Vaporizer apparatus

Information

  • Patent Grant
  • 10709173
  • Patent Number
    10,709,173
  • Date Filed
    Tuesday, July 10, 2018
    6 years ago
  • Date Issued
    Tuesday, July 14, 2020
    4 years ago
Abstract
Vaporizer apparatuses are provided. In some implementations, an apparatus includes a cartridge and a body. The cartridge comprises a mouthpiece, a storage compartment, and a heater chamber comprising a resistive heating element configured to generate an aerosol comprising vaporizable material and air passing along an airflow path. The body comprises a receptacle configured to insertably receive the cartridge with the heater chamber disposed within the receptacle. The airflow path comprises an air inlet passage and a fluid connection in the cartridge, connecting the heater chamber and the mouthpiece. The air inlet passage has a first side formed by an exterior surface of the cartridge and a second side formed by an internal surface of the receptacle when the receptacle insertably receives the cartridge. Related systems, methods, and articles of manufacture are also described.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


FIELD

Described herein are vaporizer apparatuses including cartridges and vaporizers (e.g., electronic inhalable aerosol devices or electronic vaping devices). In particular, described herein are compact cartridges that can be quickly and releasably secured into a vaporizer (also referred to herein as an electronic aerosol device), while containing a substantial amount of vaporizable material, allow sufficient cooling of the vapor and easily permit a user to accurately visually confirm the amount of vaporizable material within the cartridge.


BACKGROUND

Electronic cigarettes are typically battery-powered vaporizers that may be use, e.g., to simulate the feeling of smoking, but without tobacco. Instead of cigarette smoke, the user inhales an aerosol, commonly called vapor, typically released by a heating element that atomizes a liquid solution (vaporizable material or solution). Typically, the user activates the e-cigarette by taking a puff or pressing a button. Some vaporizers look like traditional cigarettes, but they come in many variations. Although mimicking the cylindrical look of traditional cigarettes may have marketing advantages because of a preexisting familiarity with this shape and potentially feel of the product, the cylindrical shape may not be optimal. Other shapes, including rectangular shapes, may offer advantages including a greater volume for holding the battery and vaporizable material, as well ease in handling and manufacture.


Many of the battery-powered vaporizers described to date include a reusable batter-containing device portion that connects to one or more cartridges containing the consumable vaporizable material. As the cartridges are used up, they are removed and replaced with fresh ones. It may be particularly useful to have cartridges and apparatuses that have a non-circular cross-section to prevent rolling of the device when placed on a table or other surface. However, a number of surprising disadvantages may result in this configuration. For example the use of a cartridge at the proximal end of the device, which is also held by the users mouth, has been found to cause instability in the electrical contacts, particularly with cartridges of greater than 1 cm length. Further, there may be difficulties in determining the amount of vaporizable material within the cartridge, sufficiently cooling or otherwise processing the vapor generated by a heater located in the cartridge, and easily and quickly securing the cartridge into the vaporizer when force may be applied by a user's mouth at the proximal mouthpiece when a user holds the device either just by the mouth or using the mouth at the proximal end and a hand on the more distal body of the vaporizer.


Described herein are apparatuses and methods that may address the issues discussed above.


SUMMARY OF THE DISCLOSURE

The present invention relates generally to apparatuses, including systems and devices, for vaporizing material to form an inhalable aerosol. Specifically, these apparatuses may include vaporizers, cartridge for use with a vaporizer device, and vaporizers with cartridges.


In particular, described herein are cartridges that are configured for use with a vaporizer having a rechargeable power supply that includes a proximal cartridge-receiving opening. These cartridges are specifically adapted to be releasably but securely held within the cartridge-receiving opening (also referred to as a cartridge receptacle) of the vaporizer and may be configured to resist disruption of the electrical contact with the controller and power supply in the vaporizer even when held by the user's mouth.


Generally, the cartridges (which may also referred to as cartomizers) described herein may have a mouthpiece, a heater/vaporizer (e.g., heating element, wick), and a tank (fluid reservoir) to hold the vaporizable material (typically a nicotine solution), in which the cartridge is flattened and has a window into the tank through the mouthpiece so that the liquid level is visible; the window can be an opening through the mouthpiece or it can be a notch up into the mouthpiece. A cannula (e.g., tube) may run through the tank, and connect the heater/vaporizer to an opening in the mouthpiece.


As will be illustrated and described below, the cannula forms a passage for the vapor from the heater to the mouthpiece, and typically passes through the tank so that it is surrounded by vaporizable fluid in the tank; this may help to regulate the temperature of the vapor within the cannula, providing a substantially improved vaping experience. The cannula may be visible through the window/notch. Although having the cannula visible in the window may obscure the view into the tank, it also helps provide a visual reference for the liquid level that makes it much easier for a user to get a quick and accurate understanding of the actual level of vaporizable material within the tank.


In general, the mouthpiece may be opaque and may fit over the top/end of the transparent tank (storage compartment) and may be secured over the end of the storage compartment. This may allow the mouthpiece to form a lip or rim formed by the distal edge of the mouthpiece over the storage compartment that helps guide and helps secure the cartridge in the cartridge receptacle of the vaporizer.


As mentioned, the (typically opaque) mouthpiece may also or alternatively have a cut-out region on the distal edge that is cut into a shape that may form a window into the tank to show the cartridge and fluid; the cut-out region may be any appropriate shape (e.g., square, rectangular, oval, semi-circular, or combinations thereof), and may match with another cut-out region on the upper edge (proximal edge) of the cartridge receptacle of the vaporizer.


Any of these cartridges may also include a gap on the side of the cartridge to mate with a detent on the vaporizer. The gap (also referred to herein as a locking gap) may be a channel, pit, hole, divot, etc. in the sides of the elongate and flattened storage compartment. These gaps may act as a mechanical lock to secure the cartridge in the vaporizer, and may also provide tactile and/or audible \feedback (producing a click or snap) when the cartridge is properly seated in the cartridge receptacle so that there is a robust mechanical and electrical connection between the cartridge and the vaporizer.


In general, the apparatuses described herein also include vaporizers and cartridges in which the cartridge is inserted into a cartridge receptacle at the proximal end of the vaporizer so that the mouthpiece projects out of the proximal end. Overall, the combined cartridge and vaporizer may have an elongate, flattened shape that prevents rolling when the apparatus is placed on a table or other flat surface so that is is lying flat on the surface. As mentioned, the body of the vaporizer, and particularly the proximal edge of the cartridge receptacle, may include a notch or cut-out portion that forms a window into the (transparent) cartridge when the cartridge is held within the cartridge receptacle. Similarly, the cartridge receptacle portion of the vaporizer may include a coupling to secure the cartridge within the cartridge receptacle even when it projects out of the end of the vaporizer, and even when the entire apparatus is held within a user's mouth only at the mouthpiece of the cartridge. Although the majority of the weight of the apparatus is in the vaporizers (near the distal end of the apparatus), the coupling, which may be two or more detents on the side of the cartridge receptacle and/or a magnetic coupling, may hold the cartridge secured in position even where the electrical coupling is a biased connection (such as a pogo pin) that would tend to push the cartridge out of the cartridge receptacle.


For example, described herein are cartridges for use with a vaporizer device, the cartridge comprising: an elongate and flattened storage compartment configured to hold a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment, further wherein the storage compartment comprises a distal end and a proximal end, and a first side extending between the distal end and the proximal end; an opaque mouthpiece that is secured over the proximal end of the storage compartment, the opaque mouthpiece having a front side adjacent to the first side of the storage compartment, wherein a distal end of the opaque mouthpiece terminates in a distal edge that extends only partially between the distal end and the proximal end of the storage compartment; an opening through the opaque mouthpiece at a proximal end of the opaque mouthpiece; a notch in the front side of the mouthpiece extending from the distal edge of the opaque mouthpiece toward the proximal end of the mouthpiece, wherein the notch exposes a region of the storage compartment beneath the mouthpiece; a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and a cannula within the storage compartment extending through the liquid vaporizable material from the heater to the proximal end of the storage compartment so that the liquid vaporizable material surrounds the cannula when the storage compartment is filled with liquid vaporizable material, wherein the cannula is visible through the notch, further wherein the cannula forms a fluid connection between the heating chamber and the opening through the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled.


Also described herein are cartridges for use with a vaporizer device, the cartridge comprising: an elongate and flattened storage compartment configured to hold a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment, further wherein the storage compartment comprises a distal end and a proximal end, and a first side extending between the distal end and the proximal end; an opaque mouthpiece that is secured over the proximal end of the storage compartment, the opaque mouthpiece having a front side adjacent to the first side of the storage compartment, wherein a distal end of the opaque mouthpiece terminates in a distal edge that extends only partially between the distal end and the proximal end of the storage compartment; an opening through the opaque mouthpiece at a proximal end of the opaque mouthpiece; a window in the front side of the mouthpiece, wherein the window exposes a region of the storage compartment beneath the mouthpiece; a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and a cannula within the storage compartment extending through the liquid vaporizable material from the heater to the proximal end of the storage compartment so that the liquid vaporizable material surrounds the cannula when the storage compartment is filled with liquid vaporizable material, wherein the cannula is visible through the window, further wherein the cannula forms a fluid connection between the heating chamber and the opening through the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled.


A cartridge for use with a vaporizer device may also include: an elongate and flattened storage compartment holding a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment, further wherein the storage compartment comprises a distal end and a proximal end, and a first side extending between the distal end and the proximal end; an opaque mouthpiece that is snap-fit over the proximal end of the storage compartment, the opaque mouthpiece having a front side adjacent to the first side of the storage compartment, wherein a distal end of the opaque mouthpiece terminates in a distal edge that extends midway between the distal end and the proximal end of the storage compartment; an opening through the opaque mouthpiece at a proximal end of the opaque mouthpiece; a notch in the front side of the mouthpiece extending from the distal edge of the opaque mouthpiece toward the proximal end of the mouthpiece, wherein the notch exposes a region of the storage compartment beneath the mouthpiece; a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; a cannula or channel within the storage compartment extending from the heater to the proximal end of the storage compartment, wherein the liquid vaporizable material is visible through the notch, further wherein the cannula or channel forms a fluid connection between the heating chamber and the opening through the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled; and a pair of locking gaps on lateral sides of the cartridge that are configured to engage with a pair of locking detents on the vaporizer device to secure the cartridge in the vaporizer device.


In any of the cartridge described herein, the opaque mouthpiece may be secured over the proximal end of the storage compartment by a snap-fit.


In general, the storage compartment may be filled with the liquid vaporizable material. Any liquid vaporizable material may be used, including nicotine solutions, cannaboid solutions, solutions without any active ingredient, or other vaporizable solutions.


In general, as will be described in greater detail herein, the cartridges may include a pair of electrical contacts at a distal end of the cartridge. In some variations, the electrical contacts are configured to mate with connectors (e.g., pogo pin connectors) within the cartridge receptacle of the vaporizer.


The window (e.g., notch) in the cartridge through the mouthpiece may be a rectangular, triangular, semi-circular, or oval cutout region, or some combination of these. In general, the fluid within the elongate and flattened storage compartment may be visible; for example, the elongate fluid storage compartment may be transparent or translucent.


In any of the cartridges described herein, the cartridge (e.g., the elongate fluid storage compartment) may include a pair of locking gaps on lateral sides of the cartridge that are configured to engage with a pair of locking detents on the vaporizer device to secure the cartridge in the vaporizer device.


A vaporizer device may include: a cartridge, comprising: a non-opaque storage compartment holding a liquid vaporizable material; a mouthpiece overlapping a proximal end of the non-opaque storage compartment; and a heater at a distal end of the non-opaque storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and an elongate body configured to removably attach to the cartridge, the elongate body comprising a power source configured to provide power to the heater; and a notch in a proximal end of the elongate body or a distal end of the mouthpiece, the notch configured such that the non-opaque storage compartment of the cartridge is exposed therethrough when the cartridge is attached to the elongate body.


For example, a vaporizer device may include: a cartridge, comprising: a storage compartment holding a liquid vaporizable material; a mouthpiece overlapping a proximal end of the storage compartment; and a heater at a proximal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and an elongate body configured to removably attach to the cartridge, the elongate body comprising a power source configured to provide power to the heater; wherein an air inlet is formed between the cartridge and the elongate body when the cartridge is attached to the elongate body such that an air path is formed from the air inlet, over the wick, and out the mouthpiece.


For example, a cartridge for use with a vaporizer device may include: a storage compartment holding a liquid vaporizable material; a mouthpiece overlapping a proximal end of the storage compartment; a notch in a front side of the mouthpiece extending from a distal end of the mouthpiece toward a proximal end of the mouthpiece; and a heater at a proximal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick, wherein the notch is configured to form an air inlet between the cartridge and the vaporizer device when the cartridge is attached to the vaporizer device such that an air path is formed from the air inlet, over the wick, and out the mouthpiece.


Also described herein are apparatuses including vaporizer apparatuses that include both the cartridge and the vaporizer into which the cartridge may be inserted, e.g., into a cartridge receptacle that holds the cartridge so that it extends from one end of the vaporizer.


For example a vaporizer apparatus may include: a cartridge having: an elongate and flattened storage compartment configured to hold a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment and wherein the storage compartment comprises a distal end and a proximal end; a mouthpiece at the proximal end of the storage compartment; an opening through the mouthpiece at a proximal end of the mouthpiece; a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and a vaporizer, the vaporizer having: an elongate, flattened and opaque body having a distal end and a proximal end and a front side, a back side and a pair of lateral sides extending between the distal and proximal ends, wherein the elongate, flattened and opaque body is prevented from rolling when placed on a flat surface because the diameter of the front and back sides are larger than the diameter of the pair of lateral sides; a cartridge receptacle formed at the proximal end of the elongate, flattened and opaque body, wherein the cartridge receptacle has a proximal-facing opening into the proximal end of the elongate, flattened and opaque body, further wherein the cartridge receptacle comprises a proximal edge around the distal-facing opening; wherein the proximal edge of the cartridge receptacle forms a notch in the front side of the elongate, flattened and opaque body extending towards the distal end of the elongate, flattened and opaque body so that a portion of the storage compartment is visible through the notch when the cartridge is housed within the cartridge receptacle; a pair of electrical contacts in a distal surface within the cartridge receptacle configured to connect to electrical contacts on the cartridge when the cartridge is housed within the cartridge receptacle; and a detent on each of the pair of lateral sides, wherein the detents project into the cartridge receptacle and each engage a mating region on the storage compartment of the cartridge to hold the cartridge within the cartridge receptacle with the mouthpiece outside of the cartridge receptacle.


A vaporizer apparatus may include: a cartridge having: an elongate and flattened storage compartment configured to hold a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment and wherein the storage compartment comprises a distal end and a proximal end; a mouthpiece at the proximal end of the storage compartment; an opening through the mouthpiece at a proximal end of the mouthpiece; a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; a cannula within the storage compartment extending through the liquid vaporizable material from the heater to the proximal end of the storage compartment so that the liquid vaporizable material surrounds the cannula when the storage compartment is filled with liquid vaporizable material, further wherein the cannula forms a fluid connection between the heating chamber and the opening through the mouthpiece from which vaporized liquid vaporizable material may be inhaled; and a vaporizer, the vaporizer having: an elongate, flattened and opaque body having a distal end and a proximal end and a front side, a back side and opposite lateral sides extending between the distal and proximal ends, wherein the elongate, flattened and opaque body is prevented from rolling when placed on a flat surface because the diameter of the front and back sides are larger than the diameter of the opposite lateral sides; a cartridge receptacle formed at the proximal end of the elongate, flattened and opaque body, wherein the cartridge receptacle has a proximal-facing opening into the proximal end of the elongate, flattened and opaque body, further wherein the cartridge receptacle comprises a proximal edge around the proximal-facing opening; wherein the proximal edge of the cartridge receptacle forms a notch in the front side of the elongate, flattened and opaque body extending towards the distal end of the elongate, flattened and opaque body so that a portion of the storage compartment and the cannula within the storage compartment are visible through the notch when the cartridge is housed within the cartridge receptacle; a pair of electrical contacts in a distal surface within the cartridge receptacle configured to connect to electrical contacts on the cartridge when the cartridge is housed within the cartridge receptacle; and a detent on each of the opposite lateral sides, wherein the detents project into the cartridge receptacle and each engage a mating region on the storage compartment of the cartridge to hold the cartridge within the cartridge receptacle with the mouthpiece outside of the cartridge receptacle.


For example, a vaporizer apparatus may include a cartridge having: an elongate and flattened storage compartment holding a liquid vaporizable material that is visible through the storage compartment, wherein the storage compartment comprises a distal end and a proximal end, and a first side extending between the distal end and the proximal end; a mouthpiece at the proximal end of the storage compartment, wherein the mouthpiece comprises an opaque cover that is secured over the proximal end of the storage compartment, the opaque mouthpiece having a front side adjacent to the first side of the storage compartment, wherein a distal end of the opaque cover terminates in a distal edge that extends around a perimeter of the storage compartment from a position only partially between the distal end and the proximal end of the storage compartment of the opaque cover; a cartridge notch in the front side of the mouthpiece extending from the distal edge of the opaque cover towards the proximal end of the mouthpiece, wherein the cartridge notch exposes a region of the storage compartment beneath the mouthpiece; an opening through the mouthpiece at a distal end of the mouthpiece; a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; a cannula within the storage compartment extending through the liquid vaporizable material from the heater to the proximal end of the storage compartment so that the liquid vaporizable material surrounds the cannula, further wherein the cannula forms a fluid connection between the heating chamber and the opening through the mouthpiece from which vaporized liquid vaporizable material may be inhaled, wherein the cannula is visible through the cartridge notch; and a vaporizer, the vaporizer having: an elongate, flattened and opaque body having a distal end and a proximal end and a front side, a back side and opposite lateral sides extending between the distal and proximal ends, wherein the elongate, flattened and opaque body is prevented from rolling when placed on a flat surface because the diameter of the front and back sides are larger than the diameter of the opposite lateral sides; a cartridge receptacle formed at the proximal end of the elongate, flattened and opaque body, wherein the cartridge receptacle has a proximal-facing opening into the proximal end of the elongate, flattened and opaque body, further wherein the cartridge receptacle comprises a proximal edge around the distal-facing opening; wherein the proximal edge of the cartridge receptacle forms a notch in the front side of the elongate, flattened and opaque body extending towards the distal end of the elongate, flattened and opaque body so that a portion of the storage compartment and the cannula are visible through the notch when the cartridge is housed within the cartridge receptacle; a pair of electrical contacts in a distal surface within the cartridge receptacle configured to connect to electrical contacts on the cartridge when the cartridge is housed within the cartridge receptacle; and a detent on each of the opposite lateral sides, wherein the detents project into the cartridge receptacle and each engage a mating region on the storage compartment of the cartridge to hold the cartridge within the cartridge receptacle with the mouthpiece outside of the cartridge receptacle, wherein the cartridge notch aligns with the notch formed in the proximal edge of the cartridge receptacle when the cartridge is housed within the cartridge receptacle.


As mentioned above, in any of the cartridges described herein, the cannula may be visible within the storage compartment is visible through the notch when the cartridge is housed within the cartridge receptacle.


In any of the cartridges described herein, the elongate, flattened and opaque body may have a cross-section such that the apparatus (including the cartridge) lies flat and does not roll, when placed on a table. For example, the cartridge may have a rectangular cross-section (e.g., through the long axis, distal-to-proximal, of the cartridge); in some variations the cross-section is oval, square, etc.


In any of the devices described here, the cartridge may couple with the vaporizer using a connector that is snap fit, or other mechanical fit that is not a threaded connection. Alternatively or additional, the connector may be magnetic.


In any of these apparatuses, the pair of electrical contacts in a proximal surface within the cartridge receptacle may comprise pogo pins or other connectors that are biased against the contact on the cartridge when the two are connected.


The mouthpiece may generally comprise an opaque cover that is secured over the proximal end of the storage compartment, the opaque cover having a front side adjacent to a first side of the storage compartment extending between the proximal and distal ends of the storage compartment, wherein a distal end of the opaque cover terminates in a distal edge that extends around a perimeter of the storage compartment from a position only partially between the distal end and the proximal end of the storage compartment.


The cartridge may further comprises a cartridge notch in the front side of the mouthpiece extending from the distal edge of the opaque cover towards the proximal end of the mouthpiece, wherein the cartridge notch exposes a region of the storage compartment beneath the mouthpiece, further wherein the cartridge notch aligns with the notch formed in the proximal edge of the cartridge receptacle when the cartridge is housed within the cartridge receptacle.


Also described herein in particular are apparatuses (e.g., vaporizer apparatuses) in which the cartridge (including any of the cartridges described herein) are magnetically coupled to with a cartridge receptacle at a proximal end of the vaporizer body so that the proximal end (e.g., mouthpiece) of the cartridge extends proximally from out of the vaporizer body. For example, a vaporizer apparatus may include: a cartridge having: an elongate and transparent storage compartment holding a liquid vaporizable material, wherein the elongate and transparent storage compartment comprises a distal end and a proximal end; an opaque mouthpiece at the proximal end of the elongate and transparent storage compartment; a pair of electrical contacts at a distal end of the cartridge; a heater at the distal end of the elongate and transparent storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and a channel within the elongate and transparent storage compartment extending from the heater to the proximal end of the elongate and transparent storage compartment, wherein the channel is visible through the elongate and transparent storage compartment, further wherein the channel forms a fluid connection between the heating chamber and the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled; and a vaporizer, the vaporizer having: an elongate body having a distal end and a proximal end; a cartridge receptacle formed at the proximal end of the elongate body, wherein the cartridge receptacle has a proximal-facing opening into the proximal end of the elongate body, further wherein the cartridge receptacle comprises a proximal edge around the distal-facing opening; an window though a side of the cartridge receptacle so that at least a portion of the elongate and transparent storage compartment is visible through the window when the cartridge is held within the cartridge receptacle; a pair of electrical contacts in a distal surface within the cartridge receptacle configured to connect to the pair of electrical contacts at the distal end of the cartridge when the cartridge is held within the cartridge receptacle; and a first magnetic coupling configured to magnetically secure the cartridge in the cartridge receptacle; and a second magnetic coupling configured to magnetically couple the vaporizer to a charger.


For example, a vaporizer apparatus may include: a cartridge having: an elongate and transparent storage compartment holding a liquid vaporizable material, wherein the elongate and transparent storage compartment comprises a distal end and a proximal end; an opaque mouthpiece at the proximal end of the elongate and transparent storage compartment; a pair of electrical contacts at a distal end of the cartridge; a heater at the distal end of the elongate and transparent storage compartment, wherein the heater comprises a heating chamber, a wick within the heating chamber, and a resistive heating element in thermal contact with the wick; and a channel within the elongate and transparent storage compartment extending through the liquid vaporizable material from the heater to the proximal end of the elongate and transparent storage compartment, wherein the channel is visible through the elongate and transparent storage compartment, further wherein the channel forms a fluid connection between the heating chamber and the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled; and a vaporizer, the vaporizer having: an elongate body having a distal end and a proximal end; a cartridge receptacle formed at the proximal end of the elongate body, wherein the cartridge receptacle has a proximal-facing opening into the distal end of the elongate body, further wherein the cartridge receptacle comprises a proximal edge around the distal-facing opening; an window though a side of the cartridge receptacle into the cartridge receptacle so that at least a portion of the elongate and transparent storage compartment and the channel is visible through the window when the cartridge is held within the cartridge receptacle; a pair of electrical contacts in a distal surface within the cartridge receptacle configured to connect to the pair of electrical contacts at the distal end of the cartridge when the cartridge is held within the cartridge receptacle; and a first magnetic coupling configured to magnetically secure the cartridge in the cartridge receptacle; and a second magnetic coupling at a distal end of the vaporizer configured to magnetically couple the vaporizer to a charger.


In general the notch (e.g., cut-out region) on the window in the side of the elongate and opaque body may be any appropriate shape, including a rectangular, triangular, semi-circular, or oval (or any combination of these) cutout region, and the two may match or be different.


The channel within the elongate and transparent storage compartment may be visible through the window when the cartridge is housed within the cartridge receptacle.


Also described herein are cartridges in which the arrangement of contacts (e.g., between the cartridge and the vaporizer, are configured within a particular spacing regime to optimize the electrical and mechanical connection between the two, even when the cartridge is held within the user's mouth, and not supported (e.g., by a hand) at the more distal end region.


For example, described herein are cartridge devices holding a vaporizable material for securely coupling with an electronic inhalable aerosol device. A device may include: a mouthpiece; a fluid storage compartment holding a vaporizable material; a base configured to fit into a rectangular opening that is between 13-14 mm deep, 4.5-5.5 mm wide, and 13-14 mm long, the base having a bottom surface comprising a first electrical contact and a second electrical contact, a first locking gap on a first lateral surface of the base, and a second locking gap on a second lateral surface of the base that is opposite first lateral surface.


