The subject matter described herein relates generally to vaporizer devices and more specifically to a vaporizer device configured to couple with a vaporizer cartridge.
Vaporizer devices, which can also be referred to as vaporizers, electronic vaporizer devices or e-vaporizer devices, can be used for delivery of an aerosol (or “vapor”) containing one or more active ingredients by inhalation of the aerosol by a user of the vaporizing device. For example, electronic cigarettes, which may also be referred to as e-cigarettes, are a class of vaporizer devices that are typically battery powered and that may be used to simulate the experience of cigarette smoking, but without burning of tobacco or other substances.
In use of a vaporizer device, the user inhales an aerosol, commonly called vapor, which may be generated by a heating element that vaporizes (which generally refers to causing a liquid or solid to at least partially transition to the gas phase) a vaporizable material, which may be liquid, a solution, a solid, a wax, or any other form as may be compatible with use of a specific vaporizer device. The vaporizable material used with a vaporizer can be provided within a cartridge (e.g., a part of the vaporizer that contains the vaporizable material in a reservoir) that includes a mouthpiece (e.g., for inhalation by a user).
To receive the inhalable aerosol generated by a vaporizer device, a user may, in certain examples, activate the vaporizer device by taking a puff, by pressing a button, or by some other approach. A puff, as the term is generally used (and also used herein), refers to inhalation by the user in a manner that causes a volume of air to be drawn into the vaporizer device such that the inhalable aerosol is generated by a combination of vaporized vaporizable material with the air.
A typical approach by which a vaporizer device generates an inhalable aerosol from a vaporizable material involves heating the vaporizable material in a vaporization chamber (or a heater chamber) to cause the vaporizable material to be converted to the gas (or vapor) phase. A vaporization chamber generally refers to an area or volume in the vaporizer device within which a heat source (e.g., conductive, convective, and/or radiative) causes heating of a vaporizable material to produce a mixture of air and vaporized vaporizable material to form a vapor for inhalation by a user of the vaporization device.
In some vaporizer device embodiments, the vaporizable material can be drawn out of a reservoir and into the vaporization chamber via a wicking element (a wick). Such drawing of the vaporizable material into the vaporization chamber can be due, at least in part, to capillary action provided by the wick, which pulls the vaporizable material along the wick in the direction of the vaporization chamber. However, as vaporizable material is drawn out of the reservoir, the pressure inside the reservoir is reduced, thereby creating a vacuum and acting against the capillary action. This can reduce the effectiveness of the wick to draw the vaporizable material into the vaporization chamber, thereby reducing the effectiveness of the vaporization device to vaporize a desired amount of vaporizable material, such as when a user takes a puff on the vaporizer device. Furthermore, the vacuum created in the reservoir can ultimately result in the inability to draw all of the vaporizable material into the vaporization chamber, thereby wasting vaporizable material. As such, improved vaporization devices and/or vaporization cartridges that improve upon or overcome these issues is desired.
The term vaporizer device, as used herein consistent with the current subject matter, generally refers to portable, self-contained, devices that are convenient for personal use. Typically, such devices are controlled by one or more switches, buttons, touch sensitive devices, or other user input functionality or the like (which can be referred to generally as controls) on the vaporizer, although a number of devices that may wirelessly communicate with an external controller (e.g., a smartphone, a smart watch, other wearable electronic devices, etc.) have recently become available. Control, in this context, refers generally to an ability to influence one or more of a variety of operating parameters, which may include without limitation any of causing the heater to be turned on and/or off, adjusting a minimum and/or maximum temperature to which the heater is heated during operation, various games or other interactive features that a user might access on a device, and/or other operations.
Various vaporizable materials having a variety of contents and proportions of such contents can be contained in the cartridge. Some vaporizable materials, for example, may have a smaller percentage of active ingredients per total volume of vaporizable material, such as due to regulations requiring certain active ingredient percentages. As such, a user may need to vaporize a large amount of vaporizable material (e.g., compared to the overall volume of vaporizable material that can be stored in a cartridge) to achieve a desired effect.
In certain aspects of the current subject matter, challenges associated with the presence of liquid vaporizable materials in or near certain susceptible components of an electronic vaporizer device may be addressed by inclusion of one or more of the features described herein or comparable/equivalent approaches as would be understood by one of ordinary skill in the art. In one aspect, there is provided a cartridge for a vaporizer device. The cartridge may include: a cartridge housing, the cartridge housing configured to extend below an open top of a receptacle in the vaporizer device when the cartridge is coupled with the vaporizer device; a reservoir disposed within the cartridge housing, the reservoir configured to contain a vaporizable material; a wick housing disposed within the cartridge housing; a heating element, the heating element including a heating portion disposed at least partially inside the wick housing and a contact portion disposed at least partially outside the wick housing, the contact portion including one or more cartridge contacts configured to form an electric coupling with one or more receptacle contacts in the receptacle of the vaporizer device; and a wicking element disposed within the wick housing and proximate to the heating portion of the heating element, the wicking element configured to draw the vaporizable material from the reservoir to the wick housing for vaporization by the heating element.
In some variations, one or more features disclosed herein including the following features may optionally be included in any feasible combination. The contact portion may be further configured to form a mechanical coupling with the receptacle of the vaporizer device. The mechanical coupling may secure the cartridge in the receptacle of the vaporizer device.
In some variations, the receptacle may be a first portion of a body of the vaporizer device having a smaller cross-sectional dimension than a second portion of the body of the vaporizer device. A recessed area may be formed between the cartridge housing and the second portion of the body of the vaporizer device when the cartridge is coupled with the vaporizer device.
In some variations, the receptacle may include one or more air inlets that form a fluid coupling with one or more slots in a bottom of the wick housing when the cartridge is coupled with the vaporizer device. The one or more slots may be configured to allow air entering the one or more air inlets to further enter the wick housing. The one or more air inlets may be disposed in the recessed area. The one or more air inlets may have a diameter of between approximately 0.6 millimeters and 1.0 millimeters.
In some variations, an interior of each of the one or more slots may include at least one step formed by an inner dimension of the one or more slots being less than a dimension of the one or more slots at the bottom of the wick housing. The at least one step may provide a constriction point at which a meniscus forms to prevent the vaporizable material in the wick housing from flowing out of the one or more slots. The dimension of the one or more slots at the bottom of the wick housing may be approximately 1.2 millimeters long by 0.5 millimeters wide. The inner dimension of the one or more slots may be approximately 1 millimeters long by 0.3 millimeters wide.
In some variations, the heating portion of the heating element and the contact portion of the heating element may be formed by folding a substrate material. The substrate material may be cut to include one or more tines for forming the heating portion of the heating element. The substrate material may be further cut to include one or more legs for forming the contact portion of the heating element.
In some variations, the contact portion of the heating element may be formed by folding each of the one or more legs to form at least a first joint, a second joint, and a third joint. The first joint may be disposed between the second joint and the third joint. The second joint may be disposed between a tip of each of the one or more legs and the first joint.
In some variations, the one or more cartridge contacts may be disposed at the second joint. The heating element may be secured to the wicking housing by a first mechanical coupling between an exterior of the wick housing and a portion of each of the one or more legs between the first joint and the third joint. The cartridge may be secured to the receptacle of the vaporizer device by a second mechanical coupling between the second joint and the receptacle of the vaporizer device.
In some variations, the one or more cartridge contacts may be disposed at the first joint. The heating element may be secured to the wick housing by a first mechanical coupling between an exterior of the wick housing and a portion of each of the one or more legs between the tip and the second joint. The cartridge may be secured to the receptacle of the vaporizer device by a second mechanical coupling between the first joint and the receptacle of the vaporizer device.
In some variations, the reservoir may include a storage chamber and a collector. The collector may include an overflow channel configured to retain a volume of the vaporizable material in fluid contact with the storage chamber. One or more microfluidic features may be disposed along a length of the overflow channel. Each of the one or more microfluidic features may be configured to provide a constriction point at which a meniscus forms to prevent air entering the reservoir from passing the vaporizable material in the overflow channel.
In some variations, the cartridge housing may include an airflow passageway leading to an outlet for an aerosol that is formed by the heating element vaporizing the vaporizable material. The collector may include a central tunnel in fluid communication with the airflow passageway. A bottom surface of the collector may include a flow controller configured to mix the aerosol generated by the heating element vaporizing the vaporizable material.
In some variations, an interior surface of the airflow passageway may include one or more channels that extend from the outlet to the wicking element. The one or more channels may be configured to collect a condensate formed by the aerosol and direct at least a portion the collected condensate towards the wicking element.
In some variations, the flow controller may include a first channel and a second channel. The first channel may be offset from the second channel. A first interior surface of the first channel may be sloped in a different direction from a second interior surface of the second channel to direct a first column of the aerosol entering the central tunnel through the first channel in a different direction than a second column of the aerosol entering the central tunnel through the second channel.
In some variations, the bottom surface of the controller may further include one or more wick interfaces. The one or more wick interfaces may be in fluid communication with one or more wick feeds in the collector. The one or more wick feeds may be configured to deliver, to the wicking element disposed in the wick housing, at least a portion of the vaporizable material contained in the storage chamber.
