2013 | B2 |
8495998 | Schennum | Jul 2013 | B2 |
8499766 | Newton | Aug 2013 | B1 |
8522776 | Wright et al. | Sep 2013 | B2 |
D695450 | Benassayag et al. | Dec 2013 | S |
D700572 | Esses | Mar 2014 | S |
D703679 | Chen | Apr 2014 | S |
D704629 | Liu | May 2014 | S |
D704634 | Eidelman et al. | May 2014 | S |
D705918 | Robinson et al. | May 2014 | S |
D707389 | Liu | Jun 2014 | S |
D707688 | Wu | Jun 2014 | S |
8752545 | Buchberger | Jun 2014 | B2 |
D708727 | Postma | Jul 2014 | S |
D711389 | Sun et al. | Aug 2014 | S |
D711891 | Emami et al. | Aug 2014 | S |
D712347 | Awiszus et al. | Sep 2014 | S |
8833364 | Buchberger | Sep 2014 | B2 |
8881738 | Bryman | Nov 2014 | B2 |
8893726 | Hon | Nov 2014 | B2 |
D718723 | Clymer et al. | Dec 2014 | S |
D718933 | Brown, Jr. | Dec 2014 | S |
D720095 | Alima | Dec 2014 | S |
D721202 | Liu | Jan 2015 | S |
D723735 | Liu | Mar 2015 | S |
D723736 | Liu | Mar 2015 | S |
D723737 | Liu | Mar 2015 | S |
D724037 | Yoshioka | Mar 2015 | S |
D725310 | Eksouzian | Mar 2015 | S |
D725821 | Levin et al. | Mar 2015 | S |
8991402 | Bowen et al. | Mar 2015 | B2 |
D726727 | Holz et al. | Apr 2015 | S |
9010335 | Scatterday | Apr 2015 | B1 |
D728855 | Liu | May 2015 | S |
D729277 | Uchida | May 2015 | S |
D729444 | Leidel | May 2015 | S |
D729445 | Leidel | May 2015 | S |
D730571 | Chen | May 2015 | S |
D730572 | Leidel | May 2015 | S |
D731114 | Leidel | Jun 2015 | S |
D732733 | Spagnolo et al. | Jun 2015 | S |
D733356 | Leidel | Jun 2015 | S |
9072321 | Liu | Jul 2015 | B2 |
D737508 | Liu | Aug 2015 | S |
9101729 | Liu | Aug 2015 | B2 |
D738038 | Smith | Sep 2015 | S |
D739973 | Chao | Sep 2015 | S |
9132248 | Qiu | Sep 2015 | B2 |
9167849 | Adamic | Oct 2015 | B2 |
D742492 | Robinson et al. | Nov 2015 | S |
D743099 | Oglesby | Nov 2015 | S |
D744342 | Blasko et al. | Dec 2015 | S |
D745004 | Kim | Dec 2015 | S |
9220302 | DePiano et al. | Dec 2015 | B2 |
9247773 | Memari et al. | Feb 2016 | B2 |
D752284 | Doster | Mar 2016 | S |
9271529 | Alima | Mar 2016 | B2 |
9282772 | Tucker et al. | Mar 2016 | B2 |
9289014 | Tucker et al. | Mar 2016 | B2 |
D753090 | Langhammer et al. | Apr 2016 | S |
D755733 | Ikegaya et al. | May 2016 | S |
D755735 | Kashimoto | May 2016 | S |
D756032 | Chen | May 2016 | S |
D757690 | Lee et al. | May 2016 | S |
9345541 | Greeley et al. | May 2016 | B2 |
D759031 | Ozolins et al. | Jun 2016 | S |
D760431 | Liu | Jun 2016 | S |
9364800 | Dubief | Jun 2016 | B2 |
9386805 | Liu | Jul 2016 | B2 |
D763203 | Ikegaya et al. | Aug 2016 | S |
D763204 | Ikegaya et al. | Aug 2016 | S |
9408416 | Monsees et al. | Aug 2016 | B2 |
9414629 | Egoyants et al. | Aug 2016 | B2 |
9420829 | Thorens et al. | Aug 2016 | B2 |
9423152 | Ampolini et al. | Aug 2016 | B2 |
9427022 | Levin et al. | Aug 2016 | B2 |
D766873 | Washio | Sep 2016 | S |
D768920 | Jones et al. | Oct 2016 | S |
D769830 | Clymer et al. | Oct 2016 | S |
D770395 | Clymer et al. | Nov 2016 | S |
D773114 | Leidel et al. | Nov 2016 | S |
9498588 | Benassayag et al. | Nov 2016 | B2 |
9504279 | Chen | Nov 2016 | B2 |
D773727 | Eksouzian | Dec 2016 | S |
D774514 | Turksu et al. | Dec 2016 | S |
9510623 | Tucker et al. | Dec 2016 | B2 |
9516899 | Plojoux et al. | Dec 2016 | B2 |
9526273 | Liu | Dec 2016 | B2 |
D776338 | Lomeli | Jan 2017 | S |
9549573 | Monsees et al. | Jan 2017 | B2 |
D779677 | Chen | Feb 2017 | S |
D779719 | Qiu | Feb 2017 | S |
D780179 | Bae et al. | Feb 2017 | S |
9609893 | Novak, III et al. | Apr 2017 | B2 |
9675109 | Monsees et al. | Jun 2017 | B2 |
D793004 | Liu | Jul 2017 | S |
9714878 | Powers et al. | Jul 2017 | B2 |
9723876 | Cadieux et al. | Aug 2017 | B2 |
9723877 | Wong et al. | Aug 2017 | B2 |
9772245 | Besling et al. | Sep 2017 | B2 |
D799746 | Leidel et al. | Oct 2017 | S |
D800132 | Maus et al. | Oct 2017 | S |
9781953 | Verleur et al. | Oct 2017 | B2 |
9795168 | Zhu | Oct 2017 | B2 |
9801413 | Zhu | Oct 2017 | B2 |
D802206 | Huang et al. | Nov 2017 | S |
D802838 | Clark et al. | Nov 2017 | S |