A cartridge device holding a vaporizable material for securely coupling with an electronic inhalable aerosol device may include: a mouthpiece; a fluid storage compartment holding a vaporizable material; a base configured to fit into a rectangular opening that is between 13-14 mm deep, 4.5-5.5 mm wide, and 13-14 mm long, the base having a length of at least 10 mm, and a bottom surface comprising a first electrical contact and a second electrical contact, a first locking gap on a first lateral surface of the base positioned between 3-4 mm above the bottom surface, and a second locking gap on a second lateral surface of the base that is opposite first lateral surface.


In some variations, the device may further comprise a body that comprises at least one of: a power source, a printed circuit board, a switch, and a temperature regulator. The device may further comprise a temperature regulator in communication with a temperature sensor. The temperature sensor may be the heater. The power source may be rechargeable. The power source may be removable. The oven may further comprise an access lid. The vapor forming medium may comprise tobacco. The vapor forming medium may comprise a botanical. The vapor forming medium may be heated in the oven chamber wherein the vapor forming medium may comprise a humectant to produce the vapor, wherein the vapor comprises a gas phase humectant. The vapor may be mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of about 1 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.9 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.8 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.7 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.6 micron. The vapor forming medium may be heated in the oven chamber, wherein the vapor is mixed in the condensation chamber with air from the aeration vent to produce the inhalable aerosol comprising particle diameters of average size of less than or equal to 0.5 micron.


In some variations, the humectant may comprise glycerol as a vapor-forming medium. The humectant may comprise vegetable glycerol. The humectant may comprise propylene glycol. The humectant may comprise a ratio of vegetable glycerol to propylene glycol. The ratio may be about 100:0 vegetable glycerol to propylene glycol. The ratio may be about 90:10 vegetable glycerol to propylene glycol. The ratio may be about 80:20 vegetable glycerol to propylene glycol. The ratio may be about 70:30 vegetable glycerol to propylene glycol. The ratio may be about 60:40 vegetable glycerol to propylene glycol. The ratio may be about 50:50 vegetable glycerol to propylene glycol. The humectant may comprise a flavorant. The vapor forming medium may be heated to its pyrolytic temperature. The vapor forming medium may heated to 200° C. at most. The vapor forming medium may be heated to 160° C. at most. The inhalable aerosol may be cooled to a temperature of about 50°-70° C. at most, before exiting the aerosol outlet of the mouthpiece.


Also described herein are methods for generating an inhalable aerosol. Such a method may comprise: providing an inhalable aerosol generating device wherein the device comprises: an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol; an air inlet that originates a first airflow path that includes the oven chamber; and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber to a user.


The oven may be within a body of the device. The device may further comprise a mouthpiece, wherein the mouthpiece comprises at least one of the air inlet, the aeration vent, and the condenser. The mouthpiece may be separable from the oven. The mouthpiece may be integral to a body of the device, wherein the body comprises the oven. The method may further comprise a body that comprises the oven, the condenser, the air inlet, and the aeration vent. The mouthpiece may be separable from the body.


The oven chamber may comprise an oven chamber inlet and an oven chamber outlet, and the oven further comprises a first valve at the oven chamber inlet, and a second valve at the oven chamber outlet.


The vapor forming medium may comprise tobacco. The vapor forming medium may comprise a botanical. The vapor forming medium may be heated in the oven chamber wherein the vapor forming medium may comprise a humectant to produce the vapor, wherein the vapor comprises a gas phase humectant. The vapor may comprise particle diameters of average mass of about 1 micron. The vapor may comprise particle diameters of average mass of about 0.9 micron. The vapor may comprise particle diameters of average mass of about 0.8 micron. The vapor may comprise particle diameters of average mass of about 0.7 micron. The vapor may comprise particle diameters of average mass of about 0.6 micron. The vapor may comprise particle diameters of average mass of about 0.5 micron.


In some variations, the humectant may comprise glycerol as a vapor-forming medium. The humectant may comprise vegetable glycerol. The humectant may comprise propylene glycol. The humectant may comprise a ratio of vegetable glycerol to propylene glycol. The ratio may be about 100:0 vegetable glycerol to propylene glycol. The ratio may be about 90:10 vegetable glycerol to propylene glycol. The ratio may be about 80:20 vegetable glycerol to propylene glycol. The ratio may be about 70:30 vegetable glycerol to propylene glycol. The ratio may be about 60:40 vegetable glycerol to propylene glycol. The ratio may be about 50:50 vegetable glycerol to propylene glycol. The humectant may comprise a flavorant. The vapor forming medium may be heated to its pyrolytic temperature. The vapor forming medium may heated to 200° C. at most. The vapor forming medium may be heated to 160° C. at most. The inhalable aerosol may be cooled to a temperature of about 50°-70° C. at most, before exiting the aerosol outlet of the mouthpiece.


The device may be user serviceable. The device may not be user serviceable.


A method for generating an inhalable aerosol may include: providing a vaporization device, wherein said device produces a vapor comprising particle diameters of average mass of about 1 micron or less, wherein said vapor is formed by heating a vapor forming medium in an oven chamber to a first temperature below the pyrolytic temperature of said vapor forming medium, and cooling said vapor in a condensation chamber to a second temperature below the first temperature, before exiting an aerosol outlet of said device.


A method of manufacturing a device for generating an inhalable aerosol may include: providing said device comprising a mouthpiece comprising an aerosol outlet at a first end of the device; an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein, a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol, an air inlet that originates a first airflow path that includes the oven chamber and then the condensation chamber, an aeration vent that originates a second airflow path that joins the first airflow path prior to or within the condensation chamber after the vapor is formed in the oven chamber, wherein the joined first airflow path and second airflow path are configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.


The method may further comprise providing the device comprising a power source or battery, a printed circuit board, a temperature regulator or operational switches.


A device for generating an inhalable aerosol may comprise a mouthpiece comprising an aerosol outlet at a first end of the device and an air inlet that originates a first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol; and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.


A device for generating an inhalable aerosol may comprise: a mouthpiece comprising an aerosol outlet at a first end of the device, an air inlet that originates a first airflow path, and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; and a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol and wherein air from the aeration vent joins the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol through the aerosol outlet of the mouthpiece to a user.


A device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle; a cartridge comprising: a fluid storage compartment, and a channel integral to an exterior surface of the cartridge, and an air inlet passage formed by the channel and an internal surface of the cartridge receptacle when the cartridge is inserted into the cartridge receptacle; wherein the channel forms a first side of the air inlet passage, and an internal surface of the cartridge receptacle forms a second side of the air inlet passage.


A device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle; a cartridge comprising: a fluid storage compartment, and a channel integral to an exterior surface of the cartridge, and an air inlet passage formed by the channel and an internal surface of the cartridge receptacle when the cartridge is inserted into the cartridge receptacle; wherein the channel forms a first side of the air inlet passage, and an internal surface of the cartridge receptacle forms a second side of the air inlet passage.


The channel may comprise at least one of a groove, a trough, a depression, a dent, a furrow, a trench, a crease, and a gutter. The integral channel may comprise walls that are either recessed into the surface or protrude from the surface where it is formed. The internal side walls of the channel may form additional sides of the air inlet passage. The cartridge may further comprise a second air passage in fluid communication with the air inlet passage to the fluid storage compartment, wherein the second air passage is formed through the material of the cartridge. The cartridge may further comprise a heater. The heater may be attached to a first end of the cartridge.


The heater may comprise a heater chamber, a first pair of heater contacts, a fluid wick, and a resistive heating element in contact with the wick, wherein the first pair of heater contacts comprise thin plates affixed about the sides of the heater chamber, and wherein the fluid wick and resistive heating element are suspended there between. The first pair of heater contacts may further comprise a formed shape that comprises a tab having a flexible spring value that extends out of the heater to couple to complete a circuit with the device body. The first pair of heater contacts may be a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element. The first pair of heater contacts may contact a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element. The first pair of heater contacts may be press-fit to an attachment feature on the exterior wall of the first end of the cartridge. The heater may enclose a first end of the cartridge and a first end of the fluid storage compartment. The heater may comprise a first condensation chamber. The heater may comprise more than one first condensation chamber. The first condensation chamber may be formed along an exterior wall of the cartridge. The cartridge may further comprise a mouthpiece. The mouthpiece may be attached to a second end of the cartridge. The mouthpiece may comprise a second condensation chamber. The mouthpiece may comprise more than one second condensation chamber. The second condensation chamber may be formed along an exterior wall of the cartridge.


The cartridge may comprise a first condensation chamber and a second condensation chamber. The first condensation chamber and the second condensation chamber may be in fluid communication. The mouthpiece may comprise an aerosol outlet in fluid communication with the second condensation chamber. The mouthpiece may comprise more than one aerosol outlet in fluid communication with more than one the second condensation chamber. The mouthpiece may enclose a second end of the cartridge and a second end of the fluid storage compartment.


The device may comprise an airflow path comprising an air inlet passage, a second air passage, a heater chamber, a first condensation chamber, a second condensation chamber, and an aerosol outlet. The airflow path may comprise more than one air inlet passage, a heater chamber, more than one first condensation chamber, more than one second condensation chamber, more than one second condensation chamber, and more than one aerosol outlet. The heater may be in fluid communication with the fluid storage compartment. The fluid storage compartment may be capable of retaining condensed aerosol fluid. The condensed aerosol fluid may comprise a nicotine formulation. The condensed aerosol fluid may comprise a humectant. The humectant may comprise propylene glycol. The humectant may comprise vegetable glycerin.


The cartridge may be detachable. The cartridge may be receptacle and the detachable cartridge forms a separable coupling. The separable coupling may comprise a friction assembly, a snap-fit assembly or a magnetic assembly. The cartridge may comprise a fluid storage compartment, a heater affixed to a first end with a snap-fit coupling, and a mouthpiece affixed to a second end with a snap-fit coupling.


A device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle for receiving a cartridge; wherein an interior surface of the cartridge receptacle forms a first side of an air inlet passage when a cartridge comprising a channel integral to an exterior surface is inserted into the cartridge receptacle, and wherein the channel forms a second side of the air inlet passage.


A device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle for receiving a cartridge; wherein the cartridge receptacle comprises a channel integral to an interior surface and forms a first side of an air inlet passage when a cartridge is inserted into the cartridge receptacle, and wherein an exterior surface of the cartridge forms a second side of the air inlet passage.


A cartridge for a device for generating an inhalable aerosol may include: a fluid storage compartment; a channel integral to an exterior surface, wherein the channel forms a first side of an air inlet passage; and wherein an internal surface of a cartridge receptacle in the device forms a second side of the air inlet passage when the cartridge is inserted into the cartridge receptacle.


A cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment, wherein an exterior surface of the cartridge forms a first side of an air inlet channel when inserted into a device body comprising a cartridge receptacle, and wherein the cartridge receptacle further comprises a channel integral to an interior surface, and wherein the channel forms a second side of the air inlet passage.


The cartridge may further comprise a second air passage in fluid communication with the channel, wherein the second air passage is formed through the material of the cartridge from an exterior surface of the cartridge to the fluid storage compartment.


The cartridge may comprise at least one of: a groove, a trough, a depression, a dent, a furrow, a trench, a crease, and a gutter. The integral channel may comprise walls that are either recessed into the surface or protrude from the surface where it is formed. The internal side walls of the channel may form additional sides of the air inlet passage.


A device for generating an inhalable aerosol may comprise: a cartridge comprising; a fluid storage compartment; a heater affixed to a first end comprising; a first heater contact, a resistive heating element affixed to the first heater contact; a device body comprising; a cartridge receptacle for receiving the cartridge; a second heater contact adapted to receive the first heater contact and to complete a circuit; a power source connected to the second heater contact; a printed circuit board (PCB) connected to the power source and the second heater contact; wherein the PCB is configured to detect the absence of fluid based on the measured resistance of the resistive heating element, and turn off the device.


The printed circuit board (PCB) may comprise a microcontroller; switches; circuitry comprising a reference resister; and an algorithm comprising logic for control parameters; wherein the microcontroller cycles the switches at fixed intervals to measure the resistance of the resistive heating element relative to the reference resistor, and applies the algorithm control parameters to control the temperature of the resistive heating element.


The micro-controller may instruct the device to turn itself off when the resistance exceeds the control parameter threshold indicating that the resistive heating element is dry.


A cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment; a heater affixed to a first end comprising: a heater chamber, a first pair of heater contacts, a fluid wick, and a resistive heating element in contact with the wick; wherein the first pair of heater contacts comprise thin plates affixed about the sides of the heater chamber, and wherein the fluid wick and resistive heating element are suspended there between.


The first pair of heater contacts may further comprise: a formed shape that comprises a tab having a flexible spring value that extends out of the heater to complete a circuit with the device body. The heater contacts may be configured to mate with a second pair of heater contacts in a cartridge receptacle of the device body to complete a circuit. The first pair of heater contacts may also be a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element. The first pair of heater contacts may be a heat shield that protect the heater chamber from excessive heat produced by the resistive heating element.


A cartridge for a device for generating an inhalable aerosol may comprise: a heater comprising; a heater chamber, a pair of thin plate heater contacts therein, a fluid wick positioned between the heater contacts, and a resistive heating element in contact with the wick; wherein the heater contacts each comprise a fixation site wherein the resistive heating element is tensioned therebetween.


A cartridge for a device for generating an inhalable aerosol may comprise a heater, wherein the heater is attached to a first end of the cartridge.


The heater may enclose a first end of the cartridge and a first end of the fluid storage compartment. The heater may comprise more than one first condensation chamber. The heater may comprise a first condensation chamber. The condensation chamber may be formed along an exterior wall of the cartridge.


A cartridge for a device for generating an inhalable aerosol may comprise a fluid storage compartment; and a mouthpiece, wherein the mouthpiece is attached to a second end of the cartridge.


The mouthpiece may enclose a second end of the cartridge and a second end of the fluid storage compartment. The mouthpiece may comprise a second condensation chamber. The mouthpiece may comprise more than one second condensation chamber. The second condensation chamber may be formed along an exterior wall of the cartridge.


A cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment; a heater affixed to a first end; and a mouthpiece affixed to a second end; wherein the heater comprises a first condensation chamber and the mouthpiece comprises a second condensation chamber.


The heater may comprise more than one first condensation chamber and the mouthpiece comprises more than one second condensation chamber. The first condensation chamber and the second condensation chamber may be in fluid communication. The mouthpiece may comprise an aerosol outlet in fluid communication with the second condensation chamber. The mouthpiece may comprise two to more aerosol outlets. The cartridge may meet ISO recycling standards. The cartridge may meet ISO recycling standards for plastic waste.


A device for generating an inhalable aerosol may comprise: a device body comprising a cartridge receptacle; and a detachable cartridge; wherein the cartridge receptacle and the detachable cartridge form a separable coupling, wherein the separable coupling comprises a friction assembly, a snap-fit assembly or a magnetic assembly.


A method of fabricating a device for generating an inhalable aerosol may comprise: providing a device body comprising a cartridge receptacle; and providing a detachable cartridge; wherein the cartridge receptacle and the detachable cartridge form a separable coupling comprising a friction assembly, a snap-fit assembly or a magnetic assembly.


A method of fabricating a cartridge for a device for generating an inhalable aerosol may comprise: providing a fluid storage compartment; affixing a heater to a first end with a snap-fit coupling; and affixing a mouthpiece to a second end with a snap-fit coupling.


A cartridge for a device for generating an inhalable aerosol with an airflow path may include: a channel comprising a portion of an air inlet passage; a second air passage in fluid communication with the channel; a heater chamber in fluid communication with the second air passage; a first condensation chamber in fluid communication with the heater chamber; a second condensation chamber in fluid communication with the first condensation chamber; and an aerosol outlet in fluid communication with second condensation chamber.


A cartridge for a device for generating an inhalable aerosol may comprise: a fluid storage compartment; a heater affixed to a first end; and a mouthpiece affixed to a second end; wherein said mouthpiece comprises two or more aerosol outlets.


A system for providing power to an electronic device for generating an inhalable vapor may comprise; a rechargeable power storage device housed within the electronic device for generating an inhalable vapor; two or more pins that are accessible from an exterior surface of the electronic device for generating an inhalable vapor, wherein the charging pins are in electrical communication with the rechargeable power storage device; a charging cradle comprising two or more charging contacts configured to provided power to the rechargeable storage device, wherein the device charging pins are reversible such that the device is charged in the charging cradle for charging with a first charging pin on the device in contact a first charging contact on the charging cradle and a second charging pin on the device in contact with second charging contact on the charging cradle and with the first charging pin on the device in contact with second charging contact on the charging cradle and the second charging pin on the device in contact with the first charging contact on the charging cradle.


The charging pins may be visible on an exterior housing of the device. The user may permanently disable the device by opening the housing. The user may permanently destroy the device by opening the housing.


Additional aspects and advantages of the present disclosure will become readily apparent to those skilled in this art from the following detailed description, wherein only illustrative embodiments of the present disclosure are shown and described. As will be realized, the present disclosure is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustrative cross-sectional view of an exemplary vaporization device.



FIG. 2 is an illustrative cross-sectional view of an exemplary vaporization device with various electronic features and valves.



FIG. 3 is an illustrative sectional view of another exemplary vaporization device comprising a condensation chamber, air inlet and aeration vent in the mouthpiece.



FIGS. 4A-4C is an illustrative example of an oven section of another exemplary vaporization device configuration with an access lid, comprising an oven having an air inlet, air outlet, and an additional aeration vent in the airflow pathway, after the oven.



FIG. 5 is an illustrative isometric view of an assembled inhalable aerosol device.



FIGS. 6A-6D are illustrative arrangements and section views of the device body and sub-components.



FIG. 7A is an illustrative isometric view of an assembled cartridge.



FIG. 7B is an illustrative exploded isometric view of a cartridge assembly



FIG. 7C is a side section view of FIG. 3 illustrating the inlet channel, inlet hole and relative placement of the wick, resistive heating element, and heater contacts, and the heater chamber inside of the heater.



FIG. 8A is an illustrative end section view of an exemplary cartridge inside the heater.



FIG. 8B is an illustrative side view of the cartridge with the cap removed and heater shown in shadow/outline.



FIGS. 9A-9L are illustrative sequence of the assembly method for the cartridge.



FIGS. 10A-10C are illustrative sequences showing the airflow/vapor path for the cartridge.



FIGS. 11, 12, and 13 represent an illustrative assembly sequence for assembling the main components of the device.



FIG. 14 illustrates front, side and section views of the assembled inhalable aerosol device.



FIG. 15 is an illustrative view of an activated, assembled inhalable aerosol device.



FIGS. 16A-16C are representative illustrations of a charging device for the aerosol device and the application of the charger with the device.



FIGS. 17A and 17B are representative illustrations of a proportional-integral-derivative controller (PID) block diagram and circuit diagram representing the essential components in a device to control coil temperature.



FIG. 18 is a device with charging contacts visible from an exterior housing of the device.



FIG. 19 is an exploded view of a charging assembly of a device.



FIG. 20 is a detailed view of a charging assembly of a device.



FIG. 21 is a detailed view of charging pins in a charging assembly of a device.



FIG. 22 is a device in a charging cradle.



FIG. 23 is a circuit provided on a PCB configured to permit a device to comprise reversible charging contacts.



FIGS. 24A and 24B show top and bottom perspective views, respectively of a cartridge device holding a vaporizable material for securely coupling with an electronic inhalable aerosol device as described herein.



FIGS. 25A and 25B show front a side views, respectively, of the cartridge of FIGS. 24A-24B.



FIG. 26A shows a section through a cartridge device holding a vaporizable material for securely coupling with an electronic inhalable aerosol device and indicates exemplary dimensions (in mm).



FIG. 26B shows a side view of the cartridge of FIG. 26A, indicating where the sectional view of FIG. 26A was taken.



FIGS. 27A and 27B show an exemplary vaporizer device without a cartridge attached. FIG. 27A is a side view and FIG. 27B shows a sectional view with exemplary dimensions of the rectangular opening for holding and making electrical contact with a cartridge.



FIG. 28A shows a perspective view of a vaporizer coupled to a cartridge as described herein.



FIG. 28B shows a side view of the vaporizer of FIG. 28A.



FIG. 28C shows a sectional view through the vaporizer of FIG. 28B taken through the dashed line.



FIG. 28D is an enlarged view of the region showing the electrical and mechanical connection between the cartridge and the vaporizer indicted by the circular region D.



FIGS. 29A-29H illustrate side profiles of alternative variations of cartridges as described herein.



FIG. 30 is an exploded view of one example of a cartridge, including a reservoir, for an electronic cigarette.



FIGS. 31A-31L show cartridges for use with a vaporizer device that each include an opaque mouthpiece that is secured over the proximal end of the transparent storage compartment, and one or more notches in the front side of the mouthpiece that exposes a region of the storage compartment beneath the mouthpiece. In FIGS. 31A-31L the central cannula passing through the storage compartment is visible through the notch and the region below the opaque mouthpiece.



FIG. 32 and FIGS. 33A-33E illustrate exemplary vaporizer apparatuses including a cartridge and a vaporizer; the cartridge is mated in a cartridge receptacle at the proximal end of a vaporizer. The cartridge has an opaque mouthpiece over a storage compartment holding a vaporizable material; the inside of the storage compartment is visible through the storage compartment and a notch in the mouthpiece that mates with a notch through the cartridge receptacle at the proximal end of the vaporizer. FIG. 32 is a perspective front view of the apparatus. FIG. 33A is a top view of the proximal end, showing the mouthpiece. FIG. 33B is a bottom view of the distal end. FIGS. 33C-33E are front, side and back views, respectively, of the apparatus.



FIGS. 34A-34L illustrate examples of vaporizer devices similar to that shown in FIG. 33A-33E, in which the notched regions of the cartridge and the vaporizer are different, but provide a window into the inside of the storage compartment, showing the central cannula and the level of any fluid vaporizable material therein.





DETAILED DESCRIPTION

Provided herein are systems and methods for generating a vapor from a material. The vapor may be delivered for inhalation by a user. The material may be a solid, liquid, powder, solution, paste, gel, or any a material with any other physical consistency. The vapor may be delivered to the user for inhalation by a vaporization device. The vaporization device may be a handheld vaporization device. The vaporization device may be held in one hand by the user.


The vaporization device may comprise one or more heating elements the heating element may be a resistive heating element. The heating element may heat the material such that the temperature of the material increases. Vapor may be generated as a result of heating the material. Energy may be required to operate the heating element, the energy may be derived from a battery in electrical communication with the heating element. Alternatively a chemical reaction (e.g., combustion or other exothermic reaction) may provide energy to the heating element.


One or more aspects of the vaporization device may be designed and/or controlled in order to deliver a vapor with one or more specified properties to the user. For example, aspects of the vaporization device that may be designed and/or controlled to deliver the vapor with specified properties may comprise the heating temperature, heating mechanism, device air inlets, internal volume of the device, and/or composition of the material.


In some cases, a vaporization device may have an “atomizer” or “cartomizer” configured to heat an aerosol forming solution (e.g., vaporizable material). The aerosol forming solution may comprise glycerin and/or propylene glycol. The vaporizable material may be heated to a sufficient temperature such that it may vaporize.


An atomizer may be a device or system configured to generate an aerosol. The atomizer may comprise a small heating element configured to heat and/or vaporize at least a portion of the vaporizable material and a wicking material that may draw a liquid vaporizable material in to the atomizer. The wicking material may comprise silica fibers, cotton, ceramic, hemp, stainless steel mesh, and/or rope cables. The wicking material may be configured to draw the liquid vaporizable material in to the atomizer without a pump or other mechanical moving part. A resistance wire may be wrapped around the wicking material and then connected to a positive and negative pole of a current source (e.g., energy source). The resistance wire may be a coil. When the resistance wire is activated the resistance wire (or coil) may have a temperature increase as a result of the current flowing through the resistive wire to generate heat. The heat may be transferred to at least a portion of the vaporizable material through conductive, convective, and/or radiative heat transfer such that at least a portion of the vaporizable material vaporizes.


Alternatively or in addition to the atomizer, the vaporization device may comprise a “cartomizer” to generate an aerosol from the vaporizable material for inhalation by the user. The cartomizer may comprise a cartridge and an atomizer. The cartomizer may comprise a heating element surrounded by a liquid-soaked poly-foam that acts as holder for the vaporiable material (e.g., the liquid). The cartomizer may be reusable, rebuildable, refillable, and/or disposable. The cartomizer may be used with a tank for extra storage of a vaporizable material.


Air may be drawn into the vaporization device to carry the vaporized aerosol away from the heating element, where it then cools and condenses to form liquid particles suspended in air, which may then be drawn out of the mouthpiece by the user.


The vaporization of at least a portion of the vaporizable material may occur at lower temperatures in the vaporization device compared to temperatures required to generate an inhalable vapor in a cigarette. A cigarette may be a device in which a smokable material is burned to generate an inhalable vapor. The lower temperature of the vaporization device may result in less decomposition and/or reaction of the vaporized material, and therefore produce an aerosol with many fewer chemical components compared to a cigarette. In some cases, the vaporization device may generate an aerosol with fewer chemical components that may be harmful to human health compared to a cigarette. Additionally, the vaporization device aerosol particles may undergo nearly complete evaporation in the heating process, the nearly complete evaporation may yield an average particle size (e.g., diameter) value that may be smaller than the average particle size in tobacco or botanical based effluent.