In some variations, the wick housing may be disposed at least partially inside the receptacle of the vaporizer device when the cartridge is coupled with the vaporizer device. A flange is disposed at least partially around an upper perimeter of the wick housing. The flange may extend over at least a portion of a rim of the cartridge receptacle.
In another aspect, there is provided a vaporizer device. The vaporizer cartridge may include: a receptacle comprising a first portion of a body of the vaporizer device, the receptacle including one or more receptacle contacts, the receptacle configured to receive a wick housing of a cartridge containing a vaporizable material when the cartridge is coupled with the vaporizer device, a housing of the cartridge extending below an open top of the receptacle when the cartridge is coupled with the vaporizer device, the one or more receptacle contacts configured to form an electric coupling with one or more cartridge contacts comprising a contact portion of a heating element in the cartridge, the contact portion disposed at least partially outside the wick housing; a power source disposed at least partially within a second portion of the body of the vaporizer device; and a controller configured to control a discharge of an electric current from the power source to the heating element included in the cartridge when the cartridge is coupled with the vaporizer device, the electric current being discharged to the heating element to vaporize at least a portion of the vaporizable material saturating a wicking element disposed within the wick housing and proximate to a heating portion of the heating element.
In some variations, one or more features disclosed herein including the following features may optionally be included in any feasible combination. The receptacle may be further configured to form a mechanical coupling with the contact portion of the heating element, and wherein the mechanical coupling secures the cartridge in the receptacle of the vaporizer device.
In some variations, the first portion of the body of the vaporizer device may have a smaller cross-sectional dimension than the second portion of the body of the vaporizer device. A recessed area may be formed between the second portion of the body of the vaporizer device and the cartridge housing when the cartridge is coupled with the vaporizer device.
In some variations, the receptacle may include one or more air inlets that form a fluid coupling with one or more slots in a bottom of the wick housing when the cartridge is coupled with the vaporizer device. The one or more slots may be configured to allow air entering the one or more air inlets to further enter the wick housing. The one or more air inlets may be disposed in the recessed area. The one or more air inlets may have a diameter betweem approximately 0.6 millimeters and 1.0 millimeters.
In some variations, the receptacle may be disposed within the first portion of the body of the vaporizer device such that a top rim of the receptacle is substantially flush with a top rim of the first portion of the body of the vaporizer device.
In some variations, the receptacle may be configured receive a portion of the wick housing such that a flange disposed at least partially around an upper perimeter of the wick housing extends over at least a portion of the top rim of the cartridge receptacle and/or the top rim of the first portion of the body of the vaporizer device. The receptacle may be approximately 4.5 millimeters deep.
The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Other features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
The accompanying drawings, which are incorporated in and constitute a part of this specification, show certain aspects of the subject matter disclosed herein and, together with the description, help explain some of the principles associated with the disclosed implementations. In the drawings:
When practical, similar reference numbers denote similar structures, features, or elements.
Implementations of the current subject matter include devices relating to vaporizing of one or more materials for inhalation by a user. The term “vaporizer” is used generically in the following description to refer to a vaporizer device. Examples of vaporizers consistent with implementations of the current subject matter include electronic vaporizers, electronic cigarettes, e-cigarettes, or the like. Such vaporizers are generally portable, hand-held devices that heat a vaporizable material to provide an inhalable dose of the material.
The vaporizable material used with a vaporizer may optionally be provided within a cartridge (e.g., a part of the vaporizer that contains the vaporizable material in a reservoir or other container and that can be refillable when empty or disposable in favor of a new cartridge containing additional vaporizable material of a same or different type). A vaporizer may be a cartridge-using vaporizer, a cartridge-less vaporizer, or a multi-use vaporizer capable of use with or without a cartridge. For example, a multi-use vaporizer may include a heating chamber (e.g., an oven) configured to receive a vaporizable material directly in the heating chamber and also to receive a cartridge or other replaceable device having a reservoir, a volume, or the like for at least partially containing a usable amount of vaporizable material.
In various implementations, a vaporizer may be configured for use with liquid vaporizable material (e.g., a carrier solution in which an active and/or inactive ingredient(s) are suspended or held in solution or a neat liquid form of the vaporizable material itself) or a solid vaporizable material. A solid vaporizable material may include a plant material that emits some part of the plant material as the vaporizable material (e.g., such that some part of the plant material remains as waste after the vaporizable material is emitted for inhalation by a user) or optionally can be a solid form of the vaporizable material itself (e.g., a “wax”) such that all of the solid material can eventually be vaporized for inhalation. A liquid vaporizable material can likewise be capable of being completely vaporized or can include some part of the liquid material that remains after all of the material suitable for inhalation has been consumed.
In some aspects, leakage of liquid vaporizable material out of the vaporizer cartridge and/or other part of a vaporizer may occur. Additionally, consistency of manufacturing quality of a heating element of the vaporizer may be especially important during scaled and/or automated manufacturing processes. Further, vaporizer use may operate with particular power requirements that may result in shorter battery run time, can result in shorter run time at lower temperatures, can result in faster battery aging, and may affect battery performance.
Implementations of the current subject matter may also provide advantages and benefits in regard to these issues. For example, various features are described herein for controlling airflow as well as flow of the vaporizable material, which may provide advantages and improvements relative to existing approaches, while also introducing additional benefits as described herein. The vaporizer devices and/or cartridges described herein include one or more features that control and improve airflow in the vaporization device and/or cartridge, thereby improving the efficiency and effectiveness of vaporizing the liquid vaporizable material by the vaporizer device without introducing additional features that might lead to leaks of liquid vaporizable material or accumulation of condensate collecting along one or more internal channels and outlets.
For example, a heating element may be stamped from a sheet of material and may be bent to conform to a shape of at least a portion of a wicking element. Configurations of the heating element may allow for more consistent and enhanced quality manufacturing of the heating element and may help to reduce tolerance issues that may arise during manufacturing processes when assembling a heating element having multiple components. The heating element may also improve the accuracy of measurements taken from the heating element (e.g., a resistance, a current, a temperature, etc.) due at least in part to the improved consistency in manufacturability of the heating element having reduced tolerance issues. A stamped and shaped heating element may desirably help to minimize heat losses and helps to ensure that the heating element may behave predictably to be heated to the appropriate temperature.
To further illustrate,
After conversion of the vaporizable material to the gas phase, and depending on the type of vaporizer, the physical and chemical properties of the vaporizable material, and/or other factors, at least some of the gas-phase vaporizable material may condense to form particulate matter in at least a partial local equilibrium with the gas phase as part of an aerosol. The vaporizable material in the condensed phase (e.g., the particulate matter) in at least partial local equilibrium with the vaporizable material in the gas phase may form some or all of an inhalable dose provided by the vaporizer 100 for a given puff or draw on the vaporizer 100. It will be understood that the interplay between the vaporizable material in the gas phase and in the condensed phase in an aerosol generated by the vaporizer 100 can be complex and dynamic, as factors such as ambient temperature, relative humidity, chemistry, flow conditions in airflow paths (both inside the vaporizer and in the airways of a human or other animal), mixing of the gas-phase or aerosol-phase vaporizable material with other air streams, etc. may affect one or more physical parameters of an aerosol. In some vaporizers, and particularly for vaporizers for delivery of more volatile vaporizable materials, the inhalable dose may exist predominantly in the gas phase (i.e., formation of condensed phase particles may be very limited).
To enable the vaporizer 100 to be used with liquid vaporizable materials (e.g., neat liquids, suspensions, solutions, mixtures, etc.), the atomizer 141 may include a wicking element (also referred to herein as a wick) formed from one or more materials capable of causing fluid motion by capillary pressure. The wicking element may convey a quantity of the liquid vaporizable material to a part of the atomizer 141 that includes a heating element (also not shown in
The heating element can be or include one or more of a conductive heater, a radiative heater, and a convective heater. One type of heating element is a resistive heating element, which can be constructed of or at least include a material (e.g., a metal or alloy, for example a nickel-chromium alloy, or a non-metallic resistor) configured to dissipate electrical power in the form of heat when electrical current is passed through one or more resistive segments of the heating element. In some implementations of the current subject matter, an atomizer can include a heating element that includes resistive coil or other heating element wrapped around, positioned within, integrated into a bulk shape of, pressed into thermal contact with, or otherwise arranged to deliver heat to a wicking element to cause a liquid vaporizable material drawn by the wicking element from a reservoir to be vaporized for subsequent inhalation by a user in a gas and/or a condensed (e.g., aerosol particles or droplets) phase. Other wicking element, heating element, and/or atomizer assembly configurations are also possible, as discussed further below.
Alternatively and/or additionally, the vaporizer 100 may be configured to create an inhalable dose of gas-phase and/or aerosol-phase vaporizable material via heating of a non-liquid vaporizable material, such as for example a solid-phase vaporizable material (e.g., a wax or the like) or plant material (e.g., tobacco leaves and/or parts of tobacco leaves) containing the vaporizable material. Accordingly, the heating element (or elements) may be part of or otherwise incorporated into or in thermal contact with the walls of an oven or other heating chamber into which the non-liquid vaporizable material is placed. Alternatively, the heating element (or elements) may be used to heat air passing through or past the non-liquid vaporizable material to cause convective heating of the non-liquid vaporizable material. In still other examples, a resistive heating element or elements may be disposed in intimate contact with plant material such that direct conductive heating of the plant material occurs from within a mass of the plant material (e.g., as opposed to by conduction inward from the walls of an oven).