9814263 | Cochand et al. | Nov 2017 | B2 |
9814265 | Rinker et al. | Nov 2017 | B2 |
D806311 | Smith | Dec 2017 | S |
9844234 | Thorens et al. | Dec 2017 | B2 |
D808073 | Leidel | Jan 2018 | S |
9861135 | Chen | Jan 2018 | B2 |
D811003 | Folyan | Feb 2018 | S |
D815346 | Bagai | Apr 2018 | S |
9974743 | Rose et al. | May 2018 | B2 |
D819881 | Qiu | Jun 2018 | S |
D822896 | Durand | Jul 2018 | S |
D825102 | Bowen et al. | Aug 2018 | S |
10039321 | Verleur et al. | Aug 2018 | B2 |
10045568 | Monsees et al. | Aug 2018 | B2 |
10058122 | Steingraber et al. | Aug 2018 | B2 |
10058124 | Monsees et al. | Aug 2018 | B2 |
10058129 | Monsees et al. | Aug 2018 | B2 |
10085481 | Verleur et al. | Oct 2018 | B2 |
10092713 | Terry et al. | Oct 2018 | B2 |
10104915 | Bowen et al. | Oct 2018 | B2 |
10111470 | Monsees et al. | Oct 2018 | B2 |
D834702 | Evans et al. | Nov 2018 | S |
10117465 | Monsees et al. | Nov 2018 | B2 |
10117466 | Monsees et al. | Nov 2018 | B2 |
10130123 | Hatton et al. | Nov 2018 | B2 |
D836190 | Evans et al. | Dec 2018 | S |
D836831 | Cividi | Dec 2018 | S |
D836834 | Cividi | Dec 2018 | S |
10143233 | Dubief et al. | Dec 2018 | B2 |
10195345 | Senior et al. | Feb 2019 | B2 |
10195370 | Chen | Feb 2019 | B2 |
D842237 | Qiu et al. | Mar 2019 | S |
D844235 | Cividi | Mar 2019 | S |
D845964 | Kim et al. | Apr 2019 | S |
10264823 | Monsees et al. | Apr 2019 | B2 |
20020043262 | Langford et al. | Apr 2002 | A1 |
20020088469 | Rennecamp | Jul 2002 | A1 |
20030033055 | McRae et al. | Feb 2003 | A1 |
20030096542 | Kojima | May 2003 | A1 |
20030150451 | Shayan | Aug 2003 | A1 |
20030226837 | Blake et al. | Dec 2003 | A1 |
20040050382 | Goodchild | Mar 2004 | A1 |
20040099266 | Cross et al. | May 2004 | A1 |
20050029137 | Wang | Feb 2005 | A1 |
20050134215 | Bozzone et al. | Jun 2005 | A1 |
20050252511 | Pentafragas | Nov 2005 | A1 |
20060141344 | Chen et al. | Jun 2006 | A1 |
20060191546 | Takano et al. | Aug 2006 | A1 |
20060191594 | Py | Aug 2006 | A1 |
20060207466 | McNulty et al. | Sep 2006 | A1 |
20070074734 | Braunshteyn et al. | Apr 2007 | A1 |
20070089757 | Bryman | Apr 2007 | A1 |
20070119450 | Wharton et al. | May 2007 | A1 |
20070144514 | Yeates et al. | Jun 2007 | A1 |
20070229025 | Tsai et al. | Oct 2007 | A1 |
20070277816 | Morrison et al. | Dec 2007 | A1 |
20070283972 | Monsees et al. | Dec 2007 | A1 |
20080023003 | Rosenthal | Jan 2008 | A1 |
20080029095 | Esser | Feb 2008 | A1 |
20080068602 | Delaage et al. | Mar 2008 | A1 |
20080092912 | Robinson et al. | Apr 2008 | A1 |
20080257367 | Paterno et al. | Oct 2008 | A1 |
20080302374 | Wengert et al. | Dec 2008 | A1 |
20090095287 | Emarlou | Apr 2009 | A1 |
20090151717 | Bowen et al. | Jun 2009 | A1 |
20090230117 | Fernando et al. | Sep 2009 | A1 |
20090260641 | Monsees et al. | Oct 2009 | A1 |
20090272379 | Thorens | Nov 2009 | A1 |
20090283103 | Nielsen et al. | Nov 2009 | A1 |
20100031968 | Sheikh et al. | Feb 2010 | A1 |
20100163063 | Fernando et al. | Jul 2010 | A1 |
20100163065 | Chang | Jul 2010 | A1 |
20100192949 | Wright et al. | Aug 2010 | A1 |
20100194337 | Opolka | Aug 2010 | A1 |
20110094523 | Thorens et al. | Apr 2011 | A1 |
20110125146 | Greeley et al. | May 2011 | A1 |
20110155153 | Thorens et al. | Jun 2011 | A1 |
20110192397 | Saskar et al. | Aug 2011 | A1 |
20110226236 | Buchberger | Sep 2011 | A1 |
20110265806 | Alarcon et al. | Nov 2011 | A1 |
20120018529 | Gammon et al. | Jan 2012 | A1 |
20120186594 | Liu | Jul 2012 | A1 |
20120188687 | Yamamoto | Jul 2012 | A1 |
20120199146 | Marangos | Aug 2012 | A1 |
20120199663 | Qiu | Aug 2012 | A1 |
20120223673 | Chen et al. | Sep 2012 | A1 |
20120255567 | Rose et al. | Oct 2012 | A1 |
20130037041 | Worm et al. | Feb 2013 | A1 |
20130042865 | Monsees et al. | Feb 2013 | A1 |
20130081642 | Safari | Apr 2013 | A1 |
20130099725 | Burrell et al. | Apr 2013 | A1 |
20130115821 | Golko et al. | May 2013 | A1 |
20130152922 | Benassayag et al. | Jun 2013 | A1 |
20130182421 | Popper et al. | Jul 2013 | A1 |