A vaporization device may be a device configured to extract for inhalation one or more active ingredients of plant material, tobacco, and/or a botanical, or other herbs or blends. A vaporization device may be used with pure chemicals and/or humectants that may or may not be mixed with plant material. Vaporization may be alternative to burning (smoking) that may avoid the inhalation of many irritating and/or toxic carcinogenic by-products which may result from the pyrolytic process of burning tobacco or botanical products above 300° C. The vaporization device may operate at a temperature at or below 300° C.


A vaporizer (e.g., vaporization device) may not have an atomizer or cartomizer. Instead the device may comprise an oven. The oven may be at least partially closed. The oven may have a closable opening. The oven may be wrapped with a heating element, alternatively the heating element may be in thermal communication with the oven through another mechanism. A vaporizable material may be placed directly in the oven or in a cartridge fitted in the oven. The heating element in thermal communication with the oven may heat a vaporizable material mass in order to create a gas phase vapor. The heating element may heat the vaporizable material through conductive, convective, and/or radiative heat transfer. The vapor may be released to a vaporization chamber where the gas phase vapor may condense, forming an aerosol cloud having typical liquid vapor particles with particles having a diameter of average mass of approximately 1 micron or greater. In some cases the diameter of average mass may be approximately 0.1-1 micron.


A used herein, the term “vapor” may generally refer to a substance in the gas phase at a temperature lower than its critical point. The vapor may be condensed to a liquid or to a solid by increasing its pressure without reducing the temperature.


As used herein, the term “aerosol” may generally refer to a colloid of fine solid particles or liquid droplets in air or another gas. Examples of aerosols may include clouds, haze, and smoke, including the smoke from tobacco or botanical products. The liquid or solid particles in an aerosol may have varying diameters of average mass that may range from monodisperse aerosols, producible in the laboratory, and containing particles of uniform size; to polydisperse colloidal systems, exhibiting a range of particle sizes. As the sizes of these particles become larger, they have a greater settling speed which causes them to settle out of the aerosol faster, making the appearance of the aerosol less dense and to shorten the time in which the aerosol will linger in air. Interestingly, an aerosol with smaller particles will appear thicker or denser because it has more particles. Particle number has a much bigger impact on light scattering than particle size (at least for the considered ranges of particle size), thus allowing for a vapor cloud with many more smaller particles to appear denser than a cloud having fewer, but larger particle sizes.


As used herein the term “humectant” may generally refer to as a substance that is used to keep things moist. A humectant may attract and retain moisture in the air by absorption, allowing the water to be used by other substances. Humectants are also commonly used in many tobaccos or botanicals and electronic vaporization products to keep products moist and as vapor-forming medium. Examples include propylene glycol, sugar polyols such as glycerol, glycerin, and honey.


Rapid Aeration


In some cases, the vaporization device may be configured to deliver an aerosol with a high particle density. The particle density of the aerosol may refer to the number of the aerosol droplets relative to the volume of air (or other dry gas) between the aerosol droplets. A dense aerosol may easily be visible to a user. In some cases the user may inhale the aerosol and at least a fraction of the aerosol particles may impinge on the lungs and/or mouth of the user. The user may exhale residual aerosol after inhaling the aerosol. When the aerosol is dense the residual aerosol may have sufficient particle density such that the exhaled aerosol is visible to the user. In some cases, a user may prefer the visual effect and/or mouth feel of a dense aerosol.


A vaporization device may comprise a vaporizable material. The vaporizable material may be contained in a cartridge or the vaporizable material may be loosely placed in one or more cavities the vaporization device. A heating element may be provided in the device to elevate the temperature of the vaporizable material such that at least a portion of the vaporizable material forms a vapor. The heating element may heat the vaporizable material by convective heat transfer, conductive heat transfer, and/or radiative heat transfer. The heating element may heat the cartridge and/or the cavity in which the vaporizable material is stored.


Vapor formed upon heating the vaporizable material may be delivered to the user. The vapor may be transported through the device from a first position in the device to a second position in the device. In some cases, the first position may be a location where at least a portion of the vapor was generated, for example, the cartridge or cavity or an area adjacent to the cartridge or cavity. The second position may be a mouthpiece. The user may suck on the mouthpiece to inhale the vapor.


At least a fraction of the vapor may condense after the vapor is generated and before the vapor is inhaled by the user. The vapor may condense in a condensation chamber. The condensation chamber may be a portion of the device that the vapor passes through before delivery to the user. In some cases, the device may include at least one aeration vent, placed in the condensation chamber of the vaporization device. The aeration vent may be configured to introduce ambient air (or other gas) into the vaporization chamber. The air introduced into the vaporization chamber may have a temperature lower than the temperature of a gas and/or gas/vapor mixture in the condensation chamber. Introduction of the relatively lower temperature gas into the vaporization chamber may provide rapid cooling of the heated gas vapor mixture that was generated by heating the vaporizable material. Rapid cooling of the gas vapor mixture may generate a dense aerosol comprising a high concentration of liquid droplets having a smaller diameter and/or smaller average mass compared to an aerosol that is not rapidly cooled prior to inhalation by the user.


An aerosol with a high concentration of liquid droplets having a smaller diameter and/or smaller average mass compared to an aerosol that is not rapidly cooled prior to inhalation by the user may be formed in a two-step process. The first step may occur in the oven chamber where the vaporizable material (e.g., tobacco and/or botanical and humectant blend) may be heated to an elevated temperature. At the elevated temperature, evaporation may happen faster than at room temperature and the oven chamber may fill with the vapor phase of the humectants. The humectant may continue to evaporate until the partial pressure of the humectant is equal to the saturation pressure. At this point, the gas is said to have a saturation ratio of 1 (S=Ppartial/P sat).


In the second step, the gas (e.g., vapor and air) may exit the oven and enter a condenser or condensation chamber and begin to cool. As the gas phase vapor cools, the saturation pressure may decrease. As the saturation pressure decreases, the saturation ratio may increase and the vapor may begin to condense, forming droplets. In some devices, with the absence of added cooling aeration, the cooling may be relatively slower such that high saturation pressures may not be reached, and the droplets that form in the devices without added cooling aeration may be relatively larger and fewer in numbers. When cooler air is introduced, a temperature gradient may be formed between the cooler air and the relatively warmer gas in the device. Mixing between the cooler air and the relatively warmer gas in a confined space inside of the vaporization device may lead to rapid cooling. The rapid cooling may generate high saturation ratios, small particles, and high concentrations of smaller particles, forming a thicker, denser vapor cloud compared to particles generated in a device without the aeration vents.


For the purpose of this disclosure, when referring to ratios of humectants such as vegetable glycerol or propylene glycol, “about” means a variation of 5%, 10%, 20% or 25% depending on the embodiment.


For the purpose of this disclosure, when referring to a diameter of average mass in particle sizes, “about” means a variation of 5%, 10%, 20% or 25% depending on the embodiment.


A vaporization device configured to rapidly cool a vapor may comprise: a mouthpiece comprising an aerosol outlet at a first end of the device; an oven comprising an oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein; a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol; an air inlet that originates a first airflow path that includes the oven chamber and then the condensation chamber, an aeration vent that originates a second airflow path that joins the first airflow path prior to or within the condensation chamber after the vapor is formed in the oven chamber, wherein the joined first airflow path and second airflow path are configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.


In some embodiments, the oven is within a body of the device. The oven chamber may comprise an oven chamber inlet and an oven chamber outlet. The oven may further comprise a first valve at the oven chamber inlet, and a second valve at the oven chamber outlet.


The oven may be contained within a device housing. In some cases the body of the device may comprise the aeration vent and/or the condenser. The body of the device may comprise one or more air inlets. The body of the device may comprise a housing that holds and/or at least partially contains one or more elements of the device.


The mouthpiece may be connected to the body. The mouthpiece may be connected to the oven. The mouthpiece may be connected to a housing that at least partially encloses the oven. In some cases, the mouthpiece may be separable from the oven, the body, and/or the housing that at least partially encloses the oven. The mouthpiece may comprise at least one of the air inlet, the aeration vent, and the condenser. The mouthpiece may be integral to the body of the device. The body of the device may comprise the oven.


In some cases, the one or more aeration vents may comprise a valve. The valve may regulate a flow rate of air entering the device through the aeration vent. The valve may be controlled through a mechanical and/or electrical control system.


A vaporization device configured to rapidly cool a vapor may comprise: a body, a mouthpiece, an aerosol outlet, a condenser with a condensation chamber, a heater, an oven with an oven chamber, a primary airflow inlet, and at least one aeration vent provided in the body, downstream of the oven, and upstream of the mouthpiece.



FIG. 1 shows an example of a vaporization device configured to rapidly cool a vapor. The device 100, may comprise a body 101. The body may house and/or integrate with one or more components of the device. The body may house and/or integrate with a mouthpiece 102. The mouthpiece 102 may have an aerosol outlet 122. A user may inhale the generated aerosol through the aerosol outlet 122 on the mouthpiece 102. The body may house and/or integrate with an oven region 104. The oven region 104 may comprise an oven chamber where vapor forming medium 106 may be placed. The vapor forming medium may include tobacco and/or botanicals, with or without a secondary humectant. In some cases the vapor forming medium may be contained in a removable and/or refillable cartridge.


Air may be drawn into the device through a primary air inlet 121. The primary air inlet 121 may be on an end of the device 100 opposite the mouthpiece 102. Alternatively, the primary air inlet 121 may be adjacent to the mouthpiece 102. In some cases, a pressure drop sufficient to pull air into the device through the primary air inlet 121 may be due to a user puffing on the mouthpiece 102.


The vapor forming medium (e.g., vaporizable material) may be heated in the oven chamber by a heater 105, to generate elevated temperature gas phases (vapor) of the tobacco or botanical and humectant/vapor forming components. The heater 105 may transfer heat to the vapor forming medium through conductive, convective, and/or radiative heat transfer. The generated vapor may be drawn out of the oven region and into the condensation chamber 103a, of the condenser 103 where the vapors may begin to cool and condense into micro-particles or droplets suspended in air, thus creating the initial formation of an aerosol, before being drawn out of the mouthpiece through the aerosol outlet 122.


In some cases, relatively cooler air may be introduced into the condensation chamber 103a, through an aeration vent 107 such that the vapor condenses more rapidly compared to a vapor in a device without the aeration vent 107. Rapidly cooling the vapor may create a denser aerosol cloud having particles with a diameter of average mass of less than or equal to about 1 micron, and depending on the mixture ratio of the vapor-forming humectant, particles with a diameter of average mass of less than or equal to about 0.5 micron


Also described herein are devices for generating an inhalable aerosol said device comprising a body with a mouthpiece at one end, an attached body at the other end comprising a condensation chamber, a heater, an oven, wherein the oven comprises a first valve in the airflow path at the primary airflow inlet of the oven chamber, and a second valve at the outlet end of the oven chamber, and at least one aeration vent provided in the body, downstream of the oven, and upstream of the mouthpiece.



FIG. 2 shows a diagram of an alternative embodiment of the vaporization device 200. The vaporization device may have a body 201. The body 201 may integrate with and/or contain one or more components of the device. The body may integrate with or be connected to a mouthpiece 202


The body may comprise an oven region 204, with an oven chamber 204a having a first constricting valve 208 in the primary air inlet of the oven chamber and a second constricting valve 209 at the oven chamber outlet. The oven chamber 204a may be sealed with a tobacco or botanical and/or humectant/vapor forming medium 206 therein. The seal may be an air tight and/or liquid tight seal. The heater may be provided to the oven chamber with a heater 205. The heater 205 may be in thermal communication with the oven, for example the heater may be surrounding the oven chamber during the vaporization process. Heater may contact the oven. The heater may be wrapped around the oven. Before inhalation and before air is drawn in through a primary air inlet 221, pressure may build in the sealed oven chamber as heat is continually added. The pressure may build due to a phase change of the vaporizable material. Elevated temperature gas phases (vapor) of the tobacco or botanical and humectant/vapor forming components may be achieved by continually adding heat to the oven. This heated pressurization process may generate even higher saturation ratios when the valves 208, 209 are opened during inhalation. The higher saturation ratios may cause relatively higher particle concentrations of gas phase humectant in the resultant aerosol. When the vapor is drawn out of the oven region and into the condensation chamber 203a of the condenser 203, for example by inhalation by the user, the gas phase humectant vapors may be exposed to additional air through an aeration vent 207, and the vapors may begin to cool and condense into droplets suspended in air. As described previously the aerosol may be drawn through the mouthpiece 222 by the user. This condensation process may be further refined by adding an additional valve 210, to the aeration vent 207 to further control the air-vapor mixture process.



FIG. 2 also illustrates an exemplary embodiment of the additional components which would be found in a vaporizing device, including a power source or battery 211, a printed circuit board 212, a temperature regulator 213, and operational switches (not shown), housed within an internal electronics housing 214, to isolate them from the damaging effects of the moisture in the vapor and/or aerosol. The additional components may be found in a vaporizing device that may or may not comprise an aeration vent as described above.


In some embodiments of the vaporization device, components of the device are user serviceable, such as the power source or battery. These components may be replaceable or rechargeable.


Also described herein are devices for generating an inhalable aerosol said device comprising a first body, a mouthpiece having an aerosol outlet, a condensation chamber within a condenser and an airflow inlet and channel, an attached second body, comprising a heater and oven with an oven chamber, wherein said airflow channel is upstream of the oven and the mouthpiece outlet to provide airflow through the device, across the oven, and into the condensation chamber where an auxiliary aeration vent is provided.



FIG. 3 shows a section view of a vaporization device 300. The device 300 may comprise a body 301. The body may be connected to or integral with a mouthpiece 302 at one end. The mouthpiece may comprise a condensation chamber 303a within a condenser section 303 and an airflow inlet 321 and air channel 323. The device body may comprise a proximally located oven 304 comprising an oven chamber 304a. The oven chamber may be in the body of the device. A vapor forming medium 306 (e.g., vaporizable material) comprising tobacco or botanical and humectant vapor forming medium may be placed in the oven. The vapor forming medium may be in direct contact with an air channel 323 from the mouthpiece. The tobacco or botanical may be heated by heater 305 surrounding the oven chamber, to generate elevated temperature gas phases (vapor) of the tobacco or botanical and humectant/vapor forming components and air drawn in through a primary air inlet 321, across the oven, and into the condensation chamber 303a of the condenser region 303 due to a user puffing on the mouthpiece. Once in the condensation chamber where the gas phase humectant vapors begin to cool and condense into droplets suspended in air, additional air is allowed to enter through aeration vent 307, thus, once again creating a denser aerosol cloud having particles with a diameter of average mass of less than a typical vaporization device without an added aeration vent, before being drawn out of the mouthpiece through the aerosol outlet 322.


The device may comprises a mouthpiece comprising an aerosol outlet at a first end of the device and an air inlet that originates a first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein, a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol, an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol formed in the condensation chamber through the aerosol outlet of the mouthpiece to a user.


The device may comprise a mouthpiece comprising an aerosol outlet at a first end of the device, an air inlet that originates a first airflow path, and an aeration vent that originates a second airflow path that allows air from the aeration vent to join the first airflow path; an oven comprising an oven chamber that is in the first airflow path and includes the oven chamber and a heater for heating a vapor forming medium in the oven chamber and for forming a vapor therein, a condenser comprising a condensation chamber in which the vapor forms the inhalable aerosol and wherein air from the aeration vent joins the first airflow path prior to or within the condensation chamber and downstream from the oven chamber thereby forming a joined path, wherein the joined path is configured to deliver the inhalable aerosol through the aerosol outlet of the mouthpiece to a user, as illustrated in exemplary FIG. 3.


The device may comprise a body with one or more separable components. For example, the mouthpiece may be separably attached to the body comprising the condensation chamber, a heater, and an oven, as illustrated in exemplary FIG. 1 or 2.


The device may comprise a body with one or more separable components. For example, the mouthpiece may be separably attached to the body. The mouthpiece may comprise the condensation chamber, and may be attached to or immediately adjacent to the oven and which is separable from the body comprising a heater, and the oven, as illustrated in exemplary FIG. 3.


The at least one aeration vent may be located in the condensation chamber of the condenser, as illustrated in exemplary FIG. 1, 2, or 3. The at least one aeration vent may comprise a third valve in the airflow path of the at least one aeration vent, as illustrated in exemplary FIG. 2. The first, second and third valve is a check valve, a clack valve, a non-return valve, or a one-way valve. In any of the preceding variations, the first, second or third valve may be mechanically actuated, electronically actuated or manually actuated. One skilled in the art will recognize after reading this disclosure that this device may be modified in a way such that any one, or each of these openings or vents could be configured to have a different combination or variation of mechanisms as described to control airflow, pressure and temperature of the vapor created and aerosol being generated by these device configurations, including a manually operated opening or vent with or without a valve.


The device may further comprise at least one of: a power source, a printed circuit board, a switch, and a temperature regulator. Alternately, one skilled in the art would recognize that each configuration previously described will also accommodate said power source (battery), switch, printed circuit board, or temperature regulator as appropriate, in the body.


The device may be disposable when the supply of pre-packaged aerosol-forming media is exhausted. Alternatively, the device may be rechargeable such that the battery may be rechargeable or replaceable, and/or the aerosol-forming media may be refilled, by the user/operator of the device. Still further, the device may be rechargeable such that the battery may be rechargeable or replaceable, and/or the operator may also add or refill a tobacco or botanical component, in addition to a refillable or replaceable aerosol-forming media to the device.


As illustrated in FIG. 1, 2 or 3, the vaporization device may comprise tobacco or a botanical heated in said oven chamber, wherein said tobacco or botanical further comprises humectants to produce an aerosol comprising gas phase components of the humectant and tobacco or botanical. The gas phase humectant and tobacco or botanical vapor produced by said heated aerosol forming media 106, 206, 306 may further be mixed with air from a special aeration vent 107, 207, 307 after exiting the oven area 104, 204, 304 and entering a condensation chamber 103a, 203a, 303a to cool and condense said gas phase vapors to produce a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to about 1 micron.


Each aerosol configuration produced by mixing the gas phase vapors with the cool air may comprise a different range of particles, for example; with a diameter of average mass of less than or equal to about 0.9 micron; less than or equal to about 0.8 micron; less than or equal to about 0.7 micron; less than or equal to about 0.6 micron; and even an aerosol comprising particle diameters of average mass of less than or equal to about 0.5 micron.


The possible variations and ranges of aerosol density are great in that the possible number of combinations of temperature, pressure, tobacco or botanical choices and humectant selections are numerous. However, by excluding the tobacco or botanical choices and limiting the temperatures ranges and the humectant ratios to those described herein, the inventor has demonstrated that this device will produce a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to about 1 micron.


The humectant may comprise glycerol or vegetable glycerol as a vapor-forming medium.


The humectant may comprise propylene glycol as a vapor-forming medium.


In preferred embodiments, the humectant may comprise a ratio of vegetable glycerol to propylene glycol as a vapor-forming medium. The ranges of said ratio may vary between a ratio of about 100:0 vegetable glycerol to propylene glycol and a ratio of about 50:50 vegetable glycerol to propylene glycol. The difference in preferred ratios within the above stated range may vary by as little as 1, for example, said ratio may be about 99:1 vegetable glycerol to propylene glycol. However, more commonly said ratios would vary in increments of about 5, for example, about 95:5 vegetable glycerol to propylene glycol; or about 85:15 vegetable glycerol to propylene glycol; or about 55:45 vegetable glycerol to propylene glycol.


In a preferred embodiment the ratio for the vapor forming medium will be between the ratios of about 80:20 vegetable glycerol to propylene glycol, and about 60:40 vegetable glycerol to propylene glycol.


In a most preferred embodiment, the ratio for the vapor forming medium will be about 70:30 vegetable glycerol to propylene glycol.


In any of the preferred embodiments, the humectant may further comprise flavoring products. These flavorings may include enhancers comprising cocoa solids, licorice, tobacco or botanical extracts, and various sugars, to name but a few.


The tobacco or botanical may be heated in the oven up to its pyrolytic temperature, which as noted previously is most commonly measured in the range of 300-1000° C.


In preferred embodiments, the tobacco or botanical is heated to about 300° C. at most. In other preferred embodiments, the tobacco or botanical is heated to about 200° C. at most. In still other preferred embodiments, the tobacco or botanical is heated to about 160° C. at most. It should be noted that in these lower temperature ranges (<300° C.), pyrolysis of tobacco or botanical does not typically occur, yet vapor formation of the tobacco or botanical components and flavoring products does occur. In addition, vapor formation of the components of the humectant, mixed at various ratios will also occur, resulting in nearly complete vaporization, depending on the temperature, since propylene glycol has a boiling point of about 180°-190° C. and vegetable glycerin will boil at approximately 280°-290° C.


In still other preferred embodiments, the aerosol produced by said heated tobacco or botanical and humectant is mixed with air provided through an aeration vent.


In still other preferred embodiments, the aerosol produced by said heated tobacco or botanical and humectant mixed with air, is cooled to a temperature of about 50°-70° C. at most, and even as low as 35° C. before exiting the mouthpiece, depending on the air temperature being mixed into the condensation chamber. In some embodiments, the temperature is cooled to about 35°-55° C. at most, and may have a fluctuating range of ±about 10° C. or more within the overall range of about 35°-70° C.


Also described herein are vaporization devices for generating an inhalable aerosol comprising a unique oven configuration, wherein said oven comprises an access lid and an auxiliary aeration vent located within the airflow channel immediately downstream of the oven and before the aeration chamber. In this configuration, the user may directly access the oven by removing the access lid, providing the user with the ability to recharge the device with vaporization material.


In addition, having the added aeration vent in the airflow channel immediately after the oven and ahead of the vaporization chamber provides the user with added control over the amount of air entering the aeration chamber downstream and the cooling rate of the aerosol before it enters the aeration chamber.


As noted in FIGS. 4A-4C, the device 400 may comprise a body 401, having an air inlet 421 allowing initial air for the heating process into the oven region 404. After heating the tobacco or botanical, and humectant (heater not shown), the gas phase humectant vapor generated may travel down the airflow channel 423, passing the added aeration vent 407 wherein the user may selectively increase airflow into the heated vapor. The user may selectively increase and/or decrease the airflow to the heated vapor by controlling a valve in communication with the aeration vent 407. In some cases, the device may not have an aeration vent. Airflow into the heated vapor through the aeration vent may decrease the vapor temperature before exiting the airflow channel at the outlet 422, and increase the condensation rate and vapor density by decreasing the diameter of the vapor particles within the aeration chamber (not shown), thus producing a thicker, denser vapor compared to the vapor generated by a device without the aeration vent. The user may also access the oven chamber 404a to recharge or reload the device 400, through an access lid 430 provided therein, making the device user serviceable. The access lid may be provided on a device with or without an aeration vent.


Provided herein is a method for generating an inhalable aerosol, the method comprising: providing an vaporization device, wherein said device produces a vapor comprising particle diameters of average mass of about 1 micron or less, wherein the vapor is formed by heating a vapor forming medium in an oven chamber of the device to a first temperature below the pyrolytic temperature of the vapor forming medium, and cooling the vapor in a condensation chamber to a temperature below the first temperature, before exiting an aerosol outlet of said device.


In some embodiments the vapor may be cooled by mixing relatively cooler air with the vapor in the condensation chamber during the condensation phase, after leaving the oven, where condensation of the gas phase humectants occurs more rapidly due to high saturation ratios being achieved at the moment of aeration, producing a higher concentration of smaller particles, with fewer by-products, in a denser aerosol, than would normally occur in a standard vaporization or aerosol generating device.


In some embodiments, formation of an inhalable aerosol is a two-step process. The first step occurs in the oven where the tobacco or botanical and humectant blend is heated to an elevated temperature. At the elevated temperature, evaporation happens faster than at room temperature and the oven chamber fills with the vapor phase of the humectants. The humectant will continue to evaporate until the partial pressure of the humectant is equal to the saturation pressure. At this point, the gas is said to have a saturation ratio of 1 (S=Ppartial/Psat).


In the second step, the gas leaves the oven chamber, passes to a condensation chamber in a condenser and begins to cool. As the gas phase vapor cools, the saturation pressure also goes down, causing the saturation ratio to rise, and the vapor to condensate, forming droplets. When cooling air is introduced, the large temperature gradient between the two fluids mixing in a confined space leads to very rapid cooling, causing high saturation ratios, small particles, and higher concentrations of smaller particles, forming a thicker, denser vapor cloud.


Provided herein is a method for generating an inhalable aerosol comprising: a vaporization device having a body with a mouthpiece at one end, and an attached body at the other end comprising; a condenser with a condensation chamber, a heater, an oven with an oven chamber, and at least one aeration vent provided in the body, downstream of the oven, and upstream of the mouthpiece, wherein tobacco or botanical comprising a humectant is heated in said oven chamber to produce a vapor comprising gas phase humectants.


As previously described, a vaporization device having an auxiliary aeration vent located in the condensation chamber capable of supplying cool air (relative to the heated gas components) to the gas phase vapors and tobacco or botanical components exiting the oven region, may be utilized to provide a method for generating a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to about 1 micron.