The heating element may be activated (e.g., a controller, which is optionally part of a vaporizer body as discussed below, may cause current to pass from the power source through a circuit including the resistive heating element, which is optionally part of a vaporizer cartridge as discussed below), in association with a user puffing (e.g., drawing, inhaling, etc.) on a mouthpiece 130 of the vaporizer to cause air to flow from an air inlet, along an airflow path that passes an atomizer (e.g., wicking element and heating element), optionally through one or more condensation areas or chambers, to an air outlet in the mouthpiece. Incoming air passing along the airflow path passes over, through, etc. the atomizer, where gas phase vaporizable material is entrained into the air. As noted above, the entrained gas-phase vaporizable material may condense as it passes through the remainder of the airflow path such that an inhalable dose of the vaporizable material in an aerosol form can be delivered from the air outlet (e.g., in a mouthpiece 130 for inhalation by a user).
The heating element may be activated in response to detecting a puff and/or determining that a puff is imminent. For example, puff detection may be performed based on one or more of signals generated by one or more sensors 113 included in the vaporizer 100 such as, for example, one or more pressure sensors (e.g., configured to measure pressure along the airflow path relative to ambient pressure, changes in absolute pressure, and/or the like), motion sensors, flow sensors, capacitive sensors (e.g., configured to detect contact between a lip of the user and the vaporizer 100). Alternatively and/or additionally, a puff (or an imminent puff) may be detected in response to detecting a user interacting with one or more input devices 116 included in the vaporizer 100 (e.g., buttons or other tactile control devices of the vaporizer 100), receipt of signals from a computing device in communication with the vaporizer 100, and/or the like. It should be appreciated that puff detection including the determination of an imminent occurrence of a puff may be performed using a variety of techniques.
In some implementations of the current subject matter, the vaporizer 100 may be configured to connect (e.g., wirelessly or via a wired connection) to a computing device (or optionally two or more devices) in communication with the vaporizer. To this end, the controller 104 may include communication hardware 105. The controller 104 may also include a memory 108. A computing device can be a component of a vaporizer system that also includes the vaporizer 100, and can include its own communication hardware, which can establish a wireless communication channel with the communication hardware 105 of the vaporizer 100. For example, a computing device used as part of a vaporizer system may include a general purpose computing device (e.g., a smartphone, a tablet, a personal computer, some other portable device such as a smartwatch, or the like) that executes software to produce a user interface for enabling a user of the device to interact with a vaporizer. In other implementations of the current subject matter, such a device used as part of a vaporizer system can be a dedicated piece of hardware such as a remote control or other wireless or wired device having one or more physical or soft (e.g., configurable on a screen or other display device and selectable via user interaction with a touch-sensitive screen or some other input device like a mouse, pointer, trackball, cursor buttons, or the like) interface controls. The vaporizer can also include one or more output 117 features or devices for providing information to the user.
A computing device that is part of a vaporizer system as defined above can be used for any of one or more functions, such as controlling dosing (e.g., dose monitoring, dose setting, dose limiting, user tracking, etc.), controlling sessioning (e.g., session monitoring, session setting, session limiting, user tracking, etc.), controlling nicotine delivery (e.g., switching between nicotine and non-nicotine vaporizable material, adjusting an amount of nicotine delivered, etc.), obtaining locational information (e.g., location of other users, retailer/commercial venue locations, vaping locations, relative or absolute location of the vaporizer itself, etc.), vaporizer personalization (e.g., naming the vaporizer, locking/password protecting the vaporizer, adjusting one or more parental controls, associating the vaporizer with a user group, registering the vaporizer with a manufacturer or warranty maintenance organization, etc.), engaging in social activities (e.g., games, social media communications, interacting with one or more groups, etc.) with other users, or the like. The terms “sessioning”, “session”, “vaporizer session,” or “vapor session,” are used generically to refer to a period devoted to the use of the vaporizer. The period can include a time period, a number of doses, an amount of vaporizable material, and/or the like.
In the example in which a computing device provides signals related to activation of the heating element, or in other examples of coupling of a computing device with the vaporizer 100 for implementation of various control or other functions, the computing device may execute one or more computer instructions sets to provide a user interface and underlying data handling. In one example, detection by the computing device of user interaction with one or more user interface elements can cause the computing device to signal the vaporizer 100 to activate the heating element, either to a full operating temperature for creation of an inhalable dose of vapor/aerosol. Other functions of the vaporizer may be controlled by interaction of a user with a user interface on a computing device in communication with the vaporizer 100.
The temperature of a heating element of a vaporizer may depend on a number of factors, including an amount of electrical power delivered to the heating element and/or a duty cycle at which the electrical power is delivered, conductive heat transfer to other parts of the electronic vaporizer and/or to the environment, latent heat losses due to vaporization of a vaporizable material from the wicking element and/or the atomizer as a whole, and convective heat losses due to airflow (e.g., air moving across the heating element or the atomizer as a whole when a user inhales on the electronic vaporizer). As noted above, to reliably activate the heating element or heat the heating element to a desired temperature, the vaporizer 100 may, in some implementations of the current subject matter, make use of signals from a pressure sensor to determine when a user is inhaling. The pressure sensor can be positioned in the airflow path and/or can be connected (e.g., by a passageway or other path) to an airflow path connecting an inlet for air to enter the device and an outlet via which the user inhales the resulting vapor and/or aerosol such that the pressure sensor experiences pressure changes concurrently with air passing through the vaporizer device from the air inlet to the air outlet. In some implementations of the current subject matter, the heating element may be activated in association with a user's puff, for example by automatic detection of the puff, for example by the pressure sensor detecting a pressure change in the airflow path.
Typically, the pressure sensor (as well as any other sensors 113) can be positioned on or coupled (e.g., electrically or electronically connected, either physically or via a wireless connection) to the controller 104 (e.g., a printed circuit board assembly or other type of circuit board). To take measurements accurately and maintain durability of the vaporizer 100, a resilient seal 150 may optionally separate an airflow path from other parts of the vaporizer 100. The seal 150, which can be a gasket, may be configured to at least partially surround the pressure sensor such that connections of the pressure sensor to internal circuitry of the vaporizer are separated from a part of the pressure sensor exposed to the airflow path. In an example of a cartridge-based vaporizer, the seal 150 may also separate parts of one or more electrical connections between a vaporizer body 110 and a vaporizer cartridge 1320 (not shown in
The vaporizer 100 may be, as noted, a cartridge-based vaporizer. Accordingly, in addition to the controller 104, the power source 112 (e.g., battery), the one more sensors 113, one or more charging contacts 124, and the seal 150,
Alternatively, at least a portion of the atomizer 141 (e.g., one or both of the wicking element and the heating element) may be disposed in the vaporizer body 110 of the vaporizer 100. In implementations in which a portion of the atomizer 141 (e.g., heating element and/or wicking element) is part of the vaporizer body 110, the vaporizer 100 can be configured to deliver liquid vaporizer material from the reservoir 140 in the vaporizer cartridge 1320 to the atomizer part(s) included in the vaporizer body 110.
As mentioned above, removal of the vaporizable material 102 from the reservoir 140 (e.g., via capillary draw by the wicking element) can create at least a partial vacuum (e.g., a reduced pressure created in a part of the reservoir that has been emptied by consumption of liquid vaporizable material) relative to ambient air pressure in the reservoir 140, and such vacuum may interfere with the capillary action provided by the wicking element. This reduced pressure may, in some examples, be sufficiently large in magnitude to reduce the effectiveness of the wicking element for drawing liquid vaporizable material 102, thereby reducing the effectiveness of the vaporizer 100 to vaporize a desired amount of vaporizable material 102, such as when a user takes a puff on the vaporizer 100. In extreme cases, a vacuum created in the reservoir 140 could result in the inability to draw all of the vaporizable material 102 from the reservoir 140, thereby leading to incomplete usage of the vaporizable material 102. One or more venting features may be included in association with a vaporizer reservoir 140 (regardless of positioning of the reservoir 140 in the vaporizer cartridge 1320 or elsewhere in a vaporizer) to enable at least partial equalizing (optionally completely equalizing) of pressure in the reservoir 140 with ambient pressure (e.g., pressure in ambient air outside of the reservoir 140) to alleviate this issue.
In some cases, while allowing pressure equalization within the reservoir 140 improves efficiency of delivery of the liquid vaporizable material to the atomizer 141, it may do so by causing the otherwise empty void volume (e.g., space emptied by use of the liquid vaporizable material 1302) within the reservoir 140 to be filled with air. As discussed in further detail below, this air-filled void volume may subsequently experience pressure changes relative to ambient air, which may result, under certain conditions, in leakage of liquid vaporizable material 1302 out of the reservoir 140 and ultimately outside of the vaporizer cartridge 1320 and/or other part of a vaporizer that contains the reservoir 140. For example, a negative pressure event in which the pressure inside the vaporizer cartridge 1320 is sufficiently high to displace at least a portion of the vaporizable material 1302 in the reservoir 140 may be triggered by various environmental factors such as, for example, a change in ambient temperature, altitude, and/or volume of the cartridge 1320. Implementations of the current subject matter may also eliminate or at least minimize the leakage of the vaporizable material 1302.