20130192615 | Tucker | Aug 2013 | A1 |
20130192619 | Tucker et al. | Aug 2013 | A1 |
20130192623 | Tucker et al. | Aug 2013 | A1 |
20130213419 | Tucker et al. | Aug 2013 | A1 |
20130220314 | Bottom | Aug 2013 | A1 |
20130220315 | Conley et al. | Aug 2013 | A1 |
20130220316 | Oglesby et al. | Aug 2013 | A1 |
20130228190 | Weiss et al. | Sep 2013 | A1 |
20130228191 | Newton | Sep 2013 | A1 |
20130233086 | Besling et al. | Sep 2013 | A1 |
20130253433 | Senior et al. | Sep 2013 | A1 |
20130255675 | Liu | Oct 2013 | A1 |
20130255702 | Griffith, Jr. et al. | Oct 2013 | A1 |
20130263869 | Zhu | Oct 2013 | A1 |
20130298905 | Levin et al. | Nov 2013 | A1 |
20130306065 | Thorens et al. | Nov 2013 | A1 |
20130306084 | Flick | Nov 2013 | A1 |
20130319435 | Flick | Dec 2013 | A1 |
20130319438 | Liu | Dec 2013 | A1 |
20130323941 | Zeliff et al. | Dec 2013 | A1 |
20130333700 | Buchberger | Dec 2013 | A1 |
20130333711 | Liu | Dec 2013 | A1 |
20140000638 | Sebastian et al. | Jan 2014 | A1 |
20140007891 | Liu | Jan 2014 | A1 |
20140014124 | Glasberg et al. | Jan 2014 | A1 |
20140014126 | Peleg et al. | Jan 2014 | A1 |
20140053857 | Liu | Feb 2014 | A1 |
20140053858 | Liu | Feb 2014 | A1 |
20140107815 | LaMothe | Apr 2014 | A1 |
20140116455 | Youn | May 2014 | A1 |
20140123990 | Timmermans | May 2014 | A1 |
20140144429 | Wensley et al. | May 2014 | A1 |
20140144453 | Capuano et al. | May 2014 | A1 |
20140150784 | Liu | Jun 2014 | A1 |
20140150810 | Hon | Jun 2014 | A1 |
20140161301 | Merenda | Jun 2014 | A1 |
20140174458 | Katz | Jun 2014 | A1 |
20140178461 | Rigas | Jun 2014 | A1 |
20140190496 | Wensley et al. | Jul 2014 | A1 |
20140202454 | Buchberger | Jul 2014 | A1 |
20140216483 | Alima | Aug 2014 | A1 |
20140224244 | Liu | Aug 2014 | A1 |
20140224267 | Levitz | Aug 2014 | A1 |
20140261408 | DePiano et al. | Sep 2014 | A1 |
20140261486 | Potter et al. | Sep 2014 | A1 |
20140261487 | Chapman et al. | Sep 2014 | A1 |
20140261493 | Smith et al. | Sep 2014 | A1 |
20140261495 | Novak, III et al. | Sep 2014 | A1 |
20140270727 | Ampolini et al. | Sep 2014 | A1 |
20140270729 | DePiano et al. | Sep 2014 | A1 |
20140270730 | DePiano et al. | Sep 2014 | A1 |
20140276536 | Estes | Sep 2014 | A1 |
20140283858 | Liu | Sep 2014 | A1 |
20140299125 | Buchberger | Oct 2014 | A1 |
20140299137 | Kieckbusch et al. | Oct 2014 | A1 |
20140299141 | Flick | Oct 2014 | A1 |
20140305454 | Rinker et al. | Oct 2014 | A1 |
20140332020 | Li et al. | Nov 2014 | A1 |
20140332022 | Li et al. | Nov 2014 | A1 |
20140334804 | Choi | Nov 2014 | A1 |
20140338685 | Amir | Nov 2014 | A1 |
20140345631 | Bowen et al. | Nov 2014 | A1 |
20140345633 | Talon et al. | Nov 2014 | A1 |
20140355969 | Stern | Dec 2014 | A1 |
20140363145 | Plojoux et al. | Dec 2014 | A1 |
20140366898 | Monsees et al. | Dec 2014 | A1 |
20140373857 | Steinberg | Dec 2014 | A1 |
20140376895 | Han | Dec 2014 | A1 |
20150013696 | Plojoux et al. | Jan 2015 | A1 |
20150020831 | Weigensberg et al. | Jan 2015 | A1 |
20150027457 | Janardhan et al. | Jan 2015 | A1 |
20150027460 | Liu | Jan 2015 | A1 |
20150027469 | Tucker et al. | Jan 2015 | A1 |
20150027471 | Feldman et al. | Jan 2015 | A1 |
20150034103 | Hon | Feb 2015 | A1 |
20150034104 | Zhou | Feb 2015 | A1 |
20150034507 | Liu | Feb 2015 | A1 |
20150053214 | Alarcon et al. | Feb 2015 | A1 |
20150059787 | Qiu | Mar 2015 | A1 |
20150068523 | Powers et al. | Mar 2015 | A1 |
20150070832 | Schneider et al. | Mar 2015 | A1 |
20150083147 | Schiff et al. | Mar 2015 | A1 |
20150101606 | White | Apr 2015 | A1 |
20150101625 | Newton et al. | Apr 2015 | A1 |
20150101626 | Li et al. | Apr 2015 | A1 |
20150118895 | Zheng et al. | Apr 2015 | A1 |
20150128971 | Verleur et al. | May 2015 | A1 |
20150128972 | Verleur et al. | May 2015 | A1 |
20150128976 | Verleur et al. | May 2015 | A1 |
20150136155 | Verleur et al. | May 2015 | A1 |
20150136158 | Stevens et al. | May 2015 | A1 |
20150157055 | Lord | Jun 2015 | A1 |
20150164147 | Verleur et al. | Jun 2015 | A1 |