In another aspect, provided herein is a method for generating an inhalable aerosol comprising: a vaporization device, having a body with a mouthpiece at one end, and an attached body at the other end comprising: a condenser with a condensation chamber, a heater, an oven with an oven chamber, wherein said oven chamber further comprises a first valve in the airflow path at the inlet end of the oven chamber, and a second valve at the outlet end of the oven chamber; and at least one aeration vent provided in said body, downstream of the oven, and upstream of the mouthpiece wherein tobacco or botanical comprising a humectant is heated in said oven chamber to produce a vapor comprising gas phase humectants.


As illustrated in exemplary FIG. 2, by sealing the oven chamber 204a with a tobacco or botanical and humectant vapor forming medium 206 therein, and applying heat with the heater 205 during the vaporization process, before inhalation and air is drawn in through a primary air inlet 221, the pressure will build in the oven chamber as heat is continually added with an electronic heating circuit generated through the combination of the battery 211, printed circuit board 212, temperature regulator 213, and operator controlled switches (not shown), to generate even greater elevated temperature gas phase humectants (vapor) of the tobacco or botanical and humectant vapor forming components. This heated pressurization process generates even higher saturation ratios when the valves 208, 209 are opened during inhalation, which cause higher particle concentrations in the resultant aerosol, when the vapor is drawn out of the oven region and into the condensation chamber 203a, where they are again exposed to additional air through an aeration vent 207, and the vapors begin to cool and condense into droplets suspended in air, as described previously before the aerosol is withdrawn through the mouthpiece 222. The inventor also notes that this condensation process may be further refined by adding an additional valve 210, to the aeration vent 207 to further control the air-vapor mixture process.


In some embodiments of any one of the inventive methods, the first, second and/or third valve is a one-way valve, a check valve, a clack valve, or a non-return valve. The first, second and/or third valve may be mechanically actuated. The first, second and/or third valve may be electronically actuated. The first, second and/or third valve may be automatically actuated. The first, second and/or third valve may be manually actuated either directly by a user or indirectly in response to an input command from a user to a control system that actuates the first, second and/or third valve.


In other aspects of the inventive methods, said device further comprises at least one of: a power source, a printed circuit board, or a temperature regulator.


In any of the preceding aspects of the inventive method, one skilled in the art will recognize after reading this disclosure that this method may be modified in a way such that any one, or each of these openings or vents could be configured to have a different combination or variation of mechanisms or electronics as described to control airflow, pressure and temperature of the vapor created and aerosol being generated by these device configurations, including a manually operated opening or vent with or without a valve.


The possible variations and ranges of aerosol density are great in that the possible number of temperature, pressure, tobacco or botanical choices and humectant selections and combinations are numerous. However, by excluding the tobacco or botanical choices and limiting the temperatures to within the ranges and the humectant ratios described herein, the inventor has demonstrated a method for generating a far denser, thicker aerosol comprising more particles than would have otherwise been produced without the extra cooling air, with a diameter of average mass of less than or equal to 1 micron.


In some embodiments of the inventive methods, the humectant comprises a ratio of vegetable glycerol to propylene glycol as a vapor-forming medium. The ranges of said ratio will vary between a ratio of about 100:0 vegetable glycerol to propylene glycol and a ratio of about 50:50 vegetable glycerol to propylene glycol. The difference in preferred ratios within the above stated range may vary by as little as 1, for example, said ratio may be about 99:1 vegetable glycerol to propylene glycol. However, more commonly said ratios would vary in increments of 5, for example, about 95:5 vegetable glycerol to propylene glycol; or about 85:15 vegetable glycerol to propylene glycol; or about 55:45 vegetable glycerol to propylene glycol.


Because vegetable glycerol is less volatile than propylene glycol, it will recondense in greater proportions. A humectant with higher concentrations of glycerol will generate a thicker aerosol. The addition of propylene glycol will lead to an aerosol with a reduced concentration of condensed phase particles and an increased concentration of vapor phase effluent. This vapor phase effluent is often perceived as a tickle or harshness in the throat when the aerosol is inhaled. To some consumers, varying degrees of this sensation may be desirable. The ratio of vegetable glycerol to propylene glycol may be manipulated to balance aerosol thickness with the right amount of “throat tickle.”


In a preferred embodiment of the method, the ratio for the vapor forming medium will be between the ratios of about 80:20 vegetable glycerol to propylene glycol, and about 60:40 vegetable glycerol to propylene glycol.


In a most preferred embodiment of the method, the ratio for the vapor forming medium will be about 70:30 vegetable glycerol to propylene glycol. On will envision that there will be blends with varying ratios for consumers with varying preferences.


In any of the preferred embodiments of the method, the humectant further comprises flavoring products. These flavorings include enhancers such as cocoa solids, licorice, tobacco or botanical extracts, and various sugars, to name a few.


In some embodiments of the method, the tobacco or botanical is heated to its pyrolytic temperature.


In preferred embodiments of the method, the tobacco or botanical is heated to about 300° C. at most.


In other preferred embodiments of the method, the tobacco or botanical is heated to about 200° C. at most. In still other embodiments of the method, the tobacco or botanical is heated to about 160° C. at most.


As noted previously, at these lower temperatures, (<300° C.), pyrolysis of tobacco or botanical does not typically occur, yet vapor formation of the tobacco or botanical components and flavoring products does occur. As may be inferred from the data supplied by Baker et al., an aerosol produced at these temperatures is also substantially free from Hoffman analytes or at least 70% less Hoffman analytes than a common tobacco or botanical cigarette and scores significantly better on the Ames test than a substance generated by burning a common cigarette. In addition, vapor formation of the components of the humectant, mixed at various ratios will also occur, resulting in nearly complete vaporization, depending on the temperature, since propylene glycol has a boiling point of about 180°-190° C. and vegetable glycerin will boil at approximately 280°-290° C.


In any one of the preceding methods, said inhalable aerosol produced by tobacco or a botanical comprising a humectant and heated in said oven produces an aerosol comprising gas phase humectants is further mixed with air provided through an aeration vent.


In any one of the preceding methods, said aerosol produced by said heated tobacco or botanical and humectant mixed with air, is cooled to a temperature of about 50°-70° C., and even as low as 35° C., before exiting the mouthpiece. In some embodiments, the temperature is cooled to about 35°-55° C. at most, and may have a fluctuating range of ±about 10° C. or more within the overall range of about 35°-70° C.


In some embodiments of the method, the vapor comprising gas phase humectant may be mixed with air to produce an aerosol comprising particle diameters of average mass of less than or equal to about 1 micron.


In other embodiments of the method, each aerosol configuration produced by mixing the gas phase vapors with the cool air may comprise a different range of particles, for example; with a diameter of average mass of less than or equal to about 0.9 micron; less than or equal to about 0.8 micron; less than or equal to about 0.7 micron; less than or equal to about 0.6 micron; and even an aerosol comprising particle diameters of average mass of less than or equal to about 0.5 micron.


Cartridge Design and Vapor Generation from Material in Cartridge


In some cases, a vaporization device may be configured to generate an inhalable aerosol. A device may be a self-contained vaporization device. The device may comprise an elongated body which functions to complement aspects of a separable and recyclable cartridge with air inlet channels, air passages, multiple condensation chambers, flexible heater contacts, and multiple aerosol outlets. Additionally, the cartridge may be configured for ease of manufacture and assembly.


Provided herein is a vaporization device for generating an inhalable aerosol. The device may comprise a device body, a separable cartridge assembly further comprising a heater, at least one condensation chamber, and a mouthpiece. The device provides for compact assembly and disassembly of components with detachable couplings; overheat shut-off protection for the resistive heating element; an air inlet passage (an enclosed channel) formed by the assembly of the device body and a separable cartridge; at least one condensation chamber within the separable cartridge assembly; heater contacts; and one or more refillable, reusable, and/or recyclable components.


Provided herein is a device for generating an inhalable aerosol comprising: a device body comprising a cartridge receptacle; a cartridge comprising: a storage compartment, and a channel integral to an exterior surface of the cartridge, and an air inlet passage formed by the channel and an internal surface of the cartridge receptacle when the cartridge is inserted into the cartridge receptacle. The cartridge may be formed from a metal, plastic, ceramic, and/or composite material. The storage compartment may hold a vaporizable material. FIG. 7A shows an example of a cartridge 30 for use in the device. The vaporizable material may be a liquid at or near room temperature. In some cases the vaporizable material may be a liquid below room temperature. The channel may form a first side of the air inlet passage, and an internal surface of the cartridge receptacle may form a second side of the air inlet passage, as illustrated in various non-limiting aspects of FIGS. 5-6D, 7C, 8A, 8B, and 10A


Provided herein is a device for generating an inhalable aerosol. The device may comprise a body that houses, contains, and or integrates with one or more components of the device. The device body may comprise a cartridge receptacle. The cartridge receptacle may comprise a channel integral to an interior surface of the cartridge receptacle; and an air inlet passage formed by the channel and an external surface of the cartridge when the cartridge is inserted into the cartridge receptacle. A cartridge may be fitted and/or inserted into the cartridge receptacle. The cartridge may have a fluid storage compartment. The channel may form a first side of the air inlet passage, and an external surface of the cartridge forms a second side of the air inlet passage. The channel may comprise at least one of: a groove; a trough; a track; a depression; a dent; a furrow; a trench; a crease; and a gutter. The integral channel may comprise walls that are either recessed into the surface or protrude from the surface where it is formed. The internal side walls of the channel may form additional sides of the air inlet passage. The channel may have a round, oval, square, rectangular, or other shaped cross section. The channel may have a closed cross section. The channel may be about 0.1 cm, 0.5 cm, 1 cm, 2 cm, or 5 cm wide. The channel may be about 0.1 mm, 0.5 mm, 1 mm, 2 mm, or 5 mm deep. The channel may be about 0.1 cm, 0.5 cm, 1 cm, 2 cm, or 5 cm long. There may be at least 1 channel.


In some embodiments, the cartridge may further comprise a second air passage in fluid communication with the air inlet passage to the fluid storage compartment, wherein the second air passage is formed through the material of the cartridge.



FIGS. 5-7C show various views of a compact electronic device assembly 10 for generating an inhalable aerosol. The compact electronic device 10 may comprise a device body 20 with a cartridge receptacle 21 for receiving a cartridge 30. The device body may have a square or rectangular cross section. Alternatively, the cross section of the body may be any other regular or irregular shape. The cartridge receptacle may be shaped to receive an opened cartridge 30a or “pod”. The cartridge may be opened when a protective cap is removed from a surface of the cartridge. In some cases, the cartridge may be opened when a hole or opening is formed on a surface of the cartridge. The pod 30a may be inserted into an open end of the cartridge receptacle 21 so that an exposed first heater contact tips 33a on the heater contacts 33 of the pod make contact with the second heater contacts 22 of the device body, thus forming the device assembly 10.


Referring to FIG. 14, it is apparent in the plan view that when the pod 30a is inserted into the notched body of the cartridge receptacle 21, the channel air inlet 50 is left exposed. The size of the channel air inlet 50 may be varied by altering the configuration of the notch in the cartridge receptacle 21.


The device body may further comprise a rechargeable battery, a printed circuit board (PCB) 24 containing a microcontroller with the operating logic and software instructions for the device, a pressure switch 27 for sensing the user's puffing action to activate the heater circuit, an indicator light 26, charging contacts (not shown), and an optional charging magnet or magnetic contact (not shown). The cartridge may further comprise a heater 36. The heater may be powered by the rechargeable battery. The temperature of the heater may be controlled by the microcontroller. The heater may be attached to a first end of the cartridge.


In some embodiments, the heater may comprise a heater chamber 37, a first pair of heater contacts 33, 33′, a fluid wick 34, and a resistive heating element 35 in contact with the wick. The first pair of heater contacts may comprise thin plates affixed about the sides of the heater chamber. The fluid wick and resistive heating element may be suspended between the heater contacts.


In some embodiments, there may be two or more resistive heating elements 35, 35′ and two or more wicks 34, 34′. In some of the embodiments, the heater contact 33 may comprise: a flat plate; a male contact; a female receptacle, or both; a flexible contact and/or copper alloy or another electrically conductive material. The first pair of heater contacts may further comprise a formed shape that may comprise a tab (e.g., flange) having a flexible spring value that extends out of the heater to complete a circuit with the device body. The first pair of heater contact may be a heat sink that absorb and dissipate excessive heat produced by the resistive heating element. Alternatively, the first pair of heater contacts may be a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element. The first pair of heater contacts may be press-fit to an attachment feature on the exterior wall of the first end of the cartridge. The heater may enclose a first end of the cartridge and a first end of the fluid storage compartment.


As illustrated in the exploded assembly of FIG. 7B, a heater enclosure may comprises two or more heater contacts 33, each comprising a flat plate which may be machined or stamped from a copper alloy or similar electrically conductive material. The flexibility of the tip is provided by the cut-away clearance feature 33b created below the male contact point tip 33a which capitalizes on the inherent spring capacity of the metal sheet or plate material. Another advantage and improvement of this type of contact is the reduced space requirement, simplified construction of a spring contact point (versus a pogo pin) and the easy of assembly. The heater may comprise a first condensation chamber. The heater may comprise more one or more additional condensation chambers in addition to the first condensation chamber. The first condensation chamber may be formed along an exterior wall of the cartridge.


In some cases, the cartridge (e.g., pod) is configured for ease of manufacturing and assembly. The cartridge may comprise an enclosure. The enclosure may be a tank. The tank may comprise an interior fluid storage compartment 32. The interior fluid storage compartment 32 which is open at one or both ends and comprises raised rails on the side edges 45b and 46b. The cartridge may be formed from plastic, metal, composite, and/or a ceramic material. The cartridge may be rigid or flexible.


The tank may further comprise a set of first heater contact plates 33 formed from copper alloy or another electrically conductive material, having a thin cut-out 33b below the contact tips 33a (to create a flexible tab) which are affixed to the sides of the first end of the tank and straddle the open-sided end 53 of the tank. The plates may affix to pins, or posts as shown in FIG. 7B or 5, or may be attached by other common means such as compression beneath the enclosure 36. A fluid wick 34 having a resistive heating element 35 wrapped around it, is placed between the first heater contact plates 33, and attached thereto. A heater 36, comprising raised internal edges on the internal end (not shown), a thin mixing zone (not shown), and primary condensation channel covers 45a that slide over the rails 45b on the sides of the tank on the first half of the tank, creating a primary condensation channel/chamber 45. In addition, a small male snap feature 39b located at the end of the channel cover is configured fall into a female snap feature 39a, located mid-body on the side of the tank, creating a snap-fit assembly.


As will be further clarified below, the combination of the open-sided end 53, the protruding tips 33a of the contact plates 33, the fluid wick 34 having a resistive heating element 35, enclosed in the open end of the fluid storage tank, under the heater 36, with a thin mixing zone therein, creates an efficient heater system. In addition, the primary condensation channel covers 45a which slide over the rails 45b on the sides of the tank create an integrated, easily assembled, primary condensation chamber 45, all within the heater at the first end of the cartridge 30 or pod 30a.


In some embodiments of the device, as illustrated in FIGS. 9A-9L, the heater may encloses at least a first end of the cartridge. The enclosed first end of the cartridge may include the heater and the interior fluid storage compartment. In some embodiments, the heater further comprises at least one first condensation chamber 45.



FIGS. 9A-9L show diagramed steps that mat be performed to assemble a cartomizer and/or mouthpiece. In A-B the fluid storage compartment 32a may be oriented such that the heater inlet 53 faces upward. The heater contacts 33 may be inserted into the fluid storage compartment. Flexible tabs 33a may be inserted into the heater contacts 33. In a step D the resistive heating element 35 may be wound on to the wick 34. In step E the wick 34 and heater 35 may be placed on the fluid storage compartment. One or more free ends of the heater may sit outside the heater contacts. The one or more free ends may be soldered in place, rested in a groove, or snapped into a fitted location. At least a fraction of the one or more free ends may be in communication with the heater contacts 33. In a step F the heater enclosure 36 may be snapped in place. The heater enclosure 36 may be fitted on the fluid storage compartment. Step G shows the heater enclosure 36 is in place on the fluid storage compartment. In step H the fluid storage compartment can be flipped over. In step I the mouthpiece 31 can be fitted on the fluid storage compartment. Step J shows the mouthpiece 31 in place on the fluid storage compartment. In step K an end 49 can be fitted on the fluid storage compartment opposite the mouthpiece. Step L shows a fully assembled cartridge 30. FIG. 7B shows an exploded view of the assembled cartridge 30.


Depending on the size of the heater and/or heater chamber, the heater may have more than one wick 34 and resistive heating element 35.


In some embodiments, the first pair of heater contacts 33 further comprises a formed shape that comprises a tab 33a having a flexible spring value that extends out of the heater. In some embodiments, the cartridge 30 comprises heater contacts 33 which are inserted into the cartridge receptacle 21 of the device body 20 wherein, the flexible tabs 33a insert into a second pair of heater contacts 22 to complete a circuit with the device body. The first pair of heater contacts 33 may be a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element 35. The first pair of heater contacts 33 may be a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element 35. The first pair of heater contacts may be press-fit to an attachment feature on the exterior wall of the first end of the cartridge. The heater 36 may enclose a first end of the cartridge and a first end of the fluid storage compartment 32a. The heater may comprise a first condensation chamber 45. The heater may comprise at least one additional condensation chamber 45, 45′, 45″, etc. The first condensation chamber may be formed along an exterior wall of the cartridge.


In still other embodiments of the device, the cartridge may further comprise a mouthpiece 31, wherein the mouthpiece comprises at least one aerosol outlet channel/secondary condensation chamber 46; and at least one aerosol outlet 47. The mouthpiece may be attached to a second end of the cartridge. The second end of the cartridge with the mouthpiece may be exposed when the cartridge is inserted in the device. The mouthpiece may comprise more than one second condensation chamber 46, 46′, 46″, etc. The second condensation chamber is formed along an exterior wall of the cartridge.


The mouthpiece 31 may enclose the second end of the cartridge and interior fluid storage compartment. The partially assembled (e.g., mouthpiece removed) unit may be inverted and filled with a vaporizable fluid through the opposite, remaining (second) open end. Once filled, a snap-on mouthpiece 31 that also closes and seals the second end of the tank is inserted over the end. It also comprises raised internal edges (not shown), and aerosol outlet channel covers 46a that may slide over the rails 46b located on the sides of the second half of the tank, creating aerosol outlet channels/secondary condensation chambers 46. The aerosol outlet channels/secondary condensation chambers 46 slide over the end of primary condensation chamber 45, at a transition area 57, to create a junction for the vapor leaving the primary chamber and proceed out through the aerosol outlets 47, at the end of the aerosol outlet channels 46 and user-end of the mouthpiece 31.


The cartridge may comprise a first condensation chamber and a second condensation chamber 45, 46. The cartridge may comprise more than one first condensation chamber and more than one second condensation chamber 45, 46, 45′, 46′, etc.


In some embodiments of the device, a first condensation chamber 45 may be formed along the outside of the cartridge fluid storage compartment 31. In some embodiments of the device an aerosol outlet 47 exists at the end of aerosol outlet chamber 46. In some embodiments of the device, a first and second condensation chamber 45, 46 may be formed along the outside of one side of the cartridge fluid storage compartment 31. In some embodiments the second condensation chamber may be an aerosol outlet chamber. In some embodiments another pair of first and/or second condensation chambers 45′, 46′ is formed along the outside of the cartridge fluid storage compartment 31 on another side of the device. In some embodiments another aerosol outlet 47′ will also exist at the end of the second pair of condensation chambers 45′, 46′.


In any one of the embodiments, the first condensation chamber and the second condensation chamber may be in fluid communication as illustrated in FIG. 10C.


In some embodiments, the mouthpiece may comprise an aerosol outlet 47 in fluid communication with the second condensation chamber 46. The mouthpiece may comprise more than one aerosol outlet 47, 47′ in fluid communication with more than one the second condensation chamber 46, 46′. The mouthpiece may enclose a second end of the cartridge and a second end of the fluid storage compartment.


In each of the embodiments described herein, the cartridge may comprise an airflow path comprising: an air inlet passage; a heater; at least a first condensation chamber; an aerosol outlet chamber, and an outlet port. In some of the embodiments described herein, the cartridge comprises an airflow path comprising: an air inlet passage; a heater; a first condensation chamber; a secondary condensation chamber; and an outlet port.


In still other embodiments described herein the cartridge may comprise an airflow path comprising at least one air inlet passage; a heater; at least one first condensation chamber; at least one secondary condensation chamber; and at least one outlet port.


As illustrated in FIGS. 10A-10C, an airflow path is created when the user draws on the mouthpiece 31 to create a suction (e.g., a puff), which essentially pulls air through the channel air inlet opening 50, through the air inlet passage 51, and into the heater chamber 37 through the second air passage (tank air inlet hole) 41 at the tank air inlet 52, then into the heater inlet 53. At this point, the pressure sensor has sensed the user's puff, and activated the circuit to the resistive heating element 35, which in turn, begins to generate vapor from the vapor fluid (e-juice). As air enters the heater inlet 53, it begins to mix and circulate in a narrow chamber above and around the wick 34 and between the heater contacts 33, generating heat, and dense, concentrated vapor as it mixes in the flow path 54 created by the sealing structure obstacles 44. FIG. 8A shows a detailed view of the sealing structure obstacles 44. Ultimately the vapor may be drawn, out of the heater along an air path 55 near the shoulder of the heater and into the primary condensation chamber 45 where the vapor expands and begins to cool. As the expanding vapor moves along the airflow path, it makes a transition from the primary condensation chamber 45 through a transition area 57, creating a junction for the vapor leaving the primary chamber, and entering the second vapor chamber 46, and proceeds out through the aerosol outlets 47, at the end of the mouthpiece 31 to the user.


As illustrated in FIGS. 10A-10C, the device may have a dual set of air inlet passages 50-53, dual first condensation chambers 55/45, dual second condensation chambers and aeration channels 57/46, and/or dual aerosol outlet vents 47.


Alternatively, the device may have an airflow path comprising: an air inlet passage 50, 51; a second air passage 41; a heater chamber 37; a first condensation chamber 45; a second condensation chamber 46; and/or an aerosol outlet 47.


In some cases, the devise may have an airflow path comprising: more than one air inlet passage; more than one second air passage; a heater chamber; more than one first condensation chamber; more than one second condensation chamber; and more than one aerosol outlet as clearly illustrated in FIGS. 10A-10C.


In any one of the embodiments described herein, the heater 36 may be in fluid communication with the internal fluid storage compartment 32a.


In each of the embodiments described herein, the fluid storage compartment 32 is in fluid communication with the heater chamber 37, wherein the fluid storage compartment is capable of retaining condensed aerosol fluid, as illustrated in FIGS. 10A, 10C and 14.


In some embodiments of the device, the condensed aerosol fluid may comprise a nicotine formulation. In some embodiments, the condensed aerosol fluid may comprise a humectant. In some embodiments, the humectant may comprise propylene glycol. In some embodiments, the humectant may comprise vegetable glycerin.


In some cases, the cartridge may be detachable from the device body. In some embodiments, the cartridge receptacle and the detachable cartridge may form a separable coupling. In some embodiments the separable coupling may comprise a friction assembly. As illustrated in FIGS. 11-14, the device may have a press-fit (friction) assembly between the cartridge pod 30a and the device receptacle. Additionally, a dent/friction capture such as 43 (e.g., a detent) may be utilized to capture the pod 30a to the device receptacle or to hold a protective cap 38 on the pod, as further illustrated in FIG. 8B. Alternatively or additionally the vaporizer may include a magnetic coupling 87 (e.g., within the cartridge receptacle at the proximal end of the device) to secure the cartridge by a magnetic- or magnetic assisted capture.


In other embodiments, the separable coupling may comprise a snap-fit or snap-lock assembly. In still other embodiments the separable coupling may comprise a magnetic assembly (e.g., a magnetic coupling). As mentioned above, the magnetic coupling may secure the cartridge in the cartridge receptacle.


In any one of the embodiments described herein, the cartridge components may comprise a snap-fit or snap-lock assembly, as illustrated in FIG. 5. In any one of the embodiments, the cartridge components may be reusable, refillable, and/or recyclable. The design of these cartridge components lend themselves to the use of such recyclable plastic materials as polypropylene, for the majority of components.


In some embodiments of the device 10, the cartridge 30 may comprise: a fluid storage compartment 32; a heater 36 affixed to a first end with a snap-fit coupling 39a, 39b; and a mouthpiece 31 affixed to a second end with a snap-fit coupling 39c, 39d (not shown—but similar to 39a and 39b). The heater 36 may be in fluid communication with the fluid storage compartment 32. The fluid storage compartment may be capable of retaining condensed aerosol fluid. The condensed aerosol fluid may comprise a nicotine formulation. The condensed aerosol fluid may comprise a humectant. The humectant may comprise propylene glycol and/or vegetable glycerin.