Contacts 1326 may be included, in one embodiment, to provide for an electrical connection between the heating element 1350 and a power source (e.g., the power source 112 shown in
As provided above, the wicking element 1362 may be coupled to an atomizer or to the heating element 1350 (e.g., a resistive heating element or coil) that is connected to one or more electrical contacts (e.g., the plates 1326). The heating element 1350 (and/or other heating elements described herein in accordance with one or more implementations) may have various shapes and/or configurations and may include one or more heating elements 1350, 1350, or features thereof, as provided in more detail below.
In accordance with one or more example implementations, the heating element 1350 of the cartridge 1320 may be made (e.g., stamped) from a sheet of material and either crimped around at least a portion of a wicking element 1362 or bent to provide a preformed element configured to receive the wicking element 1362. For example, the wicking element 1362 may be pushed into the heating element 1350. Alternatively and/or additionally, the heating element 1350 may be held in tension and pulled over the wicking element 1362.
The heating element 1350 may be bent such that the heating element 1350 secures the wicking element 1362 between at least two or three portions of the heating element 1350. Moreover, the heating element 1350 may be bent to conform to a shape of at least a portion of the wicking element 1362. Configurations of the heating element 1350 may allow for more consistent and enhanced quality manufacturing of the heating element 1350. Consistency of manufacturing quality of the heating element 1350 may be especially important during scaled and/or automated manufacturing processes. For example, the heating element 1350 in accordance with one or more implementations may help to reduce tolerance issues that may arise during manufacturing processes when assembling a heating element 1350 having multiple components.
Additionally, discussed further below in regards to an included embodiment relating to a heating element formed of crimped metal, the heating element 1350 may be entirely and/or selectively plated with one or more materials to enhance heating performance of the heating element 1350. Plating all or a portion of the heating element 1350 may help to minimize heat losses. Plating may also help in concentrating heat to a portion of the heating element 1350, thereby providing a heating element 1350 that is more efficiently heated and further reducing heat losses. Selective plating may help to direct the current provided to the heating element 1350 to the proper location. Selective plating may also help to reduce the amount of plating material and/or costs associated with manufacturing the heating element 1350.
As noted above, the heating element 1350, in one embodiment, may be configured to receive at least a portion of the wicking element 1362 such that the wicking element 1362 is disposed at least partially inside the heating element 1350 (e.g., a heating portion of the heating element 1350). For example, the wicking element 1362 may extend near or next to plates 1326 and through resistive heating elements in contact with plates 1326. A wick housing may surround at least a portion of a heating element 1350 and connect a heating element 1350 directly or indirectly to an airflow passageway 1338. The vaporizable material 1302 may be drawn by the wicking element 1362 through one or more passageways connected to a reservoir 1340. In one embodiment, one or both of the primary passageway 1382 or an overflow channel 1104 (see
As provided in further detail below, particularly with reference to
In accordance with some implementations, the cartridge 1320 may include the reservoir 1340 that is at least partially defined by at least one wall (which can optionally be a wall that is shared with an outer shell of the cartridge) configured to contain a liquid vaporizable material 1302. The reservoir 1340 may include a storage chamber 1342 and an overflow volume 1344, which may include or otherwise contain the collector 1313. The storage chamber 1342 may contain the vaporizable material 1302 and the overflow volume 1344 may be configured to collect and/or retain at least a portion of the vaporizable material 1302, when one or more factors cause the vaporizable material 1302 in the reservoir storage chamber 1342 to travel into the overflow volume 1344. In some implementations of the current subject matter, the cartridge 1320 may be initially filled with the vaporizable material 1302 such that void space within the collector 1313 is pre-filled with the vaporizable material 1302.
In some example embodiments, the volumetric size of the overflow volume 1344 may be configured to be equal to, approximately equal to, or greater than the amount of increase in the volume of the content (e.g., vaporizable material 1302 and air) contained in the storage chamber 1342, when the volume of the content in the storage chamber 1342 expands due to a maximum expected change in pressure that the reservoir 1340 may undergo relative to an ambient pressure.
Depending on changes in ambient pressure, temperature, and/or other factors, the cartridge 1320 may experience a change from a first pressure state to a second pressure state (e.g., a first relative pressure differential between the interior of the reservoir and ambient pressure and a second relative pressure differential between the interior of the reservoir and ambient pressure). For example, in the first pressure state, the pressure inside the cartridge 1320 may be less than an ambient pressure external to the cartridge 1320. Contrastingly, in the second pressure state, the pressure inside the cartridge 1320 may exceed the ambient pressure. When the cartridge 1320 is in an equilibrium state, the pressure inside the cartridge 1320 may be substantially equal to the ambient pressure external to the cartridge 1320.
In some aspects, the overflow volume 1344 may have an opening to the exterior of cartridge 1320 and may be in communication with the reservoir storage chamber 1342 so that the overflow volume 1344 may act as a venting channel to provide for the equalization of pressure in the cartridge 1320, collect and at least temporarily retain the vaporizable material 1302 entering the overflow volume 1344 (e.g., from the storage chamber 1342 in response to variations in a pressure differential between the storage chamber 1342 and ambient pressure), and/or optionally reversibly return at least a portion of the vaporizable material 1302 collected in the overflow volume 1344.
As used herein, a “pressure differential” may refer to a difference between a pressure within an internal part of the cartridge 1320 and an ambient pressure external to the cartridge 1320. Drawing the vaporizable material 1302 from the storage chamber 1342 to the atomizer for conversion to vapor or aerosol phases may reduce the volume of the vaporizable material 1302 remaining in the storage chamber 1342. Absent a mechanism for returning air into the storage chamber 1342 (e.g., to increase the pressure inside the cartridge 1320 to achieve a substantial equilibrium with ambient pressure), low pressure or even a vacuum may develop within the cartridge 1320. The low pressure or vacuum may interfere with the capillary action of the wicking element 1362 to draw additional quantities of the vaporizable material 1302 to the heating element 1350.
Alternatively, the pressure inside of the cartridge 1320 can also increase and exceed the ambient pressure external to the cartridge 1320 due to various environmental factors such as, for example, a change in ambient temperature, altitude, and/or volume of the cartridge 1320. This increase in internal pressure may occur, for example, after air is returned into the storage chamber 1342 to achieve an equilibrium between the pressure inside the cartridge 1320 and the ambient pressure external to the cartridge 1320. However, it should be appreciated that a sufficient change in one or more environmental factors may cause the pressure in the cartridge 1320 to increase from below ambient pressure to above ambient pressure (e.g., transition from the first pressure state to the second pressure state) without any additional air entering the cartridge 1320 to first achieve an equilibrium between the pressure inside the cartridge 1320 and ambient pressure. The resulting negative pressure event in which the pressure inside the cartridge 1320 undergoes a sufficient increase may displace at least a portion of the vaporizable material 1302 in the storage chamber 1342. Absent a mechanism for collecting and/or retaining the displaced vaporizable material 1302 within the cartridge 1320, the displaced vaporizable material 1302 may leak from the cartridge 1320.
Continuing to refer to
In the first pressure state, the vaporizable material 1302 may be stored in the storage chamber 1342 of the reservoir 1340. As noted, the first pressure state may exist, for example, when the ambient pressure external to the cartridge 1320 is approximately the same as or more than the pressure inside the cartridge 1320. In this first pressure state, the structural and functional properties of the primary passageway 1382 and the overflow channel 1104 are such that the vaporizable material 1302 may flow from the storage chamber 1342 toward the wicking element 1362 by way of the primary passageway 1382. For example, capillary action of the wicking element 1362 may draw the vaporizable material 1302 into proximity with the heating element 1350. Heat generated by the heating element 1350 may act on the vaporizable material 1302 to convert the vaporizable material 1302 to a gas phase.
In one embodiment, in the first pressure state, none or a limited quantity of the vaporizable material 1302 may flow into the collector 1313, for example, into the overflow channel 1104 of the collector 1313. Contrastingly, when the cartridge 1320 transitions from the first pressure state to the second pressure state, the vaporizable material 1302 may flow from the storage chamber 1342 into the overflow volume 1344 of the reservoir 1340. By collecting and at least temporarily retaining the vaporizable material 1302 entering the collector 1313, the collector 1313 may prevent or limit an undesirable (e.g., excessive) flow of the vaporizable material 1302 out of the reservoir 1340. As noted, the second pressure state may exist when the ambient pressure external to the cartridge 1320 is less than the pressure inside the cartridge 1320. This pressure differential may cause an expanding air bubble inside the storage chamber 1342, which may displace a portion of the vaporizable material 1302 inside the storage chamber 1342. The displaced portion of the vaporizable material 1302 may be collected and at least temporarily retained by the collector 1313 instead of exiting the cartridge 1320 to cause undesirable leakage.