20150173124 | Qiu | Jun 2015 | A1 |
20150181937 | Dubief et al. | Jul 2015 | A1 |
20150181940 | Liu | Jul 2015 | A1 |
20150181944 | Li et al. | Jul 2015 | A1 |
20150189919 | Liu | Jul 2015 | A1 |
20150196060 | Wensley | Jul 2015 | A1 |
20150208729 | Monsees et al. | Jul 2015 | A1 |
20150216237 | Wensley et al. | Aug 2015 | A1 |
20150217068 | Wakalopulos | Aug 2015 | A1 |
20150223521 | Menting et al. | Aug 2015 | A1 |
20150237916 | Farine et al. | Aug 2015 | A1 |
20150245654 | Memari et al. | Sep 2015 | A1 |
20150245655 | Memari et al. | Sep 2015 | A1 |
20150245657 | Memari et al. | Sep 2015 | A1 |
20150245658 | Worm et al. | Sep 2015 | A1 |
20150245665 | Memari et al. | Sep 2015 | A1 |
20150245666 | Memari et al. | Sep 2015 | A1 |
20150245667 | Memari et al. | Sep 2015 | A1 |
20150245668 | Memari et al. | Sep 2015 | A1 |
20150245669 | Cadieux et al. | Sep 2015 | A1 |
20150257447 | Sullivan | Sep 2015 | A1 |
20150282525 | Plojoux et al. | Oct 2015 | A1 |
20150282526 | Wu | Oct 2015 | A1 |
20150289565 | Cadieux et al. | Oct 2015 | A1 |
20150296889 | Liu | Oct 2015 | A1 |
20150305409 | Verleur et al. | Oct 2015 | A1 |
20150313283 | Collett et al. | Nov 2015 | A1 |
20150313287 | Verleur et al. | Nov 2015 | A1 |
20150320116 | Bleloch et al. | Nov 2015 | A1 |
20150327595 | Scatterday | Nov 2015 | A1 |
20150327597 | Li et al. | Nov 2015 | A1 |
20150335071 | Brinkley et al. | Nov 2015 | A1 |
20150351455 | Liu | Dec 2015 | A1 |
20150357608 | Huang | Dec 2015 | A1 |
20150359263 | Bellinger | Dec 2015 | A1 |
20160007651 | Ampolini et al. | Jan 2016 | A1 |
20160021933 | Thorens et al. | Jan 2016 | A1 |
20160044962 | Thorens et al. | Feb 2016 | A1 |
20160095356 | Chan | Apr 2016 | A1 |
20160106153 | Zhu | Apr 2016 | A1 |
20160143365 | Liu | May 2016 | A1 |
20160150824 | Memari et al. | Jun 2016 | A1 |
20160157523 | Liu | Jun 2016 | A1 |
20160174611 | Monsees et al. | Jun 2016 | A1 |
20160198767 | Verleur | Jul 2016 | A1 |
20160198768 | Liu | Jul 2016 | A1 |
20160219934 | Li et al. | Aug 2016 | A1 |
20160242466 | Lord et al. | Aug 2016 | A1 |
20160270442 | Liu | Sep 2016 | A1 |
20160331032 | Malgat et al. | Nov 2016 | A1 |
20160345626 | Wong et al. | Dec 2016 | A1 |
20160360790 | Calfee et al. | Dec 2016 | A1 |
20160366939 | Alarcon et al. | Dec 2016 | A1 |
20160374393 | Chen | Dec 2016 | A1 |
20170035115 | Monsees et al. | Feb 2017 | A1 |
20170042227 | Gavrielov et al. | Feb 2017 | A1 |
20170095005 | Monsees et al. | Apr 2017 | A1 |
20170119044 | Oligschlaeger et al. | May 2017 | A1 |
20170156404 | Novak, III et al. | Jun 2017 | A1 |
20170157341 | Pandya et al. | Jun 2017 | A1 |
20170231276 | Mironov et al. | Aug 2017 | A1 |
20170231282 | Bowen et al. | Aug 2017 | A1 |
20170302324 | Stanimirovic et al. | Oct 2017 | A1 |
20170318861 | Thorens | Nov 2017 | A1 |
20170367410 | Hon | Dec 2017 | A1 |
20180070644 | Monsees et al. | Mar 2018 | A1 |
20180177234 | Lee | Jun 2018 | A1 |
20190037926 | Qiu | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
507187 | Mar 2010 | AT |
2614869 | Jan 2006 | CA |
2641869 | May 2010 | CA |
105346 | Jun 1924 | CH |
3037571 | Nov 1995 | CN |
2643529 | Sep 2004 | CN |
1630476 | Jun 2005 | CN |
1906096 | Jan 2007 | CN |
201067079 | Jun 2008 | CN |
201104488 | Aug 2008 | CN |
101277622 | Oct 2008 | CN |
301111821 | Jan 2010 | CN |
201408820 | Feb 2010 | CN |
101951796 | Jan 2011 | CN |
301485739 | Mar 2011 | CN |
201781984 | Apr 2011 | CN |
301547686 | May 2011 | CN |
201878765 | Jun 2011 | CN |
102160906 | Aug 2011 | CN |
102176941 | Sep 2011 | CN |
202004499 | Oct 2011 | CN |
301753038 | Dec 2011 | CN |
102326869 | Jan 2012 | CN |
301797114 | Jan 2012 | CN |
202218034 | May 2012 | CN |
301955679 | Jun 2012 | CN |
301970169 | Jun 2012 | CN |
202385728 | Aug 2012 | CN |
202603608 | Dec 2012 | CN |
202663148 | Jan 2013 | CN |
102920028 | Feb 2013 | CN |
102970885 | Mar 2013 | CN |
202890462 | Apr 2013 | CN |
302396126 | Apr 2013 | CN |
302485056 | Jun 2013 | CN |
203040683 | Jul 2013 | CN |
203072896 | Jul 2013 | CN |