Provided herein is a device for generating an inhalable aerosol comprising: a device body 20 comprising a cartridge receptacle 21 for receiving a cartridge 30; wherein an interior surface of the cartridge receptacle forms a first side of an air inlet passage 51 when a cartridge comprising a channel integral 40 to an exterior surface is inserted into the cartridge receptacle 21, and wherein the channel forms a second side of the air inlet passage 51.


Provided herein is a device for generating an inhalable aerosol comprising: a device body 20 comprising a cartridge receptacle 21 for receiving a cartridge 30; wherein the cartridge receptacle comprises a channel integral to an interior surface and forms a first side of an air inlet passage when a cartridge is inserted into the cartridge receptacle, and wherein an exterior surface of the cartridge forms a second side of the air inlet passage 51.


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising: a fluid storage compartment 32; a channel integral 40 to an exterior surface, wherein the channel forms a first side of an air inlet passage 51; and wherein an internal surface of a cartridge receptacle 21 in the device forms a second side of the air inlet passage 51 when the cartridge is inserted into the cartridge receptacle.


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising a fluid storage compartment 32, wherein an exterior surface of the cartridge forms a first side of an air inlet channel 51 when inserted into a device body 10 comprising a cartridge receptacle 21, and wherein the cartridge receptacle further comprises a channel integral to an interior surface, and wherein the channel forms a second side of the air inlet passage 51.


In some embodiments, the cartridge further comprises a second air passage 41 in fluid communication with the channel 40, wherein the second air passage 41 is formed through the material of the cartridge 32 from an exterior surface of the cartridge to the internal fluid storage compartment 32a.


In some embodiments of the device body cartridge receptacle 21 or the cartridge 30, the integral channel 40 comprises at least one of: a groove; a trough; a depression; a dent; a furrow; a trench; a crease; and a gutter.


In some embodiments of the device body cartridge receptacle 21 or the cartridge 30, the integral channel 40 comprises walls that are either recessed into the surface or protrude from the surface where it is formed.


In some embodiments of the device body cartridge receptacle 21 or the cartridge 30, the internal side walls of the channel 40 form additional sides of the air inlet passage 51.


Provided herein is a device for generating an inhalable aerosol comprising: a cartridge comprising; a fluid storage compartment; a heater affixed to a first end comprising; a first heater contact, a resistive heating element affixed to the first heater contact; a device body comprising; a cartridge receptacle for receiving the cartridge; a second heater contact adapted to receive the first heater contact and to complete a circuit; a power source connected to the second heater contact; a printed circuit board (PCB) connected to the power source and the second heater contact; wherein the PCB is configured to detect the absence of fluid based on the measured resistance of the resistive heating element, and turn off the device.


Referring now to FIGS. 13, 14, and 15, in some embodiments, the device body further comprises at least one: second heater contact 22 (best shown in FIG. 6C detail); a battery 23; a printed circuit board 24; a pressure sensor 27; and an indicator light 26.


In some embodiments, the printed circuit board (PCB) further comprises: a microcontroller; switches; circuitry comprising a reference resister; and an algorithm comprising logic for control parameters; wherein the microcontroller cycles the switches at fixed intervals to measure the resistance of the resistive heating element relative to the reference resistor, and applies the algorithm control parameters to control the temperature of the resistive heating element.


As illustrated in the basic block diagram of FIG. 17A, the device utilizes a proportional-integral-derivative controller or PID control law. A PID controller calculates an “error” value as the difference between a measured process variable and a desired SetPoint. When PID control is enabled, power to the coil is monitored to determine whether or not acceptable vaporization is occurring. With a given airflow over the coil, more power will be required to hold the coil at a given temperature if the device is producing vapor (heat is removed from the coil to form vapor). If power required to keep the coil at the set temperature drops below a threshold, the device indicates that it cannot currently produce vapor. Under normal operating conditions, this indicates that there is not enough liquid in the wick for normal vaporization to occur.


In some embodiments, the micro-controller instructs the device to turn itself off when the resistance exceeds the control parameter threshold indicating that the resistive heating element is dry.


In still other embodiments, the printed circuit board further comprises logic capable of detecting the presence of condensed aerosol fluid in the fluid storage compartment and is capable of turning off power to the heating contact(s) when the condensed aerosol fluid is not detected. When the microcontroller is running the PID temperature control algorithm 70, the difference between a set point and the coil temperature (error) is used to control power to the coil so that the coil quickly reaches the set point temperature, [between 200° C. and 400° C.]. When the over-temperature algorithm is used, power is constant until the coil reaches an over-temperature threshold, [between 200° C. and 400° C.]; (FIG. 17A applies: set point temperature is over-temperature threshold; constant power until error reaches 0).


The essential components of the device used to control the resistive heating element coil temperature are further illustrated in the circuit diagram of FIG. 17B. Wherein, BATT 23 is the battery; MCU 72 is the microcontroller; Q1 (76) and Q2 (77) are P-channel MOSFETs (switches); R_COIL 74 is the resistance of the coil. R_REF 75 is a fixed reference resistor used to measure R_COIL 74 through a voltage divider 73.


The battery powers the microcontroller. The microcontroller turns on Q2 for 1 ms every 100 ms so that the voltage between R_REF and R_COIL (a voltage divider) may be measured by the MCU at V_MEAS. When Q2 is off, the control law controls Q1 with PWM (pulse width modulation) to power the coil (battery discharges through Q1 and R_COIL when Q1 is on).


In some embodiments of the device, the device body further comprises at least one: second heater contact; a power switch; a pressure sensor; and an indicator light.


In some embodiments of the device body, the second heater contact 22 may comprise: a female receptacle; or a male contact, or both, a flexible contact; or copper alloy or another electrically conductive material.


In some embodiments of the device body, the battery supplies power to the second heater contact, pressure sensor, indicator light and the printed circuit board. In some embodiments, the battery is rechargeable. In some embodiments, the indicator light 26 indicates the status of the device and/or the battery or both.


In some embodiments of the device, the first heater contact and the second heater contact complete a circuit that allows current to flow through the heating contacts when the device body and detachable cartridge are assembled, which may be controlled by an on/off switch. Alternatively, the device can be turned on an off by a puff sensor. The puff sensor may comprise a capacitive membrane. The capacitive membrane may be similar to a capacitive membrane used in a microphone.


In some embodiments of the device, there is also an auxiliary charging unit for recharging the battery 23 in the device body. As illustrated in FIGS. 16A-16C, the charging unit 60, may comprise a USB device with a plug for a power source 63 and protective cap 64, with a cradle 61 for capturing the device body 20 (with or without the cartridge installed). The cradle may further comprise either a magnet or a magnetic contact 62 (magnetic coupling) to securely hold the device body in place during charging. As illustrated in FIG. 6B, the device body further comprises a mating charging contact 28 and a magnet or magnetic contact 29 for the auxiliary charging unit. FIG. 16C is an illustrative example of the device 20 being charged in a power source 65 (laptop computer or tablet).


In some cases the microcontroller on the PCB may be configured to monitor the temperature of the heater such that the vaporizable material is heated to a prescribed temperature. The prescribed temperature may be an input provided by the user. A temperature sensor may be in communication with the microcontroller to provide an input temperature to the microcontroller for temperature regulation. A temperature sensor may be a thermistor, thermocouple, thermometer, or any other temperature sensors. In some cases, the heating element may simultaneously perform as both a heater and a temperature sensor. The heating element may differ from a thermistor by having a resistance with a relatively lower dependence on temperature. The heating element may comprise a resistance temperature detector.


The resistance of the heating element may be an input to the microcontroller. In some cases, the resistance may be determined by the microcontroller based on a measurement from a circuit with a resistor with at least one known resistance, for example, a Wheatstone bridge. Alternatively, the resistance of the heating element may be measured with a resistive voltage divider in contact with the heating element and a resistor with a known and substantially constant resistance. The measurement of the resistance of the heating element may be amplified by an amplifier. The amplifier may be a standard op amp or instrumentation amplifier. The amplified signal may be substantially free of noise. In some cases, a charge time for a voltage divider between the heating element and a capacitor may be determined to calculate the resistance of the heating element. In some cases, the microcontroller must deactivate the heating element during resistance measurements. The resistance of the heating element may be directly proportional to the temperature of the heating element such that the temperature may be directly determine from the resistance measurement. Determining the temperature directly from the heating element resistance measurement rather than from an additional temperature sensor may generate a more accurate measurement because unknown contact thermal resistance between the temperature sensor and the heating element is eliminated. Additionally, the temperature measurement may be determined directly and therefore faster and without a time lag associated with attaining equilibrium between the heating element and a temperature sensor in contact with the heating element.


Provided herein is a device for generating an inhalable aerosol comprising: a cartridge comprising a first heater contact; a device body comprising; a cartridge receptacle for receiving the cartridge; a second heater contact adapted to receive the first heater contact and to complete a circuit; a power source connected to the second heater contact; a printed circuit board (PCB) connected to the power source and the second heater contact; and a single button interface; wherein the PCB is configured with circuitry and an algorithm comprising logic for a child safety feature.


In some embodiments, the algorithm requires a code provided by the user to activate the device. In some embodiments; the code is entered by the user with the single button interface. In still further embodiments the single button interface is the also the power switch.


Provided herein is a cartridge 30 for a device 10 for generating an inhalable aerosol comprising: a fluid storage compartment 32; a heater 36 affixed to a first end comprising: a heater chamber 37, a first pair of heater contacts 33, a fluid wick 34, and a resistive heating element 35 in contact with the wick; wherein the first pair of heater contacts 33 comprise thin plates affixed about the sides of the heater chamber 37, and wherein the fluid wick 34 and resistive heating element 35 are suspended there between.


Depending on the size of the heater or heater chamber, the heater may have more than one wick 34, 34′ and resistive heating element 35, 35′.


In some embodiments, the first pair of heater contacts further comprise a formed shape that comprises a tab 33a having a flexible spring value that extends out of the heater 36 to complete a circuit with the device body 20.


In some embodiments, the heater contacts 33 are configured to mate with a second pair of heater contacts 22 in a cartridge receptacle 21 of the device body 20 to complete a circuit.


In some embodiments, the first pair of heater contacts is also a heat sink that absorbs and dissipates excessive heat produced by the resistive heating element.


In some embodiments, the first pair of heater contacts is a heat shield that protects the heater chamber from excessive heat produced by the resistive heating element.


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising: a heater 36 comprising; a heater chamber 37, a pair of thin plate heater contacts 33 therein, a fluid wick 34 positioned between the heater contacts 33, and a resistive heating element 35 in contact with the wick; wherein the heater contacts 33 each comprise a fixation site 33c wherein the resistive heating element 35 is tensioned there between.


As will be obvious to one skilled in the art after reviewing the assembly method illustrated in FIGS. 9A-9L, the heater contacts 33 simply snap or rest on locator pins on either side of the air inlet 53 on the first end of the cartridge interior fluid storage compartment, creating a spacious vaporization chamber containing the at least one wick 34 and at least one heating element 35.


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising a heater 36 attached to a first end of the cartridge.


In some embodiments, the heater encloses a first end of the cartridge and a first end of the fluid storage compartment 32, 32a.


In some embodiments, the heater comprises a first condensation chamber 45.


In some embodiments, the heater comprises more than one first condensation chamber 45, 45′.


In some embodiments, the condensation chamber is formed along an exterior wall of the cartridge 45b.


As noted previously, and described in FIGS. 10A, 10B and 10C, the airflow path through the heater and heater chamber generates vapor within the heater circulating air path 54, which then exits through the heater exits 55 into a first (primary) condensation chamber 45, which is formed by components of the tank body comprising the primary condensation channel/chamber rails 45b, the primary condensation channel cover 45a, (the outer side wall of the heater enclosure).


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising a fluid storage compartment 32 and a mouthpiece 31, wherein the mouthpiece is attached to a second end of the cartridge and further comprises at least one aerosol outlet 47.


In some embodiments, the mouthpiece 31 encloses a second end of the cartridge 30 and a second end of the fluid storage compartment 32, 32a.


Additionally, as clearly illustrated in FIG. 10C in some embodiments the mouthpiece also contains a second condensation chamber 46 prior to the aerosol outlet 47, which is formed by components of the tank body 32 comprising the secondary condensation channel/chamber rails 46b, the second condensation channel cover 46a, (the outer side wall of the mouthpiece). Still further, the mouthpiece may contain yet another aerosol outlet 47′ and another (second) condensation chamber 46′ prior to the aerosol outlet, on another side of the cartridge.


In other embodiments, the mouthpiece comprises more than one second condensation chamber 46, 46′.


In some preferred embodiments, the second condensation chamber is formed along an exterior wall of the cartridge 46b.


In each of the embodiments described herein, the cartridge 30 comprises an airflow path comprising: an air inlet channel and passage 40, 41, 42; a heater chamber 37; at least a first condensation chamber 45; and an outlet port 47. In some of the embodiments described herein, the cartridge 30 comprises an airflow path comprising: an air inlet channel and passage 40, 41, 42; a heater chamber 37; a first condensation chamber 45; a second condensation chamber 46; and an outlet port 47.


In still other embodiments described herein the cartridge 30 may comprise an airflow path comprising at least one air inlet channel and passage 40, 41, 42; a heater chamber 37; at least one first condensation chamber 45; at least one second condensation chamber 46; and at least one outlet port 47.


In each of the embodiments described herein, the fluid storage compartment 32 is in fluid communication with the heater 36, wherein the fluid storage compartment is capable of retaining condensed aerosol fluid.


In some embodiments of the device, the condensed aerosol fluid comprises a nicotine formulation. In some embodiments, the condensed aerosol fluid comprises a humectant. In some embodiments, the humectant comprises propylene glycol. In some embodiments, the humectant comprises vegetable glycerin.


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 comprising: a fluid storage compartment 32; a heater 36 affixed to a first end; and a mouthpiece 31 affixed to a second end; wherein the heater comprises a first condensation chamber 45 and the mouthpiece comprises a second condensation chamber 46.


In some embodiments, the heater comprises more than one first condensation chamber 45, 45′ and the mouthpiece comprises more than one second condensation chamber 46, 46′.


In some embodiments, the first condensation chamber and the second condensation chamber are in fluid communication. As illustrated in FIG. 10C, the first and second condensation chambers have a common transition area 57, 57′, for fluid communication.


In some embodiments, the mouthpiece comprises an aerosol outlet 47 in fluid communication with the second condensation chamber 46.


In some embodiments, the mouthpiece comprises two or more aerosol outlets 47, 47′.


In some embodiments, the mouthpiece comprises two or more aerosol outlets 47, 47′ in fluid communication with the two or more second condensation chambers 46, 46′.


In any one of the embodiments, the cartridge meets ISO recycling standards.


In any one of the embodiments, the cartridge meets ISO recycling standards for plastic waste.


And in still other embodiments, the plastic components of the cartridge are composed of polylactic acid (PLA), wherein the PLA components are compostable and or degradable.


Provided herein is a device for generating an inhalable aerosol 10 comprising a device body 20 comprising a cartridge receptacle 21; and a detachable cartridge 30; wherein the cartridge receptacle and the detachable cartridge form a separable coupling, and wherein the separable coupling comprises a friction assembly, a snap-fit assembly or a magnetic assembly.


In other embodiments of the device, the cartridge is a detachable assembly. In any one of the embodiments described herein, the cartridge components may comprise a snap-lock assembly such as illustrated by snap features 39a and 39b. In any one of the embodiments, the cartridge components are recyclable.


Provided herein is a method of fabricating a device for generating an inhalable aerosol comprising: providing a device body comprising a cartridge receptacle; and providing a detachable cartridge; wherein the cartridge receptacle and the detachable cartridge form a separable coupling comprising a friction assembly, a snap-fit assembly or a magnetic assembly when the cartridge is inserted into the cartridge receptacle.


Provided herein is a method of making a device 10 for generating an inhalable aerosol comprising: providing a device body 20 with a cartridge receptacle 21 comprising one or more interior coupling surfaces 21a, 21b, 21c . . . ; and further providing a cartridge 30 comprising: one or more exterior coupling surfaces 36a, 36b, 36c, . . . , a second end and a first end; a tank 32 comprising an interior fluid storage compartment 32a; at least one channel 40 on at least one exterior coupling surface, wherein the at least one channel forms one side of at least one air inlet passage 51, and wherein at least one interior wall of the cartridge receptacle forms at least one side one side of at least one air inlet passage 51 when the detachable cartridge is inserted into the cartridge receptacle.



FIGS. 9A-9L provide an illustrative example of a method of assembling such a device.


In some embodiments of the method, the cartridge 30 is assembled with a [protective] removable end cap 38 to protect the exposed heater contact tabs 33a protruding from the heater 36.


Provided herein is a method of fabricating a cartridge for a device for generating an inhalable aerosol comprising: providing a fluid storage compartment; affixing a heater to a first end with a snap-fit coupling; and affixing a mouthpiece to a second end with a snap-fit coupling.


Provided herein is a cartridge 30 for a device for generating an inhalable aerosol 10 with an airflow path comprising: a channel 50 comprising a portion of an air inlet passage 51; a second air passage 41 in fluid communication with the channel; a heater chamber 37 in fluid communication with the second air passage; a first condensation chamber 45 in fluid communication with the heater chamber; a second condensation chamber 46 in fluid communication with the first condensation chamber; and an aerosol outlet 47 in fluid communication with second condensation chamber.


Provided herein is a device 10 for generating an inhalable aerosol adapted to receive a removable cartridge 30, wherein the cartridge comprises a fluid storage compartment [or tank] 32; an air inlet 41; a heater 36, a [protective] removable end cap 38, and a mouthpiece 31.


Charging


In some cases, the vaporization device may comprise a power source. The power source may be configured to provide power to a control system, one or more heating elements, one or more sensors, one or more lights, one or more indicators, and/or any other system on the electronic cigarette that requires a power source. The power source may be an energy storage device. The power source may be a battery or a capacitor. In some cases, the power source may be a rechargeable battery.


The battery may be contained within a housing of the device. In some cases the battery may be removed from the housing for charging. Alternatively, the battery may remain in the housing while the battery is being charged. Two or more charge contact may be provided on an exterior surface of the device housing. The two or more charge contacts may be in electrical communication with the battery such that the battery may be charged by applying a charging source to the two or more charge contacts without removing the battery from the housing.



FIG. 18 shows a device 1800 with charge contacts 1801. The charge contacts 1801 may be accessible from an exterior surface of a device housing 1802. The charge contacts 1801 may be in electrical communication with an energy storage device (e.g., battery) inside of the device housing 1802. In some cases, the device housing may not comprise an opening through which the user may access components in the device housing. The user may not be able to remove the battery and/or other energy storage device from the housing. In order to open the device housing a user must destroy or permanently disengage the charge contacts. In some cases, the device may fail to function after a user breaks open the housing.



FIG. 19 shows an exploded view of a charging assembly 1900 in an electronic vaporization device. The housing (not shown) has been removed from the exploded view in FIG. 19. The charge contact pins 1901 may be visible on the exterior of the housing. The charge contact pins 1901 may be in electrical communication with a power storage device of the electronic vaporization device. When the device is connected to a power source (e.g., during charging of the device) the charging pins may facilitate electrical communication between the power storage device inside of the electronic vaporization device and the power source outside of the housing of the vaporization device. The charge contact pins 1901 may be held in place by a retaining bezel 1902. The charge contact pins 1901 may be in electrical communication with a charger flex 1903. The charging pins may contact the charger flex such that a need for soldering of the charger pins to an electrical connection to be in electrical communication with the power source may be eliminated. The charger flex may be soldered to a printed circuit board (PCB). The charger flex may be in electrical communication with the power storage device through the PCB. The charger flex may be held in place by a bent spring retainer 1904.



FIG. 20 shows the bent spring retainer in an initial position 2001 and a deflected position 2002. The bent spring retainer may hold the retaining bezel in a fixed location. The bent spring retainer may deflect only in one direction when the charging assembly is enclosed in the housing of the electronic vaporization device.



FIG. 21 shows a location of the charger pins 2101 when the electronic vaporization device is fully assembled with the charging pins 2101 contact the charging flex 2102. When the device is fully assembled at least a portion of the retaining bezel may be fitted in an indentation 2103 on the inside of the housing 2104. In some cases, disassembling the electronic vaporization device may destroy the bezel such that the device cannot be reassembled after disassembly.


A user may place the electronic smoking device in a charging cradle. The charging cradle may be a holder with charging contact configured to mate or couple with the charging pins on the electronic smoking device to provide charge to the energy storage device in the electronic vaporization device from a power source (e.g., wall outlet, generator, and/or external power storage device). FIG. 22 shows a device 2302 in a charging cradle 2301. The charging cable may be connected to a wall outlet, USB, or any other power source. The charging pins (not shown) on the device 2302 may be connected to charging contacts (not shown) on the charging cradle 2301. The device may be configured such that when the device is placed in the cradle for charging a first charging pin on the device may contact a first charging contact on the charging cradle and a second charging pin on the device may contact a second charging contact on the charging cradle or the first charging pin on the device may contact a second charging contact on the charging cradle and the second charging pin on the device may contact the first charging contact on the charging cradle. The charging pins on the device and the charging contacts on the cradle may be in contact in any orientation. The charging pins on the device and the charging contacts on the cradle may be agnostic as to whether they are current inlets or outlets. Each of the charging pins on the device and the charging contacts on the cradle may be negative or positive. The charging pins on the device may be reversible.



FIG. 23 shows a circuit 2400 that may permit the charging pins on the device to be reversible. The circuit 2400 may be provided on a PCB in electrical communication with the charging pins. The circuit 2400 may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) H bridge. The MOSFET H bridge may rectify a change in voltage across the charging pins when the charging pins are reversed from a first configuration where in a first configuration the device is placed in the cradle for charging with the first charging pin on the device in contact with the first charging contact on the charging cradle to a second charging pin on the device in contact with the second charging contact on the charging cradle to a second configuration where the first charging pin on the device is in contact with the second charging contact on the charging cradle and the second charging pin on the device is in contact with the first charging contact on the charging cradle. The MOSFET H bridge may rectify the change in voltage with an efficient current path.


As shown in FIG. 23 the MOSFET H bridge may comprise two or more n-channel MOSFETs and two or more p-channel MOSFETs. The n-channel and p-channel MOSFETs may be arranged in an H bridge. Sources of p-channels MOSFETs (Q1 and Q3) may be in electrical communication. Similarly, sources of n-channel FETs (Q2 and Q4) may be in electrical communication. Drains of pairs of n and p MOSFETs (Q1 with Q2 and Q3 with Q4) may be in electrical communication. TA common drain from one n and p pair may be in electrical communication with one or more gates of the other n and p pair and/or vice versa. Charge contacts (CH1 and CH2) may be in electrical communication to common drains separately. A common source of the n MOSFETs may be in electrical communication to PCB ground (GND). The common source of the p MOSFETs may be in electrical communication with the PCB's charge controller input voltage (CH+). When CH1 voltage is greater than CH2 voltage by the MOSFET gate threshold voltages, Q1 and Q4 may be “on,” connecting CH1 to CH+ and CH2 to GND. When CH2 voltage is greater than CH1 voltage by the FET gate threshold voltages, Q2 and Q3 may be “on,” connecting CH1 to GND and CH2 to CH+. For example, whether there is 9V or −9V across CH1 to CH2, CH+ will be 9V above GND. Alternatively, a diode bridge could be used, however the MOSFET bridge may be more efficient compared to the diode bridge.


In some cases the charging cradle may be configured to be a smart charger. The smart charger may put the battery of the device in series with a USB input to charge the device at a higher current compared to a typical charging current. In some cases, the device may charge at a rate up to about 2 amps (A), 4 A, 5 A, 6 A, 7 A, 10 A, or 15 A. In some cases, the smart charger may comprise a battery, power from the battery may be used to charge the device battery. When the battery in the smart charger has a charge below a predetermined threshold charge, the smart charger may simultaneously charge the battery in the smart charger and the battery in the device.


Cartridge/Vaporizer Attachment


Any of the cartridges described herein may be adapted for securely coupling with an electronic inhalable aerosol device (“vaporizer”) as discussed above. In particular described herein are cartridge designs that address the unrecognized problem of maintaining adequate electrical contact between a mouthpiece-containing cartridge and a rectangular vaporizer coupling region, particularly when the mouthpiece is held in a user's mouth.


Any of the cartridges described herein may be particularly well adapted for securing to a vaporizer by including a base region that mates with the rectangular coupling region of the vaporizer, where the base unit fits into a rectangular opening that is between 13-14 mm deep, 4.5-5.5 mm wide, and 13-14 mm long. The base having generally includes a bottom surface having a first electrical contact and a second electrical contact. In particular, any of the cartridges described herein may include a first locking gap on a first lateral surface of the base, and a second locking gap on a second lateral surface of the base that is opposite first lateral surface.