Advantageously, flow of the vaporizable material 1302 may be controlled by way of routing the vaporizable material 1302 driven from the storage chamber 1342 to the overflow volume 1344 in the second pressure state. For example, the collector 1313 within the overflow volume 1344 may include one or more capillary structures configured to collect and at least temporarily retain that contain at least some (and advantageously all) of the excess liquid vaporizable material 1302 pushed out of the storage chamber 1342 without allowing the liquid vaporizable material 1302 to reach an outlet of the collector 1313 where the liquid vaporizable material 1302 may exit the collector 1313 to cause undesirable leakage. The collector 1313 may also advantageously include capillary structures that enable the liquid vaporizable material pushed into the collector 1313 (e.g., by excess pressure in the storage chamber 1342 relative to ambient pressure) to be reversibly drawn back into the storage chamber 1342 when the pressure inside the storage chamber 1342 reduces and/or equalizes relative to ambient pressure. In other words, the overflow channel 1104 of the collector 1313 may have microfluidic features or properties that prevent air and liquid from bypassing each other during filling and emptying of the collector 1313. That is, microfluidic features may be used to manage the flow of the vaporizable material 1302 both into and out of the collector 1313 (i.e., provide flow reversal features). In doing so, these microfluidic features may prevent or reduce leakage of the vaporizable material 1302 as well as the entrapment of air bubbles in the storage chamber 1342 and/or the overflow volume 1344.
Depending on the implementation, the microfluidic features or properties noted above may be related to the size, shape, surface coating, structural features, and/or capillary properties of the wicking element 1362, the primary passageway 1382, and/or the overflow channel 1104. For example, the overflow channel 1104 in the collector 1313 may optionally have different capillary properties than the primary passageway 1382 leading to the wicking element 1362 such that a certain volume of the vaporizable material 1302 may be allowed to pass from the storage chamber 1342 into the overflow volume 1344, during the second pressure state in which at least a portion of the vaporizable material 1302 inside the storage chamber 1342 is displaced from the storage chamber 1342.
In one example implementation, the overall resistance of the collector 1313 to allowing liquid to flow out of the collector 1313 may be larger than an overall resistance of the wicking element 1362, for example, to allow the vaporizable material 1302 to primarily flow through the primary passageway 1382 toward the wicking element 1362 during the first pressure state.
The primary passageway 1382 may provide a capillary pathway through or into the wicking element 1362 for the vaporizable material 1302 stored in reservoir 1340. The capillary pathway (e.g., the primary passageway 1382) may be large enough to permit a wicking action or capillary action to replace the vaporized vaporizable material 1302 in the wicking element 1362 but small enough to prevent leakage of the vaporizable material 1302 out of the cartridge 1320 when excess pressure inside the cartridge 1320 displaces at least a portion of the vaporizable material 1302 from the storage chamber 1342. The wick housing or the wicking element 1362 may be treated to prevent leakage. For example, the cartridge 1320 may be coated after filling to prevent leakage or evaporation through the wicking element 1362. Any appropriate coating may be used, including, for example, a heat-vaporizable coating (e.g., a wax or other material) and/or the like.
When a user inhales from the mouthpiece area 1330 of the cartridge 1320, air may flow into the cartridge 1320 through an inlet or opening in operational relationship with the wicking element 1362. The heating element 1350 may be activated in response to a signal generated by the one or more sensors 113 (shown in
In one embodiment, the generated heat may be transferred to at least a portion of the vaporizable material 1302 in the wicking element 1362 through conductive, convective, and/or radiative heat transfer such that at least a portion of the vaporizable material 1302 drawn into the wicking element 1362 is vaporized. Depending on implementation, air entering the cartridge 1320 may flow over (or around, near, etc.) the wicking element 1362 and the heated elements in the heating element 1350 and may strip away the vaporized vaporizable material 1302 into the airflow passageway 1338, where the vapor may optionally be condensed and delivered in aerosol form, for example, through an opening in the mouthpiece area 1330.
Referring to
Returning to the example, air, which may be admitted to the storage chamber 1342 when the pressure inside the vaporizer cartridge 1320 is lower than ambient pressure, may increase the pressure inside the vaporizer cartridge 1320 and may cause the vaporizer cartridge 1320 to transition to the second pressure state in which the pressure inside the vaporizer cartridge 1320 exceed the ambient pressure external to the vaporizer cartridge 1320. Alternatively and/or additionally, the vaporizer cartridge 1320 may transition to the second pressure state in response to a change in ambient temperature, a change in ambient pressure (e.g., due to a change in external conditions such as altitude, weather, and/or the like), and/or a change in the volume of the vaporizer cartridge 1320 (e.g., when the vaporizer cartridge 1320 is compacted by an external force such as squeezing). The increase in the pressure inside the storage chamber 1342, for example, in the case of a negative pressure event, may at least expand the air occupying the void space of the storage chamber 1342, thereby displacing at least a portion of the liquid vaporizable material 1302 in the storage chamber 1342. The displaced portion of the vaporizable material 1302 may travel through at least some part of the overflow channel 1104 in the collector 1313. Microfluidic features of the overflow channel 1104 can cause the liquid vaporizable material 1302 to move along a length of the overflow channel 1104 in the collector 1313 only with a meniscus fully covering the cross-sectional area of the overflow channel 1104 transverse to the direction of flow along the length.
In some implementations of the current subject matter, the microfluidic features can include a cross-sectional area sufficiently small that for the material from which walls of the overflow channel 1104 are formed and the composition of the liquid vaporizable material 1302, the liquid vaporizable material 1302 preferentially wets the overflow channel 1104 around an entire perimeter of the overflow channel 1104. For an example in which the liquid vaporizable material 1302 includes one or more of propylene glycol and vegetable glycerin, wetting properties of such a liquid are advantageously considered in combination with the geometry of the second passageway 1384 and materials form which the walls of the overflow channel 1104 are formed. In this manner, as the sign (e.g., positive, negative, or equal) and magnitude of the pressure differential between the storage chamber 1340 and ambient pressure varies, a meniscus is maintained between the liquid vaporizable material 1302 present in the overflow channel 1104 and air entering from the ambient atmosphere to prevent the vaporizable material 1302 and the air from moving past one another. As pressure in the storage chamber 1342 drops sufficiently relative to ambient pressure and if there is sufficient void volume in the storage chamber 1342 to allow it, the vaporizable material 1302 present in the overflow channel 1104 of the collector 1313 may be withdrawn into the storage chamber 1342 sufficiently to cause the leading liquid-air meniscus to reach a gate or port between the overflow channel 1104 of the collector 1313 and the storage chamber 1342. At such time, if the pressure differential in the storage chamber 1342 relative to ambient pressure is sufficiently negative to overcome surface tension maintaining the meniscus at the gate or port, the meniscus may be freed from the gate or port walls to form one or more air bubbles, which are then released into the storage chamber 1342 with sufficient volume to equalize the pressure inside the storage chamber 1342 relative to ambient pressure.
When air admitted into the storage chamber 1340 as discussed above (or otherwise becomes present therein) experiences an elevated pressure condition relative to ambient (e.g., due to a drop in ambient pressure such as might occur in an airplane cabin or other high altitude locations, when a window of a moving vehicle is opened, when a train or vehicle leaves a tunnel, etc. or an elevation in internal pressure in the storage chamber 1340 such as might occur due to local heating, mechanical pressure that distorts a shape and thereby reduces a volume of the storage chamber 1340, etc., or the like), the above-described process may be reversed. Liquid passes through the gate or port into the overflow channel 1104 of the collector 1313 and a meniscus forms at the leading edge of a column of the vaporizable material 1302 passing into the overflow channel 1104 to prevent air from bypassing and flowing counter to the progression of the vaporizable material 1302.
By maintaining this meniscus due to the presence of the aforementioned microfluidic properties, when the elevated pressure in the storage chamber 1340 is later reduced, the column of vaporizable material 1302 may be withdrawn back into the storage chamber 1340, and optionally until the meniscus reaches the gate or port. If the pressure differential sufficiently favors ambient pressure relative to the pressure inside the storage chamber 1342, the above-described bubble formation process may occur until the two pressures equalize. In this manner, the collector 1313 may act as a reversible overflow volume that accepts the vaporizable material 1302 that is pushed out of the storage chamber 1342 under transient conditions of greater storage chamber pressure relative to ambient pressure while allowing at least some (and desirably all or most) of this overflow volume of vaporizable material 1302 to be returned to the storage chamber 1340 for later delivery, for example, to the heating element 1350 for conversion to an inhalable aerosol.
Depending on implementation, the storage chamber 1342 may or may not be connected to the wicking element 1362 via the overflow channel 1104. In embodiments in which the overflow channel 1104 includes a first end coupled with the storage chamber 1342 and a second end overflow channel 1104 leading to the wicking element 1362, any of the vaporizable material 1302 that may exit the overflow channel 1104 at the second end may further saturate the wicking element 1362.
The storage chamber 1342 may optionally be positioned closer to an end of the reservoir 1340 that is near the mouthpiece area 1330. The overflow volume 1344 may be positioned near an end of the reservoir 1340 closer to the heating element 1350, for example, between the storage chamber 1342 and the heating element 1350. The example embodiments shown in the figures are not to be construed as limiting the scope of the claimed subject matter as to the position of the various components disclosed herein. For example, the overflow volume 1344 may be positioned at a top portion, a middle portion, or a bottom portion of the cartridge 1320. The location and positioning of the storage chamber 1342 may be adjusted relative to the position of the overflow volume 1344, such that the storage chamber 1342 may be positioned at the top portion, middle portion, or bottom portion of the cartridge 1320 according to one or more variations.