203087525 | Jul 2013 | CN |
103237469 | Aug 2013 | CN |
103237470 | Aug 2013 | CN |
203152489 | Aug 2013 | CN |
203182012 | Sep 2013 | CN |
302660481 | Nov 2013 | CN |
302660490 | Nov 2013 | CN |
203327953 | Dec 2013 | CN |
203353689 | Dec 2013 | CN |
302680448 | Dec 2013 | CN |
302799554 | Apr 2014 | CN |
302803209 | Apr 2014 | CN |
302810246 | Apr 2014 | CN |
302814868 | May 2014 | CN |
302859209 | Jun 2014 | CN |
104010529 | Aug 2014 | CN |
302884434 | Aug 2014 | CN |
302926289 | Aug 2014 | CN |
104055223 | Sep 2014 | CN |
302950830 | Sep 2014 | CN |
303044212 | Dec 2014 | CN |
204120231 | Jan 2015 | CN |
303089422 | Jan 2015 | CN |
303091331 | Jan 2015 | CN |
204132390 | Feb 2015 | CN |
303103391 | Feb 2015 | CN |
104382237 | Mar 2015 | CN |
204217907 | Mar 2015 | CN |
303210086 | May 2015 | CN |
104738816 | Jul 2015 | CN |
303332720 | Aug 2015 | CN |
105011375 | Nov 2015 | CN |
303103389 | Nov 2015 | CN |
303457556 | Nov 2015 | CN |
204905326 | Dec 2015 | CN |
303568163 | Jan 2016 | CN |
303574274 | Jan 2016 | CN |
303103390 | Feb 2016 | CN |
303686002 | May 2016 | CN |
303721535 | Jun 2016 | CN |
205358224 | Jul 2016 | CN |
1093936 | Dec 1960 | DE |
19619536 | Oct 1997 | DE |
102006004484 | Aug 2007 | DE |
102007011120 | Sep 2008 | DE |
102008046932 | May 2009 | DE |
002626416-001 | Apr 2015 | EM |
002626416-002 | Apr 2015 | EM |
0762258 | Mar 1997 | EP |
1093936 | Apr 2001 | EP |
1736177 | Dec 2006 | EP |
2113178 | Nov 2009 | EP |
2399636 | Dec 2011 | EP |
2460424 | Jun 2012 | EP |
2489391 | Aug 2012 | EP |
2606756 | Jun 2013 | EP |
2609821 | Jul 2013 | EP |
2614731 | Jul 2013 | EP |
2888964 | Jul 2015 | EP |
2895390 | Jul 2015 | EP |
2944207 | Nov 2015 | EP |
3000245 | Mar 2016 | EP |
3024343 | Jun 2016 | EP |
2264237 | Aug 1993 | GB |
2266466 | Nov 1993 | GB |
2504074 | Jan 2014 | GB |
2560653 | Sep 2018 | GB |
D1144098 | Jun 2002 | JP |
3325591 | Sep 2002 | JP |
2013507976 | Mar 2013 | JP |
2013516159 | May 2013 | JP |
100579783 | May 2006 | KR |
20120008751 | Feb 2012 | KR |
20120006582 | Sep 2012 | KR |
20120105655 | Sep 2012 | KR |
20-2012-0007263 | Oct 2012 | KR |
20120113519 | Oct 2012 | KR |
1020120132004 | Dec 2012 | KR |
20130092252 | Aug 2013 | KR |
20130106741 | Sep 2013 | KR |
20130107658 | Oct 2013 | KR |
20130122713 | Nov 2013 | KR |
30-0825216 | Nov 2015 | KR |
11201707778 | Oct 2017 | SG |
I320698 | Feb 2010 | TW |
WO-2003061716 | Jul 2003 | WO |
WO-03103387 | Dec 2003 | WO |
WO-2008138650 | Nov 2008 | WO |
WO-2009079641 | Jun 2009 | WO |
WO-2009132793 | Nov 2009 | WO |
WO-2010140841 | Dec 2010 | WO |
WO-2011050943 | May 2011 | WO |
WO-2011079932 | Jul 2011 | WO |
WO-2011107737 | Sep 2011 | WO |
WO-2011146174 | Nov 2011 | WO |
WO-2011147691 | Dec 2011 | WO |
WO-2012014490 | Feb 2012 | WO |
WO-2012043941 | Apr 2012 | WO |
WO-2012059726 | May 2012 | WO |
WO-2012062600 | May 2012 | WO |
WO-2012085203 | Jun 2012 | WO |
WO-D079112-0010 | Dec 2012 | WO |
WO-2013025921 | Feb 2013 | WO |
WO-2013034453 | Mar 2013 | WO |
WO-2013034456 | Mar 2013 | WO |
WO-2013044537 | Apr 2013 | WO |
WO-2013045582 | Apr 2013 | WO |
WO-2013060784 | May 2013 | WO |
WO-2013068100 | May 2013 | WO |
WO-2013075439 | May 2013 | WO |
WO-2013083631 | Jun 2013 | WO |
WO-2013083634 | Jun 2013 | WO |
WO-2013083635 | Jun 2013 | WO |
WO-2013089358 | Jun 2013 | WO |
WO-2013093695 | Jun 2013 | WO |
WO-2013098395 | Jul 2013 | WO |
WO-2013116558 | Aug 2013 | WO |
WO-2013116567 | Aug 2013 | WO |
WO-2013147492 | Oct 2013 | WO |
WO-2013155645 | Oct 2013 | WO |
WO-2013155654 | Oct 2013 | WO |
WO-2013159245 | Oct 2013 | WO |
WO-2013171206 | Nov 2013 | WO |
WO-2013190036 | Dec 2013 | WO |
WO-2014012906 | Jan 2014 | WO |
WO-2014040988 | Mar 2014 | WO |
WO-2014039308 | Mar 2014 | WO |
WO-2014102091 | Jul 2014 | WO |
WO-2014114328 | Jul 2014 | WO |
WO-2014139609 | Sep 2014 | WO |
WO-2014138244 | Sep 2014 | WO |
WO-2014139610 | Sep 2014 | WO |
WO-2014150979 | Sep 2014 | WO |
WO-2014151040 | Sep 2014 | WO |
WO-2014166121 | Oct 2014 | WO |