For example FIGS. 24A and 24B illustrate another variation of a cartridge having a base region 2401 with at least one locking gap 2404 on the first minor lateral wall 2407. A second locking gap (not shown) may be present on the opposite minor lateral wall. One or both major lateral walls 2418 may include a detent 2421. Any of these cartridges may also include a mouthpiece 2409, which may be at an end that is opposite of the bottom 2422, on which a pair of electrodes 2411 are positioned. FIGS. 25A and 25B show front and side views, respectively, of this example. The mouthpiece 2431 may have a distal edge 2471 that fits over the (transparent or translucent) elongate body (the elongate and flattened storage compartment configured to hold a liquid vaporizable material) of the cartridge and overhands it slightly, forming a lip or distal edge 2471 that extends only partially between the distal end and the proximal end of the storage compartment. A cannula 2475 is visible in the figure.


In FIGS. 24A-25B the locking gaps 2404, 2404′ on either side are shown as channels in the side (lateral) walls. They may extend across the entire side wall, parallel to the bottom as shown, or they may extend only partially through and may preferably be centered relative to the width of the wall. In other variations the locking gap may be a divot, pit, opening, or hole (though not into the internal volume holding the vaporizable material).


In general, the inventors have found that the vertical position of the locking gap may be important in maintaining the stability of the cartridge in the vaporizer, particularly in cartridges having a rectangular base region that is longer than 10 mm. Optimally, the locking gap may be between about 1 and 5 mm from the bottom of the base region, and more specifically, between about 3 and 4 mm (e.g., approximately 3.3 mm), as shown in FIG. 26A which indicates exemplary dimensions for the section through FIG. 26B.


The cartridges shown in FIGS. 24A-24B also include a detent 2421 that is positioned between about 7 and 11 mm up from the bottom of the cartridge. The detent may help hold the cartridge base in the vaporizer, and may cooperate with the locking gap, but is optional (and shown in dashed lines in FIGS. 2A-25B.


In FIGS. 24A-25B the cartridge base is also transparent, and shows an internal air channel (cannula 2505).



FIGS. 27A-27B show another example of a vaporizer including a battery and control circuitry. FIGS. 27A and 27B also illustrate the mating region 2704 (cartridge receptacle). In this example, the mating region includes two detents 2706 that may mate with the locking gaps on the cartridge when it is inserted into the vaporizer. Exemplary dimensions for the mating region are shown. In this example the locking detents (which complement the locking gaps on the cartridge) are indentations that project into the mating region. These locking determent may be a ridge, pin, or other projection (including spring-loaded members).



FIGS. 28A-28D show an example of a vaporizer 2803 into which a cartridge 2801 has been securely loaded. In FIG. 28A the cartridge has been snapped into position so that the locking gaps of the cartridge engage with the locking detents in the vaporizer. FIG. 28B is side view and FIG. 28C show a sectional view; an enlarged portion of the sectional view is shown in FIG. 28D, showing the base of the cartridge seated in the mating region of the vaporizer. With the cartridge secured as shown, good electrical contact 2805 may be maintained. As seen in FIG. 28A (and as was previously seen in FIGS. 5-6D and 11-15) the vaporizer 2803 includes an elongate, flattened and opaque body having a distal end and a proximal end and a front side 2815, a back side and opposite lateral sides 2817 extending between the distal and proximal ends. This shape may prevent the elongate, flattened and opaque body is prevented from rolling when placed on a flat surface because the diameter of the front and back sides are larger than the diameter of the opposite lateral sides. The vaporizer also includes a cartridge receptacle 2704 (clearly visible in the cross-section of FIG. 27B) formed at the proximal end of the elongate, flattened and opaque body, wherein the cartridge receptacle has a proximal-facing opening into the proximal end of the elongate, flattened and opaque body. The cartridge receptacle includes a proximal edge 2722 around the proximal-facing opening, and a notch 2724 or cut-out region in the proximal edge of the cartridge receptacle. The notch may be in the front and/or back side of the elongate, flattened and opaque body extending towards the distal end of the elongate, flattened and opaque body so that a portion of the storage compartment and the cannula within the storage compartment are visible through the notch when the cartridge is housed within the cartridge receptacle, as shown in FIG. 28A.


In the sectional view of FIG. 28D, the cartridge is held securely within the cartridge receptacle by a pair of detents 2706 on either side (in this case, on two of the lateral sides) of the cartridge receptacle that mate with and engage a mating region (locking gaps 2736) on opposite sides of the cartridge. The detents project into the cartridge receptacle and each engage a mating region (locking gap) on or in the lateral sides of the storage compartment of the cartridge to hold the cartridge within the cartridge receptacle with the mouthpiece outside of the cartridge receptacle.


When secured by this friction coupling as shown, the electrical contacts 2844 in or on the distal surface within the cartridge receptacle connect to electrical contacts 2411 (electrodes) on the cartridge. As mentioned above, the electrical contacts 2844 (see, e.g., FIG. 24B and for the vaporizer in the cartridge receptacle may be pogo pins.


A mechanical coupling or connection between the cartridge 2801 and the vaporizer 2803 is visible in the enlarged view of FIG. 28D. In this example, the outer surface of the elongate and flattened storage compartment 2855 (which is not covered at the distal end by the mouthpiece) engages snugly within the walls of the cartridge receptacle 2851.


Although the cartridges shown in FIGS. 24A-28D are similar, and include a proximal mouthpiece and distal base that are nearly equivalent in size, with the reservoir for the vaporizable material between them and the wick, resistive heater, heating chamber and electrodes at the distal most end (near the bottom of the base), many other cartridge configurations are possible while still securely seating into a vaporizer having the same vaporizer mating region shown in FIGS. 28A-28B. For example, FIGS. 29A-29D illustrate alternative variations of cartridges having similar electrode. In FIG. 29A the base region includes two projecting feet that include locking gaps (mating regions on the storage compartment of the cartridge to hold the cartridge within the cartridge receptacle with the mouthpiece outside of the cartridge receptacle), and the electrodes on the base (not shown) connect via electrical traces (e.g. wires, etc.) to a heating element, wick and the reservoir nearer to the distal end (not visible).


In FIG. 29B the base extends further than 11 mm (e.g., 20-30 mm) and may house the reservoir (fluid storage compartment). Similarly in FIG. 29C the base region is the same as in FIG. 29B, but the more proximal portion is enlarged. In FIG. 29D the fluid non-base portion of the cartridge (more proximal than the base region) may have a different dimension. All of the variations shown in FIGS. 29A-29D, as in the variations shown in FIG. 24A-25B, may mate with the same vaporizer, and because of the dimensions of the base region, may be securely held and maintain electrical contact, even when a user is holding the device in their mouth.


Similarly, FIGS. 29E-29H illustrate variations of cartridges that may house the fluid storage compartment. Each of FIGS. 29E-29H, as in FIGS. 29A-29D, show an elongate and flattened storage compartment and an opaque mouthpiece at the proximal end of the storage compartment. In FIGS. 29F and 29G, the mouthpiece includes a cut-out notch as illustrated and described above for FIGS. 5, 7, 9, 24A-24B, and 28A. Any of the examples shown in FIGS. 29A-29H may include a mating region on the storage compartment of the cartridge to hold the cartridge within the cartridge receptacle with the mouthpiece outside of the cartridge receptacle.


For example, FIG. 30 shows one example of a cartridge including a reservoir that may be filled as described herein. FIGS. 1A-1G show a schematic illustration of another example of cartridge. In general a cartridge may include a reservoir into which fluid may be filled, a tank 3001 (housing the reservoir), an elastomeric cap, and a porous wick at one end of the tank, which passes from within the tank to an external surface. The porous wick may be any appropriate material, including woven, braided, fibrous, and knitted materials. The wick may be coupled with or integral with a heating element. For example, a wire for resistive heating may be wrapped around an external portion of the wick, forming a wick/coil assembly 3005 as shown in FIG. 30. The wick may be any appropriate material, including metals, polymers, natural fibers, synthetic fibers, or combinations of these. The wick is porous and provides a capillary pathway for fluid within the tank through and into the wick; the capillary pathway is generally large enough to permit wicking of sufficient material to replace vaporized liquid transferred from the tank by capillary action (wicking) during use of the electronic cigarette, but may be small enough to prevent leakage of the vaporizable fluid material out of the cartridge during normal operation, including when applying pressure (e.g., squeezing) the cartridge. The external portion of the wick may include a wick housing 3005. The wick housing and/or wick may be treated to prevent leakage. For example, the wick and/or wick housing may be coated after filling to prevent leakage and/or evaporation through the wick until activated by connecting to an electronic cigarette and/or applying current through the electrical contacts 3007 (e.g., operation in an electronic cigarette), or otherwise using the cartridge. Any appropriate coating may be used, including a heat-vaporizable coating (e.g., a wax or other material), a frangible material, or the like.


The cartridge may also include an air path through the tank (shown as a cannula 3009 in FIG. 30), which may at least partially partition the volume of the tank. The tank may include an elastomeric portion, such as all or a portion of the side, bottom, top, etc. In FIG. 30, the tank is covered by an elastomeric cap 3011 (elastomeric tank cap). The elastomeric portion (e.g., cap) may, in some variations, be on an opposite side from the wick.


In the variation shown in FIG. 30, the cartridge including the tank also include a cover (cap 3015) and is configured to be used as a mouthpiece, so includes a mouthpiece portion 3017 that is separated from the tank 3001 by one or more absorbent pads 3019.


In general, the methods described herein may include filling the tank (e.g. of a cartridge) that includes a wick at one end. The method may generally include positioning the empty and fully assembled tank (e.g. cartridge) so that it may be filled by a single needle that is inserted from the bottom or side (but not the top) of the empty tank. For example, the tank may be held on its side or upside down.


EXAMPLES

Any of the cartridges described in the figures and description above may include an elongate and flattened storage compartment for holding a vaporizable material and a mouthpiece at the proximal end of cartridge. In particular, FIGS. 5-7B, 8B, 9, 11-15, and 16C show examples of a cartridge for use with a vaporizer device that includes an elongate and flattened storage compartment (see, element 32 in FIG. 7B and element 32a in FIGS. 9A-9L) configured to hold a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment, further wherein the storage compartment comprises a distal end and a proximal end, and a first side extending between the distal end and the proximal end. In each of these examples the cartridge also includes an opaque mouthpiece (e.g., 31 in FIGS. 7B and 8B) that is secured over the proximal end of the storage compartment, the opaque mouthpiece having a front side adjacent to the first side of the storage compartment, wherein a distal end of the opaque mouthpiece terminates in a distal edge that extends only partially between the distal end and the proximal end of the storage compartment. The mouthpiece includes an opening 72, 72′ through the opaque mouthpiece at a proximal end of the opaque mouthpiece. The mouthpiece also includes a notch (in FIGS. 5, 7A, 7B, 8, 9 and 11-13, the notch is a triangular-shaped cut-out region 88 in the front side of the mouthpiece extending from the distal edge of the opaque mouthpiece toward the proximal end of the mouthpiece, wherein the notch exposes a region of the storage compartment beneath the mouthpiece. The notch (cut-out region) in either the mouthpiece or the vaporizer body may be any appropriate shape, including rectangular, hexagonal, oval, semi-circular, pentagonal, etc. (or any combination of these). Any of the cartridges described herein may also include a heater at the distal end of the storage compartment, wherein the heater comprises a heating chamber, a wick 34 within the heating chamber, and a resistive heating element 35 in thermal contact with the wick. Any of these cartridges may also include a channel 46 or cannula within the storage compartment extending from the heater to the proximal end of the storage compartment, wherein the liquid vaporizable material is visible through the notch, further wherein the cannula or channel forms a fluid connection between the heating chamber and the opening through the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled, as shown in FIGS. 7CB and 8B. In some variations, the channel may extend through the liquid vaporizable material from the heater to the proximal end of the storage compartment so that the liquid vaporizable material surrounds the cannula when the storage compartment is filled with liquid vaporizable material. The cannula may be visible through the notch. The cannula may form a fluid connection between the heating chamber and the opening through the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled.


The cartridges shown in FIGS. 7A-9 may also include a friction coupling between the cartridge and the vaporizer. For example, the cartridge may include a pair of locking gaps on lateral sides of the cartridge that are configured to engage with a pair of locking detents on the vaporizer device to secure the cartridge in the vaporizer device.


As discussed above, these features are also apparent in FIGS. 24A-26B, although the notch 2481 in this example may be shaped differently (e.g., shown as half of a flattened hexagon, compared to the half-diamond shape of FIGS. 8B and 9. For example, in FIGS. 24A-24B and 30, the cartridge 2000 for use with a vaporizer device includes the elongate and flattened storage compartment 2490 configured to hold a liquid vaporizable material, wherein the liquid vaporizable material is visible through the storage compartment. The storage compartment includes a distal end and a proximal end, and a first side 2492 extending between the distal end and the proximal end. The cartridge also includes an opaque mouthpiece 2409 that is secured over the proximal end of the storage compartment, the opaque mouthpiece having a front side 2494 adjacent to the first side of the storage compartment, wherein a distal end of the opaque mouthpiece terminates in a distal edge 2471 that extends only partially between the distal end and the proximal end of the storage compartment. The mouthpiece also includes an opening 2495 through the opaque mouthpiece at a proximal end of the opaque mouthpiece, and a notch 2481 in the front side of the mouthpiece extending from the distal edge of the opaque mouthpiece toward the proximal end of the mouthpiece, wherein the notch exposes a region of the storage compartment beneath the mouthpiece. The cartridge also includes a heater 2485 at the distal end of the storage compartment, wherein the heater comprises a heating chamber 2486, a wick (not visible in FIG. 24A-24B) within the heating chamber, and a resistive heating element (not visible in FIG. 24A-24B) in thermal contact with the wick. The cartridge also includes a cannula 2475, 3009 within the storage compartment extending through the liquid vaporizable material from the heater to the proximal end of the storage compartment so that the liquid vaporizable material surrounds the cannula when the storage compartment is filled with liquid vaporizable material. The cannula is visible through the notch 2481 (e.g., when the cartridge is inserted into the vaporizer fully, as shown in FIG. 33A), further wherein the cannula forms a fluid connection between the heating chamber and the opening through the opaque mouthpiece from which vaporized liquid vaporizable material may be inhaled.


As mentioned above, the opaque mouthpiece may be attached over the proximal end of the elongate storage compartment in any appropriate manner, including an adhesive and/or a snap-fit over the proximal end of the storage compartment.



FIGS. 31A-31L show alternative examples the mouthpiece cut-out regions (notches) that may be used. In all of these examples, the opaque mouthpiece is fixed (e.g., by adhesive, snap-fit, etc.) over the transparent or translucent elongate and flattened storage compartment 3103, similar to the examples described above (e.g., in FIGS. 9A-9L). The heater region 3107 at the distal end includes a wick and coil (as shown in FIG. 8D and 30), and a cannula 3109 is visible through the storage compartment and connects the heater forming the vapor to one or more openings on the mouthpiece. Each of the variations shown in FIGS. 31A-31L has a different notch or cut-out region 3111. The notch extends from the distal edge of the mouthpiece up towards the proximal end of the mouthpiece and exposes a window through the transparent/translucent storage compartment even when the cartridge is inserted into a vaporizer up to the distal edge formed by the mouthpiece. Thus, in general, this notch, cut-out or window extends up into the lateral side of the mouthpiece, e.g., on the front and/or back sides of the opaque mouthpiece between the distal and proximal ends of the cartridge. For example, the notch cuts up into the opaque mouthpiece from the lateral edges of the mouthpiece that extend along the minor sides (e.g., see the side 2509 of the mouthpiece 2431 in FIG. 25B, and it's opposite side, not visible in FIG. 25B), and at the lateral sides of the front and back distal edge that are at the same height as the distal edge of the mouthpiece on the minor sides of the mouthpiece. The minor sides are also referred to as the lateral sides. Note that the lateral sides are shown as having a diameter that is less than the diameter of the major (front, back) sides of the cartridge in many of these examples, which are primarily rectangular or approximately rectangular. As mentioned above, other non-rectangular, but still flattened and elongate cartridge profiles (e.g., storage compartment profiles) may be used, including hexagonal (e.g., having two pairs of minor sides with diameters that are slightly less than or equal to the major sides), oval (where the minor sides are rounded, rather than flat, etc.


The notch (cut-out region) forming the window in the cartridge may mate with complementary notch on the vaporizer, as shown in FIGS. 32-34L, below. In this case, the cartridge notch forms half the window, while the vaporizer notch (through the cartridge receptacle) forms the other half of the notch. The distal-most edge of the mouthpiece around the storage compartment sits flush against the vaporizer (e.g., against the upper proximal rim of the cartridge receptacle).


For example, FIG. 31A shows a notch 3111 that is a semicircle or semi-oval shape. FIG. 31B is a semi-octagonal shape; FIG. 31C shows two triangular (or semi-diamond) adjacent notches. FIG. 31D shows a semi-crescent notch. FIG. 31E shows a semi-star notch; FIG. 31F shows a semi-lip notch; FIG. 31G shows a semi-clover notch. FIG. 31H shows a Gaussian notch. FIG. 31I shows a semi-square (or rectangular) notch. FIG. 31J is a pair of adjacent semicircular or semi-oval notches. FIG. 31K shows a semi-plus-shaped notch. FIG. 31L is an alternative semi-star-shaped notch.



FIG. 32 shows a cartridge 3203 such as the one shown in FIGS. 24A-25B coupled in the cartridge receptacle at the proximal end of an elongate flattened body 3205 of a vaporizer. In this example, the hemi-hexagonal notch in the front (and back) of the mouthpiece of the cartridge forms a hexagonal window with the complementary notch in the cartridge receptacle. The cannula is visible within the storage compartment and may provide a convenience reference, contrast, and scale for any vaporizing fluid within the storage compartment. The internal cannula may also provide a baffle to prevent or reduce bubbles forming within the vaporizable material.


Although the examples shown in FIGS. 32-34L all show a notch cut in the distal edge of the cartridge receptacle, this second notch may be optional. Also, although the notches are shown to be mirrors of each other, the first notch (in the cartridge) may be different from the second notch.


When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.


Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.


Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.


Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.


Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.


As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.


Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.


The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims
  • 1. An apparatus comprising: a cartridge comprising a mouthpiece, a storage compartment configured to hold a vaporizable material, and a heater chamber comprising a resistive heating element configured to heat the vaporizable material, wherein the heating of the vaporizable material generates an aerosol comprising the vaporizable material and air passing along an airflow path; anda body comprising a receptacle configured to insertably receive and couple to the cartridge, wherein the heater chamber is disposed within the receptacle when the receptacle insertably receives and couples to the cartridge,wherein the airflow path comprises: an air inlet passage having a first side formed by an exterior surface of the cartridge and a second side formed by an internal surface of the receptacle when the receptacle insertably receives and couples to the cartridge, wherein the air inlet passage is configured to deliver the air to the heater chamber; anda fluid connection in the cartridge, the fluid connection connecting the heater chamber and the mouthpiece.
  • 2. The apparatus of claim 1, wherein the cartridge further comprises a protrusion extending from the exterior surface of the cartridge, and wherein at least part of the protrusion is disposed within the receptacle when the receptacle insertably receives and couples to the cartridge.
  • 3. The apparatus of claim 1, wherein the cartridge has a proximal end and a distal end opposite the proximal end, wherein the mouthpiece is disposed at the proximal end, and wherein the heater chamber is disposed proximate to the distal end.
  • 4. The apparatus of claim 3, wherein the receptacle terminates in a proximal edge, wherein the air inlet passage extends from the proximal edge of the receptacle towards the distal end of the cartridge when the receptacle insertably receives and couples to the cartridge.
  • 5. The apparatus of claim 3, wherein the mouthpiece comprises a condensation chamber, wherein the mouthpiece further comprises a first aerosol outlet and a second aerosol outlet, and wherein each of the first aerosol outlet and the second aerosol outlet are in fluid communication with the condensation chamber.
  • 6. The apparatus of claim 3, wherein the cartridge has a longitudinal dimension extending from the proximal end of the cartridge to the distal end of the cartridge, and wherein the exterior surface of the cartridge and the internal surface of the receptacle are substantially parallel to the longitudinal dimension when the receptacle insertably receives and couples to the cartridge.
  • 7. The apparatus of claim 3, wherein the storage compartment comprises the exterior surface of the cartridge forming the first side of the air inlet passage.
  • 8. The apparatus of claim 3, wherein the storage compartment comprises four exterior walls between the distal end and the proximal end, and wherein the mouthpiece comprises four interior walls between the distal end and the proximal end, and wherein the mouthpiece is attached over part of the storage compartment by a snap fit coupling.
  • 9. The apparatus of claim 8, wherein the mouthpiece forms a cavity, wherein a first portion of the storage compartment is disposed inside of the cavity and a second portion of the storage compartment is disposed outside of the cavity, at least part of the second portion configured for insertion into the receptacle.
  • 10. The apparatus of claim 9, wherein a surface feature of the cavity is configured to secure the mouthpiece to the storage compartment.
  • 11. The apparatus of claim 9, wherein the mouthpiece comprises a first coupling feature and a second coupling feature, wherein the storage compartment comprises a third coupling feature and a fourth coupling feature on opposite exterior surfaces of the storage compartment, wherein the first coupling feature is configured to couple with one of the third coupling feature and the fourth coupling feature, and wherein the second coupling feature is configured to couple with the other of the third coupling feature and the fourth coupling feature.
  • 12. The apparatus of claim 11, wherein the third coupling feature comprises a first raised rail, and wherein the fourth coupling feature comprises a second raised rail.
  • 13. The apparatus of claim 9, wherein the mouthpiece is opaque, and wherein the second portion of the storage compartment comprises a surface configured so that the vaporizable material is visible through the surface.
  • 14. The apparatus of claim 13, wherein the receptacle is configured so that the second portion of the storage compartment is visible when the cartridge is coupled to the receptacle, through a notch in the receptacle.
  • 15. The apparatus of claim 1, wherein the cartridge comprises a first electrical contact and a second electrical contact at a distal end of the cartridge, the mouthpiece disposed at a proximal end of the cartridge opposite the distal end, wherein the first electrical contact and the second electrical contact are electrically isolated and disposed in a plane substantially parallel to the distal end of the cartridge.
  • 16. The apparatus of claim 15, wherein the receptacle comprises a third electrical contact and a fourth electrical contact disposed in a second plane, the second plane substantially parallel to the distal end of the cartridge when the cartridge is received within the receptacle.
  • 17. The apparatus of claim 1, wherein a wick comprises at least one of: a silica material, a cotton material, a ceramic material, a hemp material, and a stainless steel material.
  • 18. The apparatus of claim 1, wherein the body has a top end and a bottom end opposite the top end, wherein the receptacle is disposed at the top end, wherein a body longitudinal axis extends from the top end to the bottom end, and wherein a first body transverse axis and a second body transverse axis extend substantially perpendicular to the body longitudinal axis, the body having a greater dimension along the first body transverse axis than along the second body transverse axis.
  • 19. The apparatus of claim 1, wherein the storage compartment comprises the vaporizable material, and wherein the vaporizable material comprises a nicotine formulation.
  • 20. An apparatus comprising: a cartridge comprising a mouthpiece, a storage compartment configured to hold a vaporizable material, and a resistive heating element configured to heat the vaporizable material, wherein the heating of the vaporizable material generates an aerosol comprising the vaporizable material and air passing along an airflow path; anda body comprising a receptacle configured to insertably receive and couple to the cartridge, wherein the resistive heating element is disposed within the receptacle when the receptacle insertably receives and couples to the cartridge, wherein the airflow path comprises:an air inlet passage having a first side formed by an exterior surface of the cartridge and a second side formed by an internal surface of the receptacle when the receptacle insertably receives and couples to the cartridge, wherein the air inlet passage is configured to deliver the air towards the resistive heating element; anda fluid connection in the cartridge, the fluid connection connecting the resistive heating element and the mouthpiece.
  • 21. The apparatus of claim 20, wherein the cartridge further comprises a protrusion extending from the exterior surface of the cartridge, and wherein at least part of the protrusion is disposed within the receptacle when the receptacle insertably receives and couples to the cartridge.
  • 22. The apparatus of claim 20, wherein the cartridge has a proximal end and a distal end opposite the proximal end, wherein the mouthpiece is disposed at the proximal end, and wherein the resistive heating element is disposed proximate to the distal end.
  • 23. The apparatus of claim 22, wherein the receptacle terminates in a proximal edge, wherein the air inlet passage extends from the proximal edge of the receptacle towards the distal end of the cartridge when the receptacle insertably receives and couples to the cartridge.
  • 24. The apparatus of claim 22, wherein the cartridge has a longitudinal dimension extending from the proximal end of the cartridge to the distal end of the cartridge, and wherein the exterior surface of the cartridge and the internal surface of the receptacle are substantially parallel to the longitudinal dimension when the receptacle insertably receives and couples to the cartridge.
  • 25. The apparatus of claim 22, wherein the storage compartment comprises the exterior surface of the cartridge forming the first side of the air inlet passage.
  • 26. The apparatus of claim 22, wherein the storage compartment comprises four exterior walls between the distal end and the proximal end, and wherein the mouthpiece comprises four interior walls between the distal end and the proximal end, and wherein the mouthpiece is attached over part of the storage compartment by a snap fit coupling.
  • 27. The apparatus of claim 26, wherein the mouthpiece forms a cavity, wherein a first portion of the storage compartment is disposed inside of the cavity and a second portion of the storage compartment is disposed outside of the cavity, at least part of the second portion configured for insertion into the receptacle.
  • 28. The apparatus of claim 20, wherein the body has a top end and a bottom end opposite the top end, wherein the receptacle is disposed at the top end, wherein a body longitudinal axis extends from the top end to the bottom end, and wherein a first body transverse axis and a second body transverse axis extend substantially perpendicular to the body longitudinal axis, the body having a greater dimension along the first body transverse axis than along the second body transverse axis.
  • 29. The apparatus of claim 1, wherein the receptacle comprises an opening that is between approximately 13 to approximately 14 mm long, approximately 4.5 to approximately 5.5 mm wide, and at least 10 mm deep.
  • 30. The apparatus of claim 20, wherein the storage compartment comprises the vaporizable material, and wherein the vaporizable material comprises a nicotine formulation.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 15/257,760, filed Sep. 6, 2016 and titled “VAPORIZER DEVICE”, which claims priority as a continuation-in-part of U.S. patent application Ser. No. 14/581,666, filed Dec. 23, 2014 and titled “VAPORIZATION DEVICE SYSTEMS AND METHODS”, which claims priority to U.S. Provisional Patent Application No. 61/936,593, filed Feb. 6, 2014 and titled “ELECTRONIC CIGARETTE JUICE DEVICE,” and to U.S. Provisional Patent Application No. 61/937,755, filed Feb. 10, 2014 and titled “ELECTRONIC CIGARETTE JUICE DEVICE”. Each of these patent applications is herein incorporated by reference in its entirety. U.S. patent application Ser. No. 15/257,760 also claims priority to U.S. Provisional Patent Application No. 62/294,285, filed Feb. 11, 2016[H] and titled “FILLABLE ELECTRONIC CIGARETTE CARTRIDGE AND METHOD OF FILLING,” and to U.S. Provisional Patent Application No. 62/294,281, filed Feb. 11, 2016 and titled “SECURELY ATTACHING CARTRIDGES FOR VAPORIZER DEVICES”. Each of these patent applications is herein incorporated by reference in its entirety. U.S. patent application Ser. No. 15/257,760 also claims priority as a continuation-in-part to International Design Application No. 35/001,169, filed Mar. 11, 2016 and titled “VAPORIZER WITH WINDOWED CARTRIDGE”, and claims priority as a continuation-in-part International Design Application No. 35/001,170, filed Mar. 11, 2016 and titled “WINDOWED VAPORIZER CARTRIDGE”. Each of these patent applications is herein incorporated by reference in its entirety.