In one implementation, when the vaporizer cartridge 1320 is filled to capacity, the volume of liquid vaporizable material 1302 may be equal to the internal volume of the storage chamber 1342 plus the overflow volume 1344. The internal volume of the overflow volume may, in some example implementations, correspond to a volume of the overflow channel 1104 between a gate or port connecting the overflow channel 1104 to the storage chamber 1340 and an outlet of the overflow channel 1104. In other words, the vaporizer cartridge 1320 may be initially filled with liquid vaporizable material 1302 such that all or at least some of the internal volume of the collector 1313 is occupied with the liquid vaporizable material 1302. In such an example, liquid vaporizable material 1302 may be delivered to an atomizer (e.g., including the wicking element 1362 and the heating element 1350) as needed for delivery to a user. For example, to deliver a portion of the vaporizable material 1302, the portion of the vaporizable material 1302 may be drawn from the storage chamber 1340, thereby causing any vaporizable material 1302 present in the overflow channel 1104 of the collector 1313 to be drawn back into the storage chamber 1340 because air cannot enter through the overflow channel 1104 due to the meniscus maintained by the microfluidic properties of the overflow channel 1104 (which prevents air from flowing past the vaporizable material 1302 present in the overflow channel 1104). After a sufficient quantity of the vaporizable material 1302 has been delivered to the atomizer from the storage chamber 1340 (e.g., for vaporization and user inhalation) to cause the original volume of the collector 1313 to be drawn into the storage chamber 1340, the above-discussed action occurs. For instance, one or more air bubbles may be released from a gate or port between the secondary passage 1384 and the storage chamber 1340 to equalize pressure inside the storage chamber 1340 (e.g., relative to ambient pressure) as a portion of the vaporizable material 1302 is removed from the storage chamber 1340. When the pressure inside the storage chamber 1340 increases above ambient pressure (e.g., due to the admission of air in the first pressure state, a change in temperature, a change in ambient pressure, a change in a volume of the vaporizer cartridge 1320, and/or the like), a portion of the liquid vaporizable material 1302 inside the storage chamber 1340 may become displaced and thus move out of the storage chamber 1340 past the gate or port into the overflow channel 1104 until the elevated pressure condition in the storage compartment subsides, at which point the liquid vaporizable material 1302 in the overflow channel 1104 may be drawn back into the storage chamber 1340.
In certain embodiments, the overflow volume 1344 may be sufficiently large to contain a percentage of the vaporizable material 1302 stored in the storage chamber 1342, including up to approximately 100% of the capacity of the storage chamber 1342. In one embodiment, the collector 1313 may be configured to contain at least 6% to 25% of the volume of the vaporizable material 1302 storable in the storage chamber 1342. Other ranges are also within the scope of the current subject matter.
The structure of the collector 1313 may be configured, constructed, molded, fabricated or positioned in the overflow volume 1344, in different shapes and having different properties, to allow for overflowing portions of the vaporizable material 1302 to be at least temporarily received, contained or stored in the overflow volume 1314 in a controlled manner (e.g., by way of capillary pressure), thereby preventing the vaporizable material 1302 from leaking out of the cartridge 1320 or excessively saturating the wicking element 1362. It will be understood that the above description referring to the overflow channel 1104 is not intended to be limiting to a single such overflow channel 1104. One, or optionally more than one, the overflow channel 1104 may be connected to the storage chamber 1340 via one or more than one gate or port. In some implementations of the current subject matter, a single gate or port may connect to more than one overflow channel 1104, or a single overflow channel 1104 may split into more than one overflow channel 1104 to provide additional overflow volume or other advantages.
In some implementations of the current subject matter, an air vent 1318 may connect the overflow volume 1344 to the airflow passageway 1338 that ultimately leads to ambient air environment outside of the cartridge 1320. This air vent 1318 may allow for a path for air or bubbles that may have been formed or trapped in the collector 1313 to escape through the air vent 1318, for example during the second pressure state in which the overflow channel 1104 fills with a portion of the vaporizable material 1302 displaced from the storage chamber 1342.
In accordance with some aspects, the air vent 1318 may act as a reverse vent and provide for the equalization of pressure within the cartridge 1320 during a reverting back to an equilibrium state, from the second pressure state, as the overflow of the vaporizable material 1302 returns back to the storage chamber 1342 from the overflow volume 1344. In this implementation, as ambient pressure exceeds the internal pressure in the cartridge 1320, ambient air may flow through the air vent 1318 into the overflow channel 1104 and effectively help push the vaporizable material 1302 temporarily stored in the overflow volume 1344 in a reverse direction back into the storage chamber 1342.
In one or more embodiments, in the first pressure state, the overflow channel 1104 may be at least partially occupied with air. In the second pressure state, the vaporizable material 1302 may enter the overflow channel 1104, for example through an opening (i.e., vent) at a point of interface between the storage chamber 1342 and the overflow volume 1344. As a result, air in the overflow channel 1104 may become displaced (e.g., by the incoming vaporizable material 1302) and may exit through the air vent 1318. In some embodiments, the air vent 1318 may act as or include a control valve (e.g., a selective osmosis membrane, a microfluidic gate, etc.) that allows for air to exit the overflow volume 1344, but blocks the vaporizable material 1302 from exiting from the overflow channel 1104 into the airflow passageway 1338. As noted earlier, the air vent 1318 may act as an air exchange port to allow air to enter and exit the collector 1313 as, for example, the collector 1313 fills with the vaporizable material 1302 displaced by excess pressure in the storage chamber 1342 and empties when the pressure inside the storage chamber 1342 substantially equalizes with ambient pressure. That is, the air vent 1318 may allow air to enter and exit the collector 1313 when during a transition between the first pressure state when the pressure inside the cartridge 1320 is less than the ambient pressure, the second pressure state when the pressure inside the cartridge 1320 exceeds the ambient pressure, and an equilibrium state when the pressure inside the cartridge 1320 and the ambient pressure are substantially the same.
Accordingly, the vaporizable material 1302 may be stored in the collector 1313 until pressure inside the cartridge 1320 is stabilized (e.g., when the pressure inside the cartridge 1320 is substantially equal to ambient pressure or meets a designated equilibrium) or until the vaporizable material 1302 is removed from the overflow volume 1344 (e.g., by being drawn into an atomizer for vaporization). Thus, the level of the vaporizable material 1302 in the overflow volume 1344 may be controlled by managing the flow of vaporizable material 1302 into and out of the collector 1313 as ambient pressure changes. In one or more embodiments, overflow of the vaporizable material 1302 from the storage chamber 1342 into the overflow volume 1344 may be reversed or may be reversible depending on detected changes in environment (e.g., when a pressure event that caused the vaporizable material 1302 overflow subsides or is concluded).
As noted above, in some implementations of the current subject matter, in a state when pressure inside of the cartridge 1320 becomes lower than the ambient pressure (e.g., when transitioning from the second pressure state back to the first pressure state), flow of the vaporizable material 1302 may be reversed in a direction that causes the vaporizable material 1302 to flow from the overflow volume 1344 back into the storage chamber 1342 of the reservoir 1340. Thus, depending on implementation, the overflow volume 1344 may be configured for temporary retention of the overflow portions of the vaporizable material 1302 during the second pressure state when high pressure inside the cartridge 1320 displaces at least a portion of the vaporizable material 1302 from the storage chamber 1342. Depending on an implementation, during or after a reversal back to the first pressure state when the pressure inside the cartridge 1320 is substantially equal to or below ambient pressure, at least some of the overflow of the vaporizable material 1302 retained in the collector 1313 may be returned back to the storage chamber 1342.
To control the vaporizable material 1302 flow in the cartridge 1320, in other implementations of the current subject matter, the collector 1313 may optionally include an absorbent or semi-absorbent material (e.g., material having sponge-like properties) for permanently or semi-permanently collecting or retaining the overflow of the vaporizable material 1302 travelling through the overflow channel 1104. In one example embodiment in which absorbent material is included in the collector 1313, the reverse flow of the vaporizable material 1302 from the overflow volume 1344 back into the storage chamber 1342 may not be as practical or possible as compared to embodiments that are implemented without (or without as much) absorbent material in the collector 1313. That is, the presence of the absorbent or semi-absorbent material may at least partially inhibit the vaporizable material 1302 collected in the overflow volume 1344 from returning back to the storage chamber 1342. Accordingly, the reversibility and/or the reversibility rate of the vaporizable material 1302 to the storage chamber 1342 may be controlled by including more or less densities or volumes of absorbent material in the collector 1313 or by controlling texture of the absorbent material, where such characteristics result in a higher or lower rate of absorption, either immediately or over longer time periods.
In one implementation of the current subject matter shown in
For example, in one implementation of the current subject matter, the cartridge 1320 may have a cartridge housing formed of a monolithic hollow structure having a first end and a second end. The first end (i.e., a first end, also referred to as a receiving end of the cartridge housing) may be configured for insertably receiving at least the collector 1313. In one embodiment, the second end of the cartridge housing may act as a mouthpiece with an orifice or opening. The orifice or opening may be situated opposite of the receiving end of the cartridge housing where the collector 1313 may be insertably received. In some embodiments, the opening may be connected to the receiving end by way of the airflow passageway 1338 that may extend through the body of the cartridge 1320 and the collector 1313, for example. As in other cartridge embodiments consistent with the current disclosure, an atomizer, for example one including the wicking element 1362 and the heating element 1350 as discussed elsewhere herein, may be positioned adjacent to or at least partially in the airflow passageway 1338 such that an inhalable form, or optionally a precursor of the inhalable form, of the liquid vaporizable material 1302 may be released from the atomizer into air passing through the airflow passageway 1338 toward the orifice or opening.