WO-2014153796 | Oct 2014 | WO |
WO-2014159982 | Oct 2014 | WO |
WO-2014205263 | Dec 2014 | WO |
WO-2015013327 | Jan 2015 | WO |
WO-2015027435 | Mar 2015 | WO |
WO-2015028815 | Mar 2015 | WO |
WO-2015052513 | Apr 2015 | WO |
WO-2015054862 | Apr 2015 | WO |
WO-2015073564 | May 2015 | WO |
WO-2015077645 | May 2015 | WO |
WO-2015078147 | Jun 2015 | WO |
WO-2015114325 | Aug 2015 | WO |
WO-2015144328 | Oct 2015 | WO |
WO-2015149368 | Oct 2015 | WO |
WO-2015165747 | Nov 2015 | WO |
WO-2015172224 | Nov 2015 | WO |
WO-2015186000 | Dec 2015 | WO |
WO-2016059000 | Apr 2016 | WO |
WO-2016092261 | Jun 2016 | WO |
WO-2016112561 | Jul 2016 | WO |
WO-2016210242 | Dec 2016 | WO |
WO-2017001820 | Jan 2017 | WO |
WO-2017130138 | Aug 2017 | WO |
WO-2017139595 | Aug 2017 | WO |
WO-2017139662 | Aug 2017 | WO |
WO-2017173951 | Oct 2017 | WO |
Entry |
---|
“2011 New Eigarette GS-360,With 1.2ml Clearomizer(Id:5861467) Product Details—View 2011 New Eigarette GS-360,With 1.2ml Clearomizer from Green Sound High-Tech Co.,Ltd—EC21.” EC21, Global B2B Marketplace—Connecting Global Buyers with Manufacturers, Suppliers, Exporters Worldwide, (2011), wo1138.en.ec21.com/2011_New_Eigarette_GS-360_With--5366965_5861467.html. |
“Electronic Cigarette Refillable Cartridge GS-PUSH,Hold 1.5ml(Id:5722612) Product Details—View Electronic Cigarette Refillable Cartridge GS-PUSH,Hold 1.5ml from Green Sound High-Tech Co.,Ltd—EC21.” EC21, Global B2B Marketplace—Connecting Global Buyers with Manufacturers, Suppliers, Exporters Worldwide, (2011), wo1138.en.ec21.com/Electronic_Cigarette_Refillable_Cartridge_GS--5366965_5722612.html. |
“Esteam and J-Series Owner's Manual.” Allbrands.com, 2002, www.allbrands.com/misc_files/pdfs/JiffySteamerOwnersManual.pdf. |
“Hacking the Vuse Eig to Fully Use Cartridges and Allow Refills.” Hacking the Vuse Eig to Fully Use Cartridges and Allow Refills, Oct. 16, 2015, se.azinstall.net/2015/10/hacking-vuse-eig-puffounter.html?m=1. |
“Lenmar CB0104 Battery for Panasonic Cordless Phones.” Amazon, Amazon, first reviewed Jan. 5, 2011, www.amazon.com/LenmarB0104-Battery-Panasonicordless/dp/B000BS6078/. |
“New Tank Eigarette:innokin 510T.” From China Manufacturer, Manufactory, Factory and Supplier on ECVV.com, Nov. 15, 2011, www.ecvv.com/product/3118191.html. |
“Terminal and Splices Selection Guide.” TE.com, TE, 2013, www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=2-1773700-5TerminalAndSplicesSelection&DocType=DS&DocLang=English&s_cid=1046. |
“Uniden BT-990 Cordless Phone Battery NiD, 3.6 Volt, 800 MAh—Ultra Hiapacity—Replacement for Uniden BP-990, Toshiba, GE TL96550, TL96556, Panasonic HHR-P505 Rechargeable Batteries.” Amazon, Amazon, first reviewed on Feb. 8, 2017, www.amazon.com/Uniden-BT-990ordless-Phone-Battery/dp/B01HDV75YW. |
Cedar Board by the home depot. earliest review dated Sep. 7, 2016. found online [Mar. 19, 2019] https://www.homedepot.com/p/1-in-x-4-in-x-8-ft-S1S2E-Cedar-Board-6-Pack-WRC148T6PK/300194383. |
Discount Office Supplies, Office Paper Products Legal Supplies, www.bulkofficesupply.com/Products/Baumgartens-Single-Hole-Trap-Door-Pencil-Sharpener-with-Eraser__BAU19550.aspx, retrieved Mar. 17, 2019. |
Electronic Vaporization Device | Juul | Juul Vapor, posted at juulvapor.com <http://juulvapor.com>, posting date not given, © 2015 Juulvapor.com <http://Juulvapor.com> [online] [site visited Nov. 24, 2015]. Available from Internet, <https://www.juulvapor.com/shop-juul/>. |
Engadget. Juul is the e-cig that will finally stop me from smoking (I hope). [online], published on Jun. 3, 2015. Available at: https://www.engadget.com/2015/06/03/pax-labs-juul-ecigarette/#/. |
Following the Vapor Trail, https://www.nytimes.com/2013/12/19/fashion/for-vaporizers-new-technologynd-product-design.html. |
Frakes, Dan. “Lightning: the IPhone's New Connector.” Macworld, Macworld, Sep. 13, 2012, www.macworld.com/article/1168555/whatpples-new-lightningonnector-means-forou.html. |