US Referenced Citations (480)
Number Name Date Kind
D143295 Fisher Dec 1945 S
3085145 Wray Apr 1963 A
3271719 Ovshinsky Sep 1966 A
3918451 Steil Nov 1975 A
3934117 Schladitz Jan 1976 A
4171000 Uhle Oct 1979 A
D260690 Stutzer Sep 1981 S
D267590 Varma Jan 1983 S
4492480 Wadso et al. Jan 1985 A
D280494 Abel Sep 1985 S
4548454 Zeller et al. Oct 1985 A
4745705 Yamamoto et al. May 1988 A
D299066 Newell et al. Dec 1988 S
4793365 Sensabaugh, Jr. et al. Dec 1988 A
4811731 Newell et al. Mar 1989 A
D303722 Marlow et al. Sep 1989 S
4947874 Brooks et al. Aug 1990 A
4947875 Brooks et al. Aug 1990 A
D310349 Rowen Sep 1990 S
4993436 Bloom, Jr. Feb 1991 A
5042509 Banerjee et al. Aug 1991 A
5117482 Hauber May 1992 A
5144962 Counts et al. Sep 1992 A
D336346 Miller et al. Jun 1993 S
5259786 Huang Nov 1993 A
5261424 Sprinkel, Jr. Nov 1993 A
5269327 Counts et al. Dec 1993 A
H1271 Shouse Jan 1994 H
5479948 Counts et al. Jan 1996 A
D368552 Adams Apr 1996 S
D371633 Chenard Jul 1996 S
D379810 Giordano, Jr. et al. Jun 1997 S
D382146 Sandy Aug 1997 S
5661329 Hiramoto et al. Aug 1997 A
5682050 Williams Oct 1997 A
D397504 Zelenik Aug 1998 S
D398150 Vonarburg Sep 1998 S
D405007 Naas, Sr. Feb 1999 S
D405413 Segers Feb 1999 S
5865185 Collins et al. Feb 1999 A
D411332 Zelenik Jun 1999 S
D412279 Brice Jul 1999 S
D422884 Lafond Apr 2000 S
D424236 Reed May 2000 S
6090082 King et al. Jul 2000 A
D433532 Higgins et al. Nov 2000 S
6155268 Takeuchi Dec 2000 A
6203339 Nieminen Mar 2001 B1
6283610 Alajajian Sep 2001 B1
D450313 Koinuma Nov 2001 S
D450662 Kwok Nov 2001 S
6516796 Cox et al. Feb 2003 B1
D478569 Hussaini et al. Aug 2003 S
D478897 Tsuge Aug 2003 S
6637430 Voges et al. Oct 2003 B1
6708846 Fuchs et al. Mar 2004 B1
6743030 Lin et al. Jun 2004 B2
6772756 Shayan Aug 2004 B2
D500301 Deguchi Dec 2004 S
D500302 Deguchi Dec 2004 S
D505922 Mayo et al. Jun 2005 S
D506447 Mayo et al. Jun 2005 S
D506731 Mayo et al. Jun 2005 S
6909840 Harwig et al. Jun 2005 B2
D507244 Mayo et al. Jul 2005 S
7019491 Bozzone et al. Mar 2006 B2
D523171 Mitten et al. Jun 2006 S
D525948 Blair et al. Aug 2006 S
D528992 Hobart et al. Sep 2006 S
D529044 Andre et al. Sep 2006 S
D530340 Andre et al. Oct 2006 S
D531190 Lee et al. Oct 2006 S
D532927 Sann Nov 2006 S
D534921 Andre et al. Jan 2007 S
D535261 Daniels Jan 2007 S
D535308 Andre et al. Jan 2007 S
7173222 Cox et al. Feb 2007 B2
D539813 Chen Apr 2007 S
D540749 Kaule Apr 2007 S
7214075 He et al. May 2007 B2
D545303 Chang Jun 2007 S
D545490 Tai Jun 2007 S
D545904 Chen et al. Jul 2007 S
D546782 Poulet et al. Jul 2007 S
7275941 Bushby Oct 2007 B1
D556154 Poulet et al. Nov 2007 S
D557209 Ahlgren et al. Dec 2007 S
D558060 {hacek over (S)}ir et al. Dec 2007 S
7318435 Pentafragas Jan 2008 B2
D566709 Kim et al. Apr 2008 S
D568298 Lundgren et al. May 2008 S
D571556 Raile Jun 2008 S
D573474 Beam et al. Jul 2008 S
D576619 Udagawa et al. Sep 2008 S
D577019 Udagawa et al. Sep 2008 S
D577150 Bryman et al. Sep 2008 S
D579934 Okamoto et al. Nov 2008 S
D585077 Sheba et al. Jan 2009 S
D589941 Maier et al. Apr 2009 S
D591758 Lee May 2009 S
D607403 Hara et al. Jan 2010 S
7646613 Ligtenberg et al. Jan 2010 B2
D610588 Chen Feb 2010 S
D611409 Green et al. Mar 2010 S
D616753 Beam et al. Jun 2010 S
7726320 Robinson et al. Jun 2010 B2
7802569 Yeates et al. Sep 2010 B2
D624880 Felegy, Jr. et al. Oct 2010 S
D631055 Gilbert et al. Jan 2011 S
D631458 Liao et al. Jan 2011 S
D631885 Maier Feb 2011 S
D634735 Maier Mar 2011 S
7905236 Bryman et al. Mar 2011 B2
7913688 Cross et al. Mar 2011 B2
D639303 Ni et al. Jun 2011 S
D639782 Kim Jun 2011 S
D641718 Sakai Jul 2011 S
D645817 Sasada et al. Sep 2011 S
D647247 Jones Oct 2011 S
D649708 Oneil Nov 2011 S
D649932 Symons Dec 2011 S
D656496 Andre et al. Mar 2012 S
D661991 Brummelhuis et al. Jun 2012 S
D664636 Robinson et al. Jul 2012 S
D669530 Hung Oct 2012 S
D670659 Ishikawa et al. Nov 2012 S
D674748 Ferber et al. Jan 2013 S
D676741 van Landsveld Feb 2013 S
D681445 van Landsveld May 2013 S
D682841 Suetake et al. May 2013 S
D686987 Vanstone et al. Jul 2013 S
D687042 Yoneta et al. Jul 2013 S
8485180 Smutney et al. Jul 2013 B2
8522776 Wright et al. Sep 2013 B2
8528569 Newton Sep 2013 B1
D695450 Benassayag et al. Dec 2013 S
D700572 Esses Mar 2014 S
D703679 Chen Apr 2014 S
D704629 Liu May 2014 S
D704634 Eidelman et al. May 2014 S
D705918 Robinson et al. May 2014 S
D707389 Liu Jun 2014 S
D707688 Wu Jun 2014 S
8752545 Buchberger Jun 2014 B2
D708727 Postma Jul 2014 S
D711389 Sun et al. Aug 2014 S
D711891 Emami et al. Aug 2014 S
D712347 Awiszus et al. Sep 2014 S
8833364 Buchberger Sep 2014 B2
8881738 Bryman Nov 2014 B2
8893726 Hon Nov 2014 B2
8897628 Conley et al. Nov 2014 B2
D718723 Clymer et al. Dec 2014 S
D718933 Brown, Jr. Dec 2014 S
D720095 Alima Dec 2014 S
D721202 Liu Jan 2015 S
D723735 Liu Mar 2015 S
D723736 Liu Mar 2015 S
D723737 Liu Mar 2015 S
D724037 Yoshioka Mar 2015 S
D725310 Eksouzian Mar 2015 S
D725821 Levin et al. Mar 2015 S
8991402 Bowen et al. Mar 2015 B2
D726727 Holz et al. Apr 2015 S
9010335 Scatterday Apr 2015 B1
D728855 Liu May 2015 S
D729277 Uchida May 2015 S
D729444 Leidel May 2015 S
D729445 Leidel May 2015 S
D730571 Chen May 2015 S
D730572 Leidel May 2015 S
D731114 Leidel Jun 2015 S
D732733 Spagnolo et al. Jun 2015 S
D733356 Leidel Jun 2015 S
9072321 Liu Jul 2015 B2
9078473 Worm et al. Jul 2015 B2
D737508 Liu Aug 2015 S
9101729 Liu Aug 2015 B2
D738038 Smith Sep 2015 S
D739973 Chao Sep 2015 S
9132248 Qiu Sep 2015 B2
9167849 Adamic Oct 2015 B2
D742492 Robinson et al. Nov 2015 S
D743099 Oglesby Nov 2015 S
D744342 Blasko et al. Dec 2015 S
D745004 Kim Dec 2015 S
9220302 DePiano et al. Dec 2015 B2
9247773 Memari et al. Feb 2016 B2
D752284 Doster Mar 2016 S
9271529 Alima Mar 2016 B2
9282772 Tucker et al. Mar 2016 B2
9289014 Tucker et al. Mar 2016 B2
D753090 Langhammer et al. Apr 2016 S
D755733 Ikegaya et al. May 2016 S
D755735 Kashimoto May 2016 S
D756032 Chen May 2016 S
D757690 Lee et al. May 2016 S
9345541 Greeley et al. May 2016 B2
D759031 Ozolins et al. Jun 2016 S
D760431 Liu Jun 2016 S
9364800 Dubief Jun 2016 B2
9386805 Liu Jul 2016 B2
D763203 Ikegaya et al. Aug 2016 S
D763204 Ikegaya et al. Aug 2016 S
9408416 Monsees et al. Aug 2016 B2
9414629 Egoyants et al. Aug 2016 B2
9420829 Thorens et al. Aug 2016 B2
9423152 Ampolini et al. Aug 2016 B2
9427022 Levin et al. Aug 2016 B2
D766873 Washio Sep 2016 S
D768920 Jones et al. Oct 2016 S
D769830 Clymer et al. Oct 2016 S
D770395 Clymer et al. Nov 2016 S
D773114 Leidel et al. Nov 2016 S
9498588 Benassayag et al. Nov 2016 B2
9504279 Chen Nov 2016 B2
D773727 Eksouzian Dec 2016 S
D774514 Turksu et al. Dec 2016 S
9510623 Tucker et al. Dec 2016 B2
9516899 Plojoux et al. Dec 2016 B2
9526273 Liu Dec 2016 B2
D776338 Lomeli Jan 2017 S
9549573 Monsees et al. Jan 2017 B2
D779677 Chen Feb 2017 S
D779719 Qiu Feb 2017 S
D780179 Bae et al. Feb 2017 S
9609893 Novak, III et al. Apr 2017 B2
9675109 Monsees et al. Jun 2017 B2
D793004 Liu Jul 2017 S
9714878 Powers et al. Jul 2017 B2
9723877 Wong et al. Aug 2017 B2
9772245 Besling et al. Sep 2017 B2
D799746 Leidel et al. Oct 2017 S
D800132 Maus et al. Oct 2017 S
9781953 Verleur et al. Oct 2017 B2
9795168 Zhu Oct 2017 B2
9801413 Zhu Oct 2017 B2
D802206 Huang et al. Nov 2017 S
D802838 Clark et al. Nov 2017 S
9814263 Cochand et al. Nov 2017 B2
9814265 Rinker et al. Nov 2017 B2
D806311 Smith Dec 2017 S
9844234 Thorens et al. Dec 2017 B2
D808073 Leidel Jan 2018 S
9861135 Chen Jan 2018 B2
D811003 Folyan Feb 2018 S
D815346 Bagai Apr 2018 S
9974743 Rose et al. May 2018 B2
D819881 Qiu Jun 2018 S
D822896 Durand Jul 2018 S
D825102 Bowen et al. Aug 2018 S
10039321 Verleur et al. Aug 2018 B2
10045568 Monsees et al. Aug 2018 B2
10058122 Steingraber et al. Aug 2018 B2
10058124 Monsees et al. Aug 2018 B2
10058129 Monsees et al. Aug 2018 B2
10085481 Verleur et al. Oct 2018 B2
10092713 Terry et al. Oct 2018 B2
10111470 Monsees et al. Oct 2018 B2
D834702 Evans et al. Nov 2018 S
10117465 Monsees et al. Nov 2018 B2
10117466 Monsees et al. Nov 2018 B2
D836190 Evans et al. Dec 2018 S
D836831 Cividi Dec 2018 S
D836834 Cividi Dec 2018 S
10143233 Dubief et al. Dec 2018 B2
10195345 Senior et al. Feb 2019 B2
10195370 Chen Feb 2019 B2
D842237 Qiu et al. Mar 2019 S
D844235 Cividi Mar 2019 S
D845964 Kim et al. Apr 2019 S
10264823 Monsees et al. Apr 2019 B2
20020043262 Langford et al. Apr 2002 A1
20020088469 Rennecamp Jul 2002 A1
20030096542 Kojima May 2003 A1
20030150451 Shayan Aug 2003 A1
20030226837 Blake et al. Dec 2003 A1
20040050382 Goodchild Mar 2004 A1
20040099266 Cross et al. May 2004 A1
20050029137 Wang Feb 2005 A1
20050134215 Bozzone et al. Jun 2005 A1
20050252511 Pentafragas Nov 2005 A1
20060141344 Chen et al. Jun 2006 A1
20060191546 Takano et al. Aug 2006 A1
20060191594 Py Aug 2006 A1
20060207466 McNulty et al. Sep 2006 A1
20070074734 Braunshteyn et al. Apr 2007 A1
20070089757 Bryman Apr 2007 A1
20070119450 Wharton et al. May 2007 A1
20070144514 Yeates et al. Jun 2007 A1
20070229025 Tsai et al. Oct 2007 A1
20070277816 Morrison et al. Dec 2007 A1
20070283972 Monsees et al. Dec 2007 A1
20080023003 Rosenthal Jan 2008 A1
20080029095 Esser Feb 2008 A1
20080092912 Robinson et al. Apr 2008 A1
20080257367 Paterno et al. Oct 2008 A1
20080302374 Wengert et al. Dec 2008 A1
20090095287 Emarlou Apr 2009 A1
20090151717 Bowen et al. Jun 2009 A1
20090230117 Fernando et al. Sep 2009 A1
20090260641 Monsees et al. Oct 2009 A1
20090272379 Thorens et al. Nov 2009 A1
20090283103 Nielsen et al. Nov 2009 A1
20100031968 Sheikh et al. Feb 2010 A1
20100163063 Fernando et al. Jul 2010 A1
20100163065 Chang Jul 2010 A1
20100192949 Wright et al. Aug 2010 A1
20100194337 Opolka Aug 2010 A1
20100253279 Matthias Oct 2010 A1
20110094523 Thorens et al. Apr 2011 A1
20110125146 Greeley et al. May 2011 A1
20110155153 Thorens et al. Jun 2011 A1
20110192397 Saskar et al. Aug 2011 A1
20110226236 Buchberger Sep 2011 A1
20110265806 Alarcon et al. Nov 2011 A1
20110303231 Li et al. Dec 2011 A1
20120018529 Gammon et al. Jan 2012 A1
20120048266 Alelov Mar 2012 A1
20120188687 Yamamoto Jul 2012 A1
20120199146 Marangos Aug 2012 A1
20120199663 Qiu Aug 2012 A1
20120223673 Chen et al. Sep 2012 A1
20120255546 Goetz et al. Oct 2012 A1
20120255567 Rose et al. Oct 2012 A1
20120318882 Abehasera Dec 2012 A1
20130037041 Worm et al. Feb 2013 A1
20130042865 Monsees et al. Feb 2013 A1
20130081642 Safari Apr 2013 A1
20130099725 Burrell et al. Apr 2013 A1
20130104916 Bellinger et al. May 2013 A1
20130152922 Benassayag et al. Jun 2013 A1
20130168880 Duke Jul 2013 A1
20130182421 Popper et al. Jul 2013 A1
20130192615 Tucker et al. Aug 2013 A1
20130192619 Tucker et al. Aug 2013 A1
20130213419 Tucker et al. Aug 2013 A1
20130220314 Bottom Aug 2013 A1
20130220315 Conley et al. Aug 2013 A1
20130220316 Oglesby et al. Aug 2013 A1
20130228191 Newton Sep 2013 A1
20130253433 Senior et al. Sep 2013 A1
20130255702 Griffith, Jr. et al. Oct 2013 A1
20130298905 Levin et al. Nov 2013 A1
20130306065 Thorens et al. Nov 2013 A1
20130306084 Flick Nov 2013 A1
20130319435 Flick Dec 2013 A1
20130323941 Zeliff et al. Dec 2013 A1
20130333700 Buchberger Dec 2013 A1
20130333711 Liu Dec 2013 A1
20140007891 Liu Jan 2014 A1
20140014124 Glasberg et al. Jan 2014 A1
20140014126 Peleg et al. Jan 2014 A1
20140053856 Liu Feb 2014 A1
20140053857 Liu Feb 2014 A1
20140053858 Liu Feb 2014 A1
20140107815 LaMothe Apr 2014 A1
20140116455 Youn May 2014 A1
20140123990 Timmermans May 2014 A1
20140144429 Wensley et al. May 2014 A1
20140144453 Capuano et al. May 2014 A1
20140150783 Liu Jun 2014 A1
20140150784 Liu Jun 2014 A1
20140161301 Merenda Jun 2014 A1
20140174458 Katz Jun 2014 A1
20140178461 Rigas Jun 2014 A1
20140182610 Liu Jul 2014 A1
20140190496 Wensley et al. Jul 2014 A1
20140202454 Buchberger Jul 2014 A1
20140224244 Liu Aug 2014 A1
20140253144 Novak, III et al. Sep 2014 A1
20140261408 DePiano et al. Sep 2014 A1
20140261486 Potter et al. Sep 2014 A1
20140261487 Chapman et al. Sep 2014 A1
20140261490 Kane Sep 2014 A1
20140261493 Smith et al. Sep 2014 A1
20140261495 Novak, III et al. Sep 2014 A1
20140270727 Ampolini et al. Sep 2014 A1
20140270729 DePiano et al. Sep 2014 A1
20140270730 DePiano et al. Sep 2014 A1
20140276536 Estes Sep 2014 A1
20140283858 Liu Sep 2014 A1
20140299137 Kieckbusch et al. Oct 2014 A1
20140299141 Flick Oct 2014 A1
20140305454 Rinker et al. Oct 2014 A1
20140332020 Li et al. Nov 2014 A1
20140332022 Li et al. Nov 2014 A1
20140338685 Amir Nov 2014 A1
20140345631 Bowen et al. Nov 2014 A1
20140345633 Talon et al. Nov 2014 A1
20140355969 Stern Dec 2014 A1
20140366898 Monsees et al. Dec 2014 A1
20140373857 Steinberg Dec 2014 A1
20140376895 Han Dec 2014 A1
20150013696 Plojoux et al. Jan 2015 A1
20150020831 Weigensberg et al. Jan 2015 A1
20150027457 Janardhan et al. Jan 2015 A1
20150027460 Liu Jan 2015 A1
20150027471 Feldman et al. Jan 2015 A1
20150034103 Hon Feb 2015 A1
20150034104 Zhou Feb 2015 A1
20150034507 Liu Feb 2015 A1
20150059783 Liu Mar 2015 A1
20150059787 Qiu Mar 2015 A1
20150070832 Schneider et al. Mar 2015 A1
20150083147 Schiff et al. Mar 2015 A1
20150090256 Chung Apr 2015 A1
20150090281 Chen Apr 2015 A1
20150101606 White Apr 2015 A1
20150101625 Newton et al. Apr 2015 A1
20150101626 Li et al. Apr 2015 A1
20150118895 Zheng et al. Apr 2015 A1
20150128971 Verleur et al. May 2015 A1
20150128972 Verleur et al. May 2015 A1
20150128976 Verleur et al. May 2015 A1
20150136155 Verleur et al. May 2015 A1
20150136158 Stevens et al. May 2015 A1
20150157055 Lord Jun 2015 A1
20150164147 Verleur et al. Jun 2015 A1
20150173124 Qiu Jun 2015 A1
20150181937 Dubief et al. Jul 2015 A1
20150181940 Liu Jul 2015 A1
20150181944 Li et al. Jul 2015 A1
20150189919 Liu Jul 2015 A1
20150196060 Wensley et al. Jul 2015 A1
20150208728 Lord Jul 2015 A1
20150208729 Monsees et al. Jul 2015 A1
20150216237 Wensley et al. Aug 2015 A1
20150217068 Wakalopulos Aug 2015 A1
20150223521 Menting et al. Aug 2015 A1
20150237916 Farine et al. Aug 2015 A1
20150245654 Memari et al. Sep 2015 A1
20150245655 Memari et al. Sep 2015 A1
20150245657 Memari et al. Sep 2015 A1
20150245665 Memari et al. Sep 2015 A1
20150245666 Memari et al. Sep 2015 A1
20150245667 Memari et al. Sep 2015 A1
20150245668 Memari et al. Sep 2015 A1
20150245669 Cadieux et al. Sep 2015 A1
20150257447 Sullivan Sep 2015 A1
20150282525 Plojoux et al. Oct 2015 A1
20150282526 Wu Oct 2015 A1
20150289565 Cadieux et al. Oct 2015 A1
20150296889 Liu Oct 2015 A1
20150305409 Verleur et al. Oct 2015 A1
20150313283 Collett et al. Nov 2015 A1
20150313287 Verleur et al. Nov 2015 A1
20150320116 Bleloch et al. Nov 2015 A1
20150327595 Scatterday Nov 2015 A1
20150335071 Brinkley et al. Nov 2015 A1
20150351455 Liu Dec 2015 A1
20150357608 Huang Dec 2015 A1
20150359263 Bellinger Dec 2015 A1
20160007651 Ampolini et al. Jan 2016 A1
20160021933 Thorens et al. Jan 2016 A1
20160044962 Thorens et al. Feb 2016 A1
20160095356 Chan Apr 2016 A1
20160106153 Zhu Apr 2016 A1
20160150824 Memari et al. Jun 2016 A1
20160157523 Liu Jun 2016 A1
20160198768 Liu Jul 2016 A1
20160270442 Liu Sep 2016 A1
20160278436 Verleur et al. Sep 2016 A1
20160331032 Malgat et al. Nov 2016 A1
20160345626 Wong et al. Dec 2016 A1
20160353804 Lord Dec 2016 A1
20160360790 Calfee et al. Dec 2016 A1
20160374393 Chen Dec 2016 A1
20170035115 Monsees et al. Feb 2017 A1
20170095005 Monsees et al. Apr 2017 A1
20170119044 Oligschlaeger May 2017 A1
20170156404 Novak, III et al. Jun 2017 A1
20170157341 Pandya et al. Jun 2017 A1
20170197046 Buchberger Jul 2017 A1
20170231276 Mironov et al. Aug 2017 A1
20170318861 Thorens Nov 2017 A1
20170367410 Hon Dec 2017 A1
20180070644 Monsees Mar 2018 A1
20180177234 Lee Jun 2018 A1
20190037926 Qiu Feb 2019 A1
Foreign Referenced Citations (134)
Number Date Country
105346 Jun 1924 CH
3037571 Nov 1995 CN
2643529 Sep 2004 CN
1630476 Jun 2005 CN
201104488 Aug 2008 CN
101277622 Oct 2008 CN
301111821 Jan 2010 CN
100589726 Feb 2010 CN
201408820 Feb 2010 CN
101951796 Jan 2011 CN
301485739 Mar 2011 CN
301547686 May 2011 CN
102160906 Aug 2011 CN
102176941 Sep 2011 CN
202004499 Oct 2011 CN
301753038 Dec 2011 CN
301797114 Jan 2012 CN
202218034 May 2012 CN
301955679 Jun 2012 CN
301970169 Jun 2012 CN
202385728 Aug 2012 CN
202603608 Dec 2012 CN
202663148 Jan 2013 CN
102920028 Feb 2013 CN
202890462 Apr 2013 CN
302396126 Apr 2013 CN
202941411 May 2013 CN
302485056 Jun 2013 CN
203040683 Jul 2013 CN
203087525 Jul 2013 CN
103237470 Aug 2013 CN
203152489 Aug 2013 CN
203168035 Sep 2013 CN
203182012 Sep 2013 CN
302660481 Nov 2013 CN
302660490 Nov 2013 CN
302680448 Dec 2013 CN
302799554 Apr 2014 CN
302803209 Apr 2014 CN
302810246 Apr 2014 CN
302814868 May 2014 CN
302859209 Jun 2014 CN
104010529 Aug 2014 CN
302884434 Aug 2014 CN
302926289 Aug 2014 CN
104055223 Sep 2014 CN
302950830 Sep 2014 CN
303044212 Dec 2014 CN
204120231 Jan 2015 CN
303089422 Jan 2015 CN
303091331 Jan 2015 CN
204132390 Feb 2015 CN
303103391 Feb 2015 CN
104382237 Mar 2015 CN