In some implementations of the current subject matter, the collector 1313 may have one or more gates and one or more channels configured to control the flow of air and the vaporizable material 1320 into and out of the reservoir 1340. To further illustrate,
In some implementations of the current subject matter, the second portion of the collector 1313 may have a ribbed or multi-fin-shaped structure that forms the overflow channel 1104. The overflow channel 1104 may spiral, taper, and/or slope in a direction away from the gate 1102 and towards an air exchange port 1106. As shown in
As shown in
Referring now to
In some implementations of the current subject matter, the collector 1313 may include a central tunnel 1100 (e.g., shown in
The vaporizable material 1302, at the time the cartridge 1320 is filled, may have at least an initial interface with the collector 1313 by way of the gate 1102. This is because an initial interface between vaporizable material 1302 and the gate 1102 may, for example, prevent air trapped in the overflow channel 1104 from entering the storage chamber 1342. Furthermore, such an interface may initiate a capillary interaction between vaporizable material 1302 and the walls of the overflow channel 1104 such that a limited quantity of vaporizable material 1302 may enter the overflow channel 1104 without disrupting an equilibrium state in which the flow of vaporizable material 1302 into and out of the overflow volume 1344 is negligible. The capillary action (or interaction) between the walls of the overflow channel 1104 and the vaporizable material 1302 may maintain the aforementioned equilibrium state while the cartridge 1320 is in the first pressure state, when the pressure inside the storage chamber 1342 is approximately equal to the ambient pressure.
An equilibrium state and further capillary interaction between vaporizable material 1302 and the walls of the overflow channel 1104 may be established or configured by way of adapting or adjusting the volumetric size of the overflow channel 1104 along the length of the channel. As provided in further detail herein, the diameter (which is used herein to refer generically to a measure of the magnitude of the cross-sectional area of the overflow channel 1104, including implementations of the current subject matter in which the overflow channel 1104 does not have a circular cross-section) of the overflow channel 1104 may be constricted at predetermined interval or points or throughout the length of the entire channel to allow for a sufficiently strong capillary interaction that provides for direct and reverse flows of vaporizable material 1302 into and out of the collector 1313, depending on changes in pressure and further to allow large overall volume of the overflow channel while still maintaining gate points for meniscus formation to prevent air from flowing past liquid in the overflow channel 1104.
The diameter (or cross-sectional area) of the overflow channel 1104 may be sufficiently small or narrow such that the combination of surface tension, caused by cohesion within the vaporizable material 1302, and wetting forces between the vaporizable material 1302 and the walls of the overflow channel 1104 may act to cause the formation of a meniscus that separates the liquid vaporizable material 1302 from air in a dimension traverse to the axis of flow in the overflow channel 1104. This meniscus may prevent the air and the liquid vaporizable material 1302 from passing one another other. It will be understood that menisci have an inherent curvature, so reference to a dimension transverse to the direction of flow is not intended to imply that the air-liquid interface is planar in this or any other dimension.
As shown in
Referring again to
One or more factors noted above, depending on implementation, may be used to control displacement of the vaporizable material 1302 in the overflow channel 1104 to introduce a desirable degree of reversibility, as the vaporizable material 1302 is collected in the channel structures of the collector 1313. As such, in some embodiments, the flow of the vaporizable material 1302 into the collector 1313 may be fully reversible or semi-reversible by way of selectively controlling the various factors noted above and depending on changes in pressure state inside or outside of the cartridge 1320.
As shown in
To help maintain an equilibrium state and/or to control the flow of the vaporizable material 1302 into the overflow channel 1104, the shape and structural configuration of the overflow channel 1104, the gate 1102, and/or the air exchange port 1106 may be adapted or modified to balance the rate of flow of the vaporizable material 1302 in the overflow channel 1104 at different pressure states. In implementations of the current subject matter, for example, the overflow channel 1104 may be tapered such that a cross-sectional dimensions (e.g., diameter, area, and/or the like) of the overflow channel 1104 decreases towards the gate 1102 while the cross-sectional dimensions (e.g., diameter, area, and/or the like) of the overflow channel 1104 increases towards the air exchange port 1106. That is, the cross-sectional dimensions of the overflow channel 1104 may be at a minimum at the gate 1102 where the overflow channel 1104 is coupled with the storage chamber 1342 while the cross-sectional dimensions of the overflow channel 1104 may be at a maximum at the air exchange port 1106 where the overflow channel 1104 is coupled to the ambient environment outside of the cartridge 1320. It should be appreciated that the tapering of the overflow channel 1104 may be continuous or discrete. Alternatively and/or additionally, one or more constriction points may be disposed along a length of the overflow channel 1104.
The untapered end of the overflow channel 1104 where the cross-sectional dimensions of the overflow channel 1104 is at a minimum may couple to an airflow path from which vaporized vaporizable material 1302 is delivered to the mouthpiece (e.g., the air vent 1318 shown in
The tapered structure of the overflow channel 1104 may, as needed, reduce or increase restriction on the flow of the vaporizable material 1302 into the collector 1313. For example, in an embodiment where the overflow channel 1104 is tapered toward the gate 1102, a favorable capillary pressure towards a reverse flow is induced in the overflow channel 1104 by the tapering, such that direction of the vaporizable material 1302 flow is out of the collector 1313 and into the storage chamber 1342 when pressure state changes (e.g., when a negative pressure event is eliminated or subsided). Particularly, implementing the overflow channel 1104 with a smaller opening may prevent free flow of the vaporizable material 1302 into the collector 1313. That is, the tapering of the overflow channel 1104 towards the gate 1102 may encourage the vaporizable material 1302 in the overflow channel 1104 to flow out of the gate 1102 (e.g., back into the storage chamber 1342) and discourage the flow of the vaporizable material 1302 through the gate 1102 and into the overflow channel 1104 (e.g., from the storage chamber 1342). Meanwhile, an untapered configuration for the overflow channel 1104 in a direction leading towards the air exchange port 1106 provides for efficient storage of the vaporizable material 1302 in the collector 1313 during the second pressure state when increased pressure inside the cartridge 1320 causes at least a portion of the vaporizable material 1302 from the storage chamber 1342 to flow into the collector 1313 from narrower sections of the overflow channel 1104 into larger volumetric sections of the overflow channel 1104.
As such, the dimension (e.g., diameter) and shape of the collector 1313 may be implemented so that the flow of the vaporizable material 1302 through the gate 1102 and into the overflow channel 1104 is controlled at a desirable rate. For example, during the second pressure state, the dimension and shape of the collector 1313 may be configured to prevent the vaporizable material 1302 from flowing too freely (e.g., beyond a certain flow rate or threshold) into the collector 1313 (e.g., due to excess pressure inside the cartridge 1320 displacing at least a portion of the vaporizable material 1302 from the storage chamber 1342) while favoring a reverse flow back into the storage chamber 1342 (e.g., when the pressure inside the cartridge 1320 and the ambient pressure external to the cartridge 1320 achieves a substantial equilibrium). It is noteworthy that the combination of the interactions between the vent 1318, the overflow channel 1104 in the collector 1313 that make up the overflow volume 1344, and the air exchange port 1106, in one embodiment, may provide for the proper venting of air bubbles that may be introduced into the cartridge due to various environmental factors as well as the controlled flow of the vaporizable material 1302 into and out of the overflow channel 1104.
Referring again to
A first end of the airflow passageway 1338 may be connected to an opening at a first mouthpiece end of the storage chamber 1342 from which a user may inhale vaporized vaporizable material 1302. A second end of the airflow passageway 1338 (opposite the first end) may be received in an opening at a first end of the collector 1313, as provided in further detail herein. Depending on implementation, the second end of the airflow passageway 1338 may fully or partially extend through a receiving cavity that runs through the collector 1313 and connects to a wick housing, where the wicking element 1362 may be housed.
In some implementations of the current subject matter, the airflow passageway 1338 may be an integral part of a monolithic molded mouthpiece that includes the storage chamber 1342 where the airflow passageway 1338 extends through the storage chamber 1342. In other configurations, the airflow passageway 1338 may be an independent structure that may be separately inserted into the storage chamber 1342. In some configurations, the airflow passageway 1338 may be a structural extension of the collector 1313 or the body of the cartridge 1320 as internally extending from the opening in the mouthpiece portion, for example.