IWand Rectangular Pen Shape Design Flat Short Mouth Holder 1.0ml Tank Atomizer LED Display 800mAh Rechargeable E-Cigarette Set—Colorful, https://www.gearbest.com/electronicigarettes/pp_15466.html, accessed Jan. 25, 2019. |
Pentel Multi 8 Color Lead Refill by Pentel on Amazon. earliest review dated Nov. 7, 2014. found online [Mar. 22, 2019] https://www.amazon.com/Pentel-Multi-Refill-VioletH2-V/dp/B00KQTBPCW/ref=sr_1_15?keywords=Pentel+Multi+8&qid=1558643586&s=gateway&sr=8-15. |
Pierce, D. This Might Just Be the First Great E-Cig. {online} Wired, Published on Apr. 21, 2015. Available at: https://www.wired.com/2015/04/pax-juul-ecig/?mbid=social_twitter. |
Press Release by R.J. Reynolds, “https://www.reynoldsamerican.com/about-us/press-releases/Press-Release-Details-/2013/RJ-Reynolds-Vapor-Company-bringing-VUSE-Digital-Vapor-Cigarette-to-Colorado-/default.aspx”. |
Rose Plastic. Rose Plastic: Innovations in Plastic Packaging, www.rose-plastic./2030.0.html?&L=4p?id=2337id=2345iel25% worldwide unique plastic packaging with remarkable diversity, retrieved Mar. 17, 2019. |
Smith, Chris. “Next USB Connector Will Finally Be Reversible, like Apple's Lightning Plug.” BGR, Dec. 5, 2013, bgr.com/2013/12/05/reversiblesbonnectorpple-lightning/. |
Walnut and cocobolo razor coffin pics by scrapcan. dated Aug. 9, 2010. found online [Mar. 20, 2019] https://sharprazorpalace.com/show-tell/ 57238-walnut-cocobolo-razor-coffin-pics.html. |
WSP Traditional Straight Razor Coffin by WSP. earliest review dated Jul. 7, 2015. found online [Mar. 18, 2019] https://www.amazon.com/WSP-Traditional-Straight-Razoroffin/dp/B00FL2R4BA/ref=sr_1_fkmrnull_3?keywords=WSP+Traditional+Straight+razor+coffin&qid=1558643115&s=gateway&sr=8-3-fkmrnull. |
The Verge. “Startup behind the Lambo of vaporizers just launched an intelligent e-cigarette.” [online] Published on Apr. 21, 2015. Available at: https://www.theverge.com/2015/4/21/8458629/pax-labs-e-cigarette-juul. |
U.S. Appl. No. 14/581,666, filed Dec. 23, 2014, U.S. Pat. No. 10,058,124. |
U.S. Appl. No. 15/257,748, filed Sep. 6, 2016, U.S. Pat. No. 10,159,282. |
U.S. Appl. No. 15/257,760, filed Sep. 6, 2016, U.S. Pat. No. 10,076,139. |
U.S. Appl. No. 15/257,768, filed Sep. 6, 2016, US 2016-0366947. |
U.S. Appl. No. 15/379,898, filed Dec. 15, 2016, U.S. Pat. No. 10,058,129. |
U.S. Appl. No. 15/813,084, filed Nov. 14, 2017, U.S. Pat. No. 10,701,975. |
U.S. Appl. No. 15/813,089, filed Nov. 14, 2017, U.S. Pat. No. 10,058,130. |
U.S. Appl. No. 15/815,641, filed Nov. 16, 2017, U.S. Pat. No. 10,045,567. |
U.S. Appl. No. 15/813,096, filed Nov. 14, 2017, U.S. Pat. No. 10,117,465. |
U.S. Appl. No. 15/820,361, filed Nov. 21, 2017, US 2018-0070648. |
U.S. Appl. No. 15/815,645, filed Nov. 16, 2017, U.S. Pat. No. 10,117,466. |
U.S. Appl. No. 15/815,643, filed Nov. 16, 2017, U.S. Pat. No. 10,201,190. |
U.S. Appl. No. 15/832,719, filed Dec. 5, 2017, US 2018-0092405. |
U.S. Appl. No. 15/820,354, filed Nov. 21, 2017, U.S. Pat. No. 10,264,823. |
U.S. Appl. No. 15/815,666, filed Nov. 16, 2017, U.S. Pat. No. 10,104,915. |
U.S. Appl. No. 15/820,370, filed Nov. 21, 2017, U.S. Pat. No. 10,070,669. |
U.S. Appl. No. 15/832,743, filed Dec. 5, 2017, U.S. Pat. No. 10,667,560. |
U.S. Appl. No. 15/832,749, filed Dec. 5, 2017, U.S. Pat. No. 10,045,568. |
U.S. Appl. No. 15/832,731, filed Dec. 5, 2017, US 2018-0092406. |
U.S. Appl. No. 15/833,873, filed Dec. 6, 2017, U.S. Pat. No. 10,111,470. |
U.S. Appl. No. 16/032,009, filed Jul. 10, 2018, U.S. Pat. No. 10,709,173. |
U.S. Appl. No. 16/114,204, filed Aug. 27, 2018, US 2019-0008212. |
U.S. Appl. No. 16/114,206, filed Aug. 27, 2018, US 2018-0360129. |
U.S. Appl. No. 16/114,207, filed Aug. 27, 2018, US 2018-0360130. |
U.S. Appl. No. 15/430,284, filed Feb. 10, 2017, U.S. Pat. No. 10,279,934. |
U.S. Appl. No. 16/404,693, filed May 6, 2019, US 2019-0256231. |
U.S. Appl. No. 15/430,317, filed Feb. 10, 2017, U.S. Pat. No. 10,130,123. |
U.S. Appl. No. 16/077,731, filed Feb. 10, 2017, US 2019-0104767. |
U.S. Appl. No. 15/430,357, filed Feb. 10, 2017, U.S. Pat. No. 10,638,792. |