204217907 Mar 2015 CN
303210086 May 2015 CN
204466899 Jul 2015 CN
303332720 Aug 2015 CN
303103389 Nov 2015 CN
303457556 Nov 2015 CN
303568163 Jan 2016 CN
303574274 Jan 2016 CN
303103390 Feb 2016 CN
303686002 May 2016 CN
303721535 Jun 2016 CN
205358224 Jul 2016 CN
1093936 Dec 1960 DE
19619536 Oct 1997 DE
102006004484 Aug 2007 DE
102008046932 May 2009 DE
002626416-001 Apr 2015 EM
002626416-002 Apr 2015 EM
0762258 Mar 1997 EP
0845220 Jun 1998 EP
1093936 Apr 2001 EP
1736177 Dec 2006 EP
2113178 Nov 2009 EP
2399636 Dec 2011 EP
2609821 Jul 2013 EP
2614731 Jul 2013 EP
2654471 Oct 2013 EP
3024343 Jun 2016 EP
3000245 Aug 2016 EP
2264237 Aug 1993 GB
2266466 Nov 1993 GB
2504074 Jan 2014 GB
11-000093 Jan 1999 JP
D1144098 Jun 2002 JP
101011453 Jan 2011 KR
20120008751 Feb 2012 KR
20120113519 Oct 2012 KR
20130106741 Sep 2013 KR
20130107658 Oct 2013 KR
30-0825216 Nov 2015 KR
WO-D79112-0010 Dec 2002 WO
WO-2003061716 Jul 2003 WO
WO-03103387 Dec 2003 WO
WO-2011146174 Nov 2011 WO
WO-2012059726 May 2012 WO
WO-2012062600 May 2012 WO
WO-D79112-0010 Dec 2012 WO
WO-2013034453 Mar 2013 WO
WO-2013044537 Apr 2013 WO
WO-2013068100 May 2013 WO
WO-2013083631 Jun 2013 WO
WO-2013083634 Jun 2013 WO
WO-2013083635 Jun 2013 WO
WO-2013089358 Jun 2013 WO
WO-2013093695 Jun 2013 WO
WO-2013098397 Jul 2013 WO
WO-2013147492 Oct 2013 WO
WO-2013155645 Oct 2013 WO
WO-2013155654 Oct 2013 WO
WO-2013159245 Oct 2013 WO
WO-2013171206 Nov 2013 WO
WO-2014008646 Jan 2014 WO
WO-2014012906 Jan 2014 WO
WO-2014039308 Mar 2014 WO
WO-2014138244 Sep 2014 WO
WO-2014139609 Sep 2014 WO
WO-2014150979 Sep 2014 WO
WO-2014159982 Oct 2014 WO
WO-2015027435 Mar 2015 WO
WO-2015028815 Mar 2015 WO
WO-2015052513 Apr 2015 WO
WO-2015054862 Apr 2015 WO
WO-2015077645 May 2015 WO
WO-2015078147 Jun 2015 WO
WO-2015082560 Jun 2015 WO
WO-2015013327 Jul 2015 WO
WO-2015114325 Aug 2015 WO
WO-2015144328 Oct 2015 WO
WO-2016059000 Apr 2016 WO
WO-2017173951 Oct 2017 WO
Non-Patent Literature Citations (82)
Entry
Cedar Board by the home depot. https://www.homedepot.com/p/1-in-x-4-in-x-8-ft-S1S2E-Cedar-Board-6-Pack-WRC148T6PK/300194383, Earliest review dated Sep. 7, 2016 Found online Mar. 19, 2019, Home Depot.
Electronic Vaporization Device | JUUL Vapor, Available from Internet, https://www.juulvapor.com/shop-juul/, Posting date not given, © 2015 Site visited Nov. 24, 2015, Juulvapor.com.
EnsembleIQ, “Vuse Product Reel,” Youtube, Jun. 6, 2013, https://www.youtube.com/watch?v=lgo_bBY8tNM, Posted Jun. 6, 2013, Youtube.
German Straight Razor box https://www.bing.com/videos/search?q=straight+razor+cardboard+box&&view=detail&mid=4EFBC9664DDFEA73A2974EFBC9664DDFEA73A297&& FORM=VRDGAR, Dated May 11, 2012 Found online Mar. 22, 2019, rainbowebayauctions on ebay.
Making a box for my Straight Razor https://www.youtube.com/watch?v=Z7iAx2QoKD0, Dated Jan. 22, 2014 Found online Mar. 19, 2019, Mr. Mars Experience.
Press Release by R.J. Reynolds, https://www.reynoldsamerican.com/about-us/press-releases/Press-Release-Details-/2013/RJ-Reynolds-Vapor-Company-bringing-VUSE-Digital-Vapor-Cigarette-to-Colorado-/default.aspx, Jun. 6, 2013, Posted Jun. 6, 2013, R.J. Reynolds.
Walnut and cocobolo razor coffin pics https://sharprazorpalace.com/show-tell/57238-walnut-cocobolo-razor-coffin-pics.html, Dated Aug. 9, 2010 Found online Mar. 20, 2019, scrapcan.
“2011 New E-Cigarette GS-360,With 1.2ml Clearomizer(Id:5861467) Product Details—View 2011 New E-Cigarette GS-360,With 1.2ml Clearomizer from Green Sound High-Tech Co.,Ltd—EC21.” EC21, Global B2B Marketplace—Connecting Global Buyers with Manufacturers, Suppliers, Exporters Worldwide, (2011), wo1138.en.ec21.com/2011_New_E-Cigarette_GS-360_With--5366965_5861467.html.
“Electronic Cigarette Refillable Cartridge GS-PUSH,Hold 1.5ml(Id:5722612) Product Details—View Electronic Cigarette Refillable Cartridge GS-PUSH,Hold 1.5ml from Green Sound High-Tech Co.,Ltd—EC21.” EC21, Global B2B Marketplace—Connecting Global Buyers with Manufacturers, Suppliers, Exporters Worldwide, (2011), wo1138.en.ec21.com/Electronic_Cigarette_Refillable_Cartridge_GS--5366965_5722612.html.
“Esteam and J-Series Owner's Manual.” Allbrands.com, 2002, www.allbrands.com/misc_files/pdfs/JiffySteamerOwnersManual.pdf.
“Hacking the Vuse E-Cig to Fully Use Cartridges and Allow Refills.” Hacking the Vuse E-Cig to Fully Use Cartridges and Allow Refills, Oct. 16, 2015, se.azinstall.net/2015/10/hacking-vuse-e-cig-puff-counter.html?m=1.
“Lenmar CB0104 Battery for Panasonic Cordless Phones.” Amazon, Amazon, first reviewed Jan. 5, 2011, www.amazon.com/Lenmar-CB0104-Battery-Panasonic-Cordless/dp/B000BS6078/.
“New Tank E-Cigarette:innokin 510T.” From China Manufacturer, Manufactory, Factory and Supplier on ECVV.com, Nov. 15, 2011, www.ecvv.com/product/3118191.html.
“Terminal and Splices Selection Guide.” TE.com, TE, 2013, www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrtrv&DocNm=2-1773700-5TerminalAndSplicesSelection&DocType=DS&DocLang=English&s_cid=1046.
“Uniden BT-990 Cordless Phone Battery Ni-CD, 3.6 Volt, 800 MAh —Ultra Hi-Capacity—Replacement for Uniden BP-990, Toshiba, GE TL96550, TL96556, Panasonic HHR-P505 Rechargeable Batteries.” Amazon, Amazon, first reviewed on Feb. 8, 2017, www.amazon.com/Uniden-BT-990-Cordless-Phone-Battery/dp/B01HDV75YW.
513official4. “Glade Plug-Ins Scented Oils 2001.” YouTube, YouTube, Jun. 29, 2011, www.youtube.com/watch?v=zW9acp4NOK8.
CannabisReviewTV™. “Official: Cloud Vape Pen Review #CRTV420.” YouTube, YouTube, Apr. 17, 2013, www.youtube.com/watch?v=oujMMZ61_tA&has_verified=1.
Chinabuye. “Innokin ITaste VV Tank Starter Kit Electronic Cigarette with Clearomizer.” YouTube, YouTube, Jul. 23, 2013, www.youtube.com/watch?v=mz414d8MU20.
Cloud pen vaporizer unboxing review by vaporizer blog // VaporizerBlog.com, https://www.youtube.com/watch?v=ixHMkXoWKNg.
Cutlerylover. “Eletronic Cigarette (Vaping) Review : HALO G6 Basic Starter Kit.” YouTube, YouTube, Oct. 10, 2012, www.youtube.com/watch?v=kUprxsQUPCU.
Darth Vapor Reviews. “Halo Cigs: Triton Starter Kit Review.” YouTube, YouTube, Aug. 11, 2013, www.youtube.com/watch?v=KkVzsGsDDMY.
Discount Office Supplies, Office Paper Products Legal Supplies, www.bulkofficesupply.com/Products/Baumgartens-Single-Hole-Trap-Door-Pencil-Sharpener-with-Eraser_BAU19550.aspx, retrieved Mar. 17, 2019.
El Mono Vapeador. “EVic Joyetech—Revision.” YouTube, YouTube, Dec. 12. 2012, www.youtube.com/watch?v=WNLVfgwb4Gs.
Following the Vapor Trail, https://www.nytimes.com/2013/12/19/fashion/for-vaporizers-new-technology-and-product-design.html.
Frakes, Dan. “Lightning: the IPhone's New Connector.” Macworld, Macworld, Sep. 13, 2012, www.macworld.com/article/1168555/what-apples-new-lightning-connector-means-for-you.html.
Glory Vapes. “Glory Vapes TV: Kanger S1 Cubica Series Starter Kit Unboxing.” YouTube, YouTube, Aug. 8, 2013, www.youtube.com/watch?v=NQjvJ6YhdbA.
Infocentre101. “Jiffy Steamer . . . No. 1 Seller.” YouTube, YouTube, Dec. 31, 2011, www.youtube.com/watch?v=9ge8phdU6WY.
IWand Rectangular Pen Shape Design Flat Short Mouth Holder 1.0ML Tank Atomizer LED Display 800mAh Rechargeable E-Cigarette Set—Colorful, https://www.gearbest.com/electronic-cigarettes/pp_15466.html.
Joye eGo-Tank System XXL 1000mAh Starter Kit, https://www.myvaporstore.com/eGo-Tank-System-XXL-1000mAh-Starter-Kit-p/ego-t-xxlkit.htm.
Maiocco, Roberto. “Modello IWand.” YouTube, YouTube, Dec. 28, 2012, www.youtube.com/watch?v_brQOLDqHX0.
Marino, Michelle. “Review—Glade PlugIns Scented Oil Fragrancers.” YouTube, YouTube, Feb. 18, 2013, www.youtube.com/watch?v=1zEpGdwKSA4.
Prater, Bill. “Crown Seven Hydro Imperial Menthol Review.” YouTube, YouTube, Jan. 12, 2013, www.youtube.com/watch?v=YT-ycf6mEa0.
Purity Home Fragrance—How to refill your plug in air freshener.wmv, https://www.youtube.com/watch?v=OreNgPBUwaY&t=66s.
Rose Plastic. Rose Plastic: Innovations in Plastic Packaging, www.rose-plastic./2030.0.html?&L=4p?id=2337id=2345iel25% worldwide unique plastic packaging with remarkable diversity, retrieved Mar. 17, 2019.
Ruyanchina. “RUYAN—The New Way to Smoke(English) E-Cigarette-Blog.com.” YouTube, YouTube, Jun. 9, 2007, www.youtube.com/watch?v=ia2997x_kog.
Smith, Chris. “Next USB Connector Will Finally Be Reversible, like Apple's Lightning Plug.” BGR, Dec. 5, 2013, bgr.com/2013/12/05/reversible-usb-connector-apple-lightning/.
SourDieselManCO. “O.pen Vape Pen Vaporizer Hybrid and Indica 250mg Cartridges.” YouTube, YouTube, Apr. 8, 2013, www.youtube.com/watch?v=5_jWTQVQbEw.
TechVitaminsTV. “E-Cigarettes: How It Works (Blu Premium E-Cig Social Kit Review) MUST SEE!!” YouTube, YouTube, Mar. 14, 2012, www.youtube.com/watch?v=mFAYxw6csjg.
Uptoyou Fromeme. “Elips Ego SOLE Electronic Cigarette Kit Patent Elipse Flat Upgrade F6 Section with Atomizer CE4.” YouTube, YouTube, Sep. 12, 2013, www.youtube.com/watch?v=cnPcqpzFm0Q.
VapeandBake. “NJOY Electronic Cigarette Review.” YouTube, YouTube, Apr. 9, 2013, www.youtube.com/watch?v=qUynQFK_Xpo.
Vaporizers Reviewed. “AtmosRX Optimus 510 Vaporizer Review.” YouTube, YouTube, Oct. 10, 2013, www.youtube.com/watch?v=wsyQncG8FB8.
Vaporizers Reviewed. “MicroG Pen Vaporizer Review.” YouTube, YouTube, Nov. 6, 2013, www.youtube.com/watch?v=pLhtL8vosrs.
VapXtream. “The Elips by LSK.” YouTube, YouTube, Jan. 13, 2013, www.youtube.com/watch?v=PTfJIsrfqWI.
Wholesale Consumer electronics. “Elips Ego SOLE Electronic Cigarette Kit Patent E-Cigarette E-Cig Elipse Flat Upgrade F6 Section.” YouTube, YouTube, Sep. 13. 2013, www.youtube.com/watch?v=iCeE-O1scDg.
Pentel Multi 8 Color Lead Refill by Pentel on Amazon. earliest review dated Nov. 7, 2014. found online [Mar. 22, 2019] https://www.amazon.com/Pentel-Multi-Refill-VioletH2-V/dp/B00Kqtbpcw/ref=sr_1_15?keywords=Pentel+Multi+8&qid=1558643586&s=gateway&sr=8-15.
WSP Traditional Straight Razor Coffin by WSP. earliest review dated Jul. 7, 2015. found online [Mar. 18, 2019] https://www.amazon.com/WSP-Traditional-Straight-Razoroffin/dp/B00FL2R4BA/ref=sr_1_fkmrnull_3?keywords=WSP+Traditional+Straight+razor+coffin&qid=1558643115&s=gateway&sr=8-3-fkmrnull.
Juul is the e-cig that will finally stop me from smoking (I hope). https://www.engadget.com/2015/06/03/pax-labs-juul-e-cigarette/, Published on June 3, 2015, Engadget.
This Might Just Be the First Great E-Cig. https://www.wired.com/2015/04/pax-juul-ecig/?mbid=social_twitter, Published on Apr. 21, 2015, WIRED, Pierce, D.
Startup behind the Lambo of vaporizers just launched an intelligent e-cigarette. https://www.theverge.com/2015/4/21/8458629/pax-labs-e-cigarette-juul, Published on Apr. 21, 2015, The Verge.
intelligent e-cigarette. https://www.theverge.com/2015/4/21/8458629/pax-labs-e-cigarette-juul.
“2011 New Eigarette GS-360,With 1.2ml Clearomizer(Id:5861467) Product Details—View 2011 New Eigarette GS-360,With 1.2ml Clearomizer from Green Sound High-Tech Co.,Ltd—EC21.” EC21, Global B2B Marketplace—Connecting Global Buyers with Manufacturers, Suppliers, Exporters Worldwide, (2011), wo1138.en.ec21.com/2011_New_Eigarette_GS-360_With--5366965_5861467.html.
“Hacking the Vuse Eig to Fully Use Cartridges and Allow Refills.” Hacking the Vuse Eig to Fully Use Cartridges and Allow Refills, Oct. 16, 2015, se.azinstall.net/2015/10/hacking-vuse-eig-puffounter.html?m=1.
“Lenmar CB0104 Battery for Panasonic Cordless Phones.” Amazon, Amazon, first reviewed Jan. 5, 2011, www.amazon.com/LenmarB0104-Battery-Panasonicordless/dp/B000BS6078/.
“New Tank Eigarette:innokin 510T.” From China Manufacturer, Manufactory, Factory and Supplier on ECVV.com, Nov. 15, 2011, www.ecw.com/product/3118191.html.
“Uniden BT-990 Cordless Phone Battery NiD, 3.6 Volt, 800 MAh—Ultra Hiapacity Replacement for Uniden BP-990, Toshiba, GE TL96550, TL96556, Panasonic HHR-P505 Rechargeable Batteries.” Amazon, Amazon, first reviewed on Feb. 8, 2017, www.amazon.com/Uniden-BT-990ordless-Phone-Battery/dp/B01HDV75YW.
CannabisReviewTV™. “Official: Cloud Vape Pen Review #CRTV420.” YouTube, YouTube, Apr. 17, 2013, www.youtube.com/watch?v=oujMMZ6I_tA&has_verified=1.
Cedar Board by the home depot. earliest review dated Sep. 7, 2016. found online [Mar. 19, 2019] https://www.homedepot.com/p/1-in-x-4-in-x-8-ft-S1S2Eedar-Board-6-Pack-WRC148T6PK/300194383.
Cloud pen vaporizer unboxing review by vaporizer blog // VaporizerBlog.com, https://www.youtube.com/watch?v=ixHMkXoWKNg, published on Dec. 12, 2013.
Electronic Vaporization Device | JUUL | JUUL Vapor, posted at juulvapor.com <http://juulvapor.com>, posting date not given, © 2015 Juulvapor.com <http://Juulvapor.com> [online] [site visited Nov. 24, 2015]. Available from Internet, <https://www.juulvapor.com/shop-juul/>.
Engadget. Juul is the eig that will finally stop me from smoking (I hope). [online], published on Jun. 3, 2015. Available at: https://www.engadget.com/2015/06/03/pax-labs-juul-ecigarette/#/.
EnsembleIQ, “Vuse Product Reel,” Youtube, Jun. 6, 2013, https://www.youtube.com/watch?v=lgo_bBY8tNM.
Following the Vapor Trail, https://www.nytimes.com/2013/12/19/fashion/for-vaporizers-new-technologynd-product-design.html.
Fragrance, Purity. “Purity Home Fragrance—How to Refill Your Plug in Air Freshener.wmv.” YouTube, YouTube, Jun. 4, 2012, www.youtube.com/watch?v=OreNgPBUwaY&t=66s.
Frakes, Dan. “Lightning: the IPhone's New Connector.” Macworld, Macworld, Sep. 13, 2012, www.macworld.com/article/1168555/whatpples-new-lightningonnector-means-forou.html.
German Straight Razor box by rainbowebayauctions on ebay. dated May 11, 2012. found online [Mar. 22, 2019] https://www.bing.com/videos/search?q=straight+razor+cardboard+box&&view=detail&mid=4EFBC9664DDFEA73A2974EFBC9664DDFEA73A297&& FORM=VRDGAR.
IWand Rectangular Pen Shape Design Flat Short Mouth Holder 1.0ML Tank Atomizer LED Display 800mAh Rechargeable E-Cigarette Set—Colorful, https://www.gearbest.com/electronicigarettes/pp_15466.html, accessed Jan. 25, 2019.
Joye eGo-Tank System XXL 1000mAh Starter Kit, https://www.myvaporstore.com/eGo-Tank-System-XXL-1000mAh-Starter-Kit-p/ego-t-xxlkit.htm, accessed Jan. 25, 2019.
Maiocco, Roberto. “Modello IWand.” YouTube, YouTube, Dec. 28, 2012, www.youtube.com/watch?v=_brOOLDqHX0.
Making a box for my Straight Razor by Mr. Mars Experience. dated Jan 22, 2014. found online [Mar. 19, 2019] https://www.youtube.com/watch?v=Z7iAx2QoKD0.
Marino, Michelle. “Review—Glade Pluglns Scented Oil Fragrancers.” YouTube, YouTube, Feb. 18, 2013, www.youtube.com/watch?v=lzEpGdwKSA4.
Pierce, D. This Might Just Be the First Great Eig. {online} WIRED, Published on Apr. 21, 2015. Available at: https://www.wired.com/2015/04/pax-juul-ecig/?mbid=social_twitter.
Prater, Bill. “Crown Seven Hydro Imperial Menthol Review.” YouTube, YouTube, Jan. 12, 2013, www.youtube.com/watch?v=YTcf6mEa0.
Press Release by R.J. Reynolds, “https://www.reynoldsamerican.com/abouts/press-releases/Press-Release-Details-/2013/RJ-Reynolds-Vaporompany-bringing-VUSE-Digital-Vaporigarette-toolorado-/default.aspx”.
Purity Home Fragrance—How to refill your plug in air freshener.wmv, https://www.youtube.com/watch?v=OreNgPBUwaY&t=66s , Jun. 4, 2012.
Ruyanchina. “RUYAN—The New Way to Smoke(English) Eigarette-Blog.com.” YouTube, YouTube, Jun. 9, 2007, www.youtube.com/watch?v=ia2997x_kog.
Smith, Chris. “Next USB Connector Will Finally Be Reversible, like Apple's Lightning Plug.” BGR, Dec. 5, 2013, bgr.com/2013/12/05/reversiblesbonnectorpple-lightning/.
TechVitaminsTV. “Eigarettes: How It Works (Blu Premium Eig Social Kit Review) MUST SEE!!” YouTube, YouTube, Mar. 14, 2012, www.youtube.com/watch?v=mFAYxw6csjg.
The Verge. Startup behind the Lambo of vaporizers just launched an intelligent eigarette. [online], published on Apr. 21, 2015. Available at: https://www.theverge.com/2015/4/21/8458629/pax-labs-eigarette-juul.
Uptoyou Fromeme. “Elips Ego SOLE Electronic Cigarette Kit Patent Elipse Flat Upgrade F6 Section with Atomizer CE4.” YouTube, YouTube, Sep. 12, 2013, www.youtube.com/watch?v=cnPcqDzFm0Q.
VapXtream. “The Elips by LSK.” YouTube, YouTube, Jan. 13, 2013, www.youtube.com/watch?v=PTfJlsrfqWl.
Walnut and cocobolo razor coffin pics by scrapcan. dated Aug. 9, 2010. found online [Mar. 20, 2019] https://sharprazorpalace.com/show-tell/57238-walnutocobolo-razoroffin-pics.html.
Wholesale Consumer electronics. “Elips Ego SOLE Electronic Cigarette Kit Patent Eigarette Eig Elipse Flat Upgrade F6 Section.” YouTube, YouTube, Sep. 13, 2013, www.youtube.com/watch?v=iCeE-O1scDg.
Related Publications (1)
Number Date Country
20180317557 A1 Nov 2018 US
Provisional Applications (4)
Number Date Country
61936593 Feb 2014 US
61937755 Feb 2014 US
62294285 Feb 2016 US
62294281 Feb 2016 US
Continuations (1)
Number Date Country
Parent 15257760 Sep 2016 US
Child 16032009 US
Continuation in Parts (3)
Number Date Country
Parent 14581666 Dec 2014 US
Child 15257760 US
Parent 35001169 Jul 2016 US
Child 14581666 US
Parent 35001170 Jul 2016 US
Child 35001169 US