U.S. Appl. No. 16/864,007, filed Apr. 30, 2020, US 2020-0260785. |
U.S. Appl. No. 15/053,927, filed Feb. 25, 2016, U.S. Pat. No. 9,549,573. |
U.S. Appl. No. 16/080,296, filed Feb. 27, 2017, US 2019-0069599. |
EnsembleIQ “Vuse Product Reel” Youtube Jun. 6 2013 https://www.youtube.com/watch?v=Igo_bBY8tNM. |
Maiocco Roberto. “Modello IWand.” YouTube YouTube Dec. 28, 2012 www.youtube.com/watch?v=_brQOLDqHX0. |
Uptoyou Fromeme. “F8 iWand Penstyle Adjustable Voltage Itaste VV Power Display Electronic Cigarette.” YouTube Sep. 25, 2013. www.youtube.com/watch?v=5nqtHWJvWWo. |
Vaporizers Reviewed. “MicroG Pen Vaporizer Review.” YouTube YouTube Nov. 6, 2013 www.youtube.com/watch?v=pLhtL8vosrs. |
Wholesale Consumer electronics. “Elips Ego SOLE Electronic Cigarette Kit Patent E-Cigarette E-Cig Elipse Flat Upgrade F6 Section.” YouTube YouTube Sep. 13, 2013 www.youtube.com/watch?v=iCeE-O1scDg. |
513officia14. “Glade Plug-Ins Scented Oils 2001.” YouTube, YouTube, Jun. 29, 2011, www.youtube.com/watch?v=zW9acp4NOK8. |
CannabisReviewTV™. “Official: Cloud Vape Pen Review #CRTV420.” YouTube, YouTube, Apr. 17, 2013, www.youtube.com/watch?v=oujMMZ6l_tA&has_verified=1. |
Chinabuye. “Innokin ITaste VV Tank Starter Kit Electronic Cigarette with Clearomizer.” YouTube, YouTube, Jul. 23, 2013, www.youtube.com/watch?v=mz414d8MU20. |
Cloud pen vaporizer unboxing review by vaporizer blog // VaporizerBlog.com, https://www.youtube.com/watch?v=ixHMkXoWKNg. |
Cutlerylover. “Eletronic Cigarette (Vaping) Review : Halo G6 Basic Starter Kit.” YouTube, YouTube, Oct. 10, 2012, www.youtube.com/watch?v=kUprxsQUPCU. |
Darth Vapor Reviews. “Halo Cigs: Triton Starter Kit Review.” YouTube, YouTube, Aug. 11, 2013, www.youtube.com/watch?v=KkVzsGsDDMY. |
El Mono Vapeador. “EVic Joyetech—Revision.” YouTube YouTube Dec. 12, 2012 www.youtube.com/watch?v=WNLVfgwb4Gs. |
Glory Vapes. “Glory Vapes TV: Kanger S1 Cubica Series Starter Kit Unboxing.” YouTube YouTube Aug. 8, 2013 www.youtube.com/watch?v=NQjvJ6YhdbA. |
Infocentre101. “Jiffy Steamer . . . No. 1 Seller.” YouTube YouTube Dec. 31, 2011 www.youtube.com/watch?v=9ge8phdU6WY. |
Joye eGo-Tank System XXL 1000mAh Starter Kit, https://www.myvaporstore.com/eGo-Tank-System-XXL-1000mAh-Starter-Kit-p/ego-t-xxlkit.htm. |
Marino, Michelle. “Review—Glade Pluglns Scented Oil Fragrancers.” YouTube, YouTube, Feb. 18, 2013, www.youtube.com/watch?v=lzEpGdwKSA4. |
Prater, Bill. “Crown Seven Hydro Imperial Menthol Review.” YouTube, YouTube, Jan. 12, 2013, www.youtube.com/watch?v=YT-ycf6mEa0. |
Purity Home Fragrance—How to refill your plug in air freshener.wmv, https://www.youtube.com/watch?v=OreNgPBUwaY&t=66s. |
Ruyanchina. “Ruyan—The New Way to Smoke(English) E-Cigarettelog.com.” YouTube YouTube Jun. 9, 2007 www.youtube.com/watch?v=ia2997x_kog. |
SourDieselManCO. “O.pen Vape Pen Vaporizer Hybrid and Indica 250mg Cartridges.” YouTube, YouTube, Apr. 8, 2013, www.youtube.com/watch?v=5_jWTQVQbEw. |
TechVitaminsTV. “E-Cigarettes: How It Works (Blu Premium E-Cig Social Kit Review) Must See!!” YouTube, YouTube, Mar. 14, 2012, www.youtube.com/watch?v=mFAYxw6csjg. |
Uptoyou Fromeme. “Elips Ego SOLE Electronic Cigarette Kit Patent Elipse Flat Upgrade F6 Section with Atomizer CE4.” YouTube YouTube Sep. 12, 2013 www.youtube.com/watch?v=cnPcqDzFm0Q. |
VapeandBake. “NJOY Electronic Cigarette Review.” YouTube, YouTube, Apr. 9, 2013, www.youtube.com/watch?v=qUynQFK_Xpo. |
Vaporizers Reviewed. “AtmosRX Optimus 510 Vaporizer Review.” YouTube, YouTube, Oct. 10, 2013, www.youtube.com/watch?v=wsyQncG8FB8. |
VapXtream. “The Elips by LSK.” YouTube YouTube Jan. 13, 2013 www.youtube.com/watch?v=PTfJIsrfqWI. |
U.S. Appl. No. 17/154,982, filed Jan. 20, 2021. |
U.S. Appl. No. 17/197,955, filed Mar. 10, 2021. |
Number | Date | Country | |
---|---|---|---|
20190000148 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
61937755 | Feb 2014 | US | |
61936593 | Feb 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14581666 | Dec 2014 | US |
Child | 16114201 | US |