Without limitation, a variety of different structural configurations may be possible for connecting the mouthpiece (and airflow passageway 1338 internal to the mouthpiece) to the air exchange port 1106 in collector 1313. As provided herein, the collector 1313 may be inserted into the body of the cartridge 1320, which may also include and/or act as the storage chamber 1342. In some embodiments, the airflow passageway 1338 may be constructed as an internal sleeve that is an integral part of a monolithic cartridge body, such that an opening in a first end of the collector 1313 may receive a first end of the sleeve structure forming the airflow passageway 1338. It should be appreciated that the mouthpiece may be a single barrel mouthpiece as shown in
As noted, the collector 1313 may include various mechanisms to control the forward flow and reverse flow of the vaporizable material 1302 into and out of the collector 1313 (e.g., the overflow volume 1344). Some of these factors may include configuring the capillary drive of a fluidic vent, referred to herein as the gate 1102. The capillary drive of the gate 1102 may be, for example, smaller than that of the wicking element 1362 whereas the flow resistance of the collector 1313 may be larger than that of the wicking element 1362. The overflow channel 1104 may have smooth and/or rippled inner surfaces to control the flow rate of the vaporizable material 1302 through the overflow channel 1104. As noted, the overflow channel 1104 may sloped and/or tapered in order to provide the proper capillary interaction and forces to limit the rate of flow through the gate 1102 and into the overflow volume 1344 during a first pressure state to promote a reverse rate of flow through the gate 1102 and out of the overflow volume 1344 during a second pressure state.
Additional modifications to the shape and structure of collector 1313 components may be possible to help further regulate or fine-tune flow of the vaporizable material 1302 into or out of the collector 1313. For example, a smoothly curved spiral channel configuration (i.e., as opposed to a channel with sharp turns or edges) as shown in
For example, as shown in
In accordance with one or more embodiments, vaporized vaporizable material 1302 generated by the heating element 1350 heating the vaporizable material 1302 may enter through the first end of the central tunnel 1100 in the collector 1313, pass through the central tunnel 1100 and further out of the second end of the central tunnel 1100 into the first end of the airflow passageway 1338. Vaporized vaporizable material 1302 may then travel through the airflow passageway 1338 and exit through the mouthpiece opening formed at the second end of the airflow passageway 1338.
In some implementations of the current subject matter, the gate 1102 may control the flow of vaporizable material 1302 into and out of the overflow channel 1104 in the collector 1313. The air exchange port 1106 may, via a connection path to ambient air, control the flow of air into and out of the overflow channel 1104 to regulate air pressure in the collector 1313, and in turn in the storage chamber 1342 of the cartridge 1320 as provided in further detail herein. In certain embodiments, the air exchange port 1106 may be configured to prevent the vaporizable material 1302 present in the overflow channel 1104 of the collector 1313 (e.g., due to being displaced by excess pressure inside the cartridge 1320) from exiting the overflow channel 1104 and leaking into an airflow passageway (e.g., the central tunnel 1100).
The air exchange port 1106 may be configured to cause the vaporizable material 1302 to exit toward a route that leads to the area in which the wicking element 1362 is housed. This implementation may help avoid leakage of the vaporizable material 1302 into an airflow passageway (e.g., the central tunnel 1100) that leads to the mouthpiece when the vaporizable material 1302 is displaced from the storage chamber 1342. In some implementations, the air exchange port 1106 may have a membrane that allows the ingress and egress of gaseous material (e.g., air bubbles) but prevents vaporizable material 1302 from entering or exiting the collector 1313 through the air exchange port 1106.
Referring now to
For example, as shown in
For example, if it is desirable to instead maintain an incoming flow in the overflow channel 1104 at a higher rate than the outgoing flow, then the constriction points maybe shaped to have a flat surface facing the outgoing flow and a rounded surface facing the incoming flow to facilitate formation and retention of a meniscus resisting outward flow of liquid (e.g., away from the storage chamber 1340) while making it easier for the meniscus to break free of the side of the constriction point facing back toward the storage compartment 1340. In this manner, a series of such constriction points may function as a sort of “hydraulic ratchet” system in which return flow of liquid into the storage compartment is microfluidically encouraged relative to outward flow from the storage compartment. This effect may be achieved, at least in part, by the relative tendency of a meniscus to break from the storage chamber side of the constriction points than from the opposite side.
Referring again to
The constriction points formed along the overflow channel 1104 need not be uniform in shapes, size, frequency, or symmetry. That is, depending on implementation, different constriction points 1111a or 1111b may be implemented in different sizes, designs, shapes, locations or frequency along the overflow channel 1104. In one example, the shape of a constriction point 1111a or 1111b may be similar to the shape of the letter C with a round internal diameter. In some embodiments, instead of a forming the internal diameter as a rounded C shape, the internal wall of the constriction point may have corners (e.g., sharp corners) such as those shown in
In some examples, the overflow channel 1104, at a first level, may have constriction points extending from the ceiling of the overflow channel 1104, whereas at a second level, the constriction points may extend from the floor of the overflow channel 1104. At a third level, the constriction points may extend from the inner walls, for example. Alternatives of the above implementations may be possible by adjusting or changing the number of constriction points and shapes of constriction points or the positioning of the constriction points in different sequences or levels to help control the microfluidic effect on flow in the two directions within the overflow channel 1104. In one example, constriction points 1111a may be implemented on one or more (or all) levels, sides, or widths of the collector 1313, for example.
Referring now to
Referring now to
Accordingly, depending on implementation and variations in the structure or construction of the constriction points and the gate 1102, the resistance to flow of vaporizable material 1302 out of the collector 1313 may be higher than the resistance to flow of vaporizable material 1302 into the collector 1313 and toward the storage chamber 1340. In certain implementations, the gate 1102 is constructed to maintain a liquid seal such that a layer of vaporizable material 1302 is present at the medium where the storage chamber 1342 communicates with the overflow channel 1104 in the overflow volume 1344. The presence of a liquid seal may help maintain a pressure equilibrium between the storage chamber 1342 and the overflow volume 1344 to promote a sufficient level of vacuum (e.g., partial vacuum) in the storage chamber 1342 to prevent vaporizable material 1302 from completely draining into the overflow volume 1344, as well as avoiding the wicking element 1362 being deprived of adequate saturation.
In one or more example implementations, a single passageway or channel in the collector 1313 may be connected to the storage chamber 1342 by way of two vents, such that the two vents maintain a liquid seal regardless of the positioning of the cartridge 1320. The formation of a liquid seal at the gate 1102 may also help prevent the air in the collector 1313 from entering the storage chamber 1342 even when the cartridge 1320 is held diagonally with respect to the horizon or when the cartridge 1320 is positioned with the mouthpiece facing downward. This is because if air bubbles from the collector 1313 enter the reservoir, the pressure inside the storage chamber 1342 will be equalized with that of ambient pressure. That is, the partial vacuum inside the storage chamber 1342 (e.g., created as a result of vaporizable material 1302 being drained through the wick feeds 1368) would be offset, if ambient air flows into the storage chamber 1342.
In some scenarios, headspace vacuum may not be maintained when the empty space (i.e., the headspace above the vaporizable material 1302) in the storage chamber 1342 contacts the gate 1102. As a result, as noted earlier, the liquid seal established at the gate 1102 may be broken. This effect may be due to the gate 1102 being unable to maintain a fluidic film as the collector 1313 is drained and headspace comes into contact with the gate 1102, leading to a loss of partial headspace vacuum.
In certain embodiments, the headspace in the storage chamber 1342 may have ambient pressure and if there exists a hydrostatic offset between the gate 1102 and the atomizer in the cartridge 1320, the contents of the storage chamber 1342 may drain into the atomizer resulting in wick-box flooding and leaking. To avoid leakage, one or more embodiments may be implemented to remove the hydrostatic offset between the gate 1102 and the atomizer and maintain gate 1102 functionality when the storage chamber 1342 is nearly drained.
As shown in
Depending on implementation, the high-drive channels, shown by way of example on the right side of
Accordingly, in the first pressure state (e.g., when the pressure inside the reservoir is approximately equal to or more than the ambient air pressure), then a liquid seal is maintained in both the low-drive and high-drive channels, preventing any air bubbles from flowing into the reservoir. Conversely, in a second pressure state (e.g., when the pressure inside the reservoir is less than the ambient air pressure), air bubbles formed in the overflow channel 1104 (e.g., by way of entry through the air exchange port 1106), or more generally a leading meniscus edge of a liquid vaporizable material-air interface may travel up and toward the controlled fluidic gate 1102. As the meniscus reaches the pinch-off point 1122 positioned between the low-drive and high-drive channels of the vent 1104, the air is preferentially routed through the low-drive channel or channels, due to a higher capillary resistance being present in the high-drive channel(s).
Once the air bubbles have passed through the low-drive channel portion of the gate 1102, the air bubbles enter the reservoir and equalize the pressure inside the reservoir with that of ambient air. As such, the air exchange port 1106 in combination with the controlled fluidic gate 1102 allows for the ambient air entering through the overflow channel 1104 to pass through into the reservoir, until an equilibrium pressure state is established between the reservoir and the ambient air. As noted earlier, this process may be referred to as the reservoir venting. Once an equilibrium pressure state is established (e.g., a transition from a second pressure state back to a first pressure state) then a liquid seal is again established at the pinch-off point 1122, due to the presence of liquid in both the high-drive channels and the low-drive channels that are fed by the liquid vaporizable material 1302 stored in the reservoir.
In some implementations, tapered channels may be designed to increase drive towards the controlled vent. Considering the pinch-off of the two advancing menisci, the reservoir's tank wall and channel bottom may be configured to continue to provide drive, while the sidewalls provide a pinch-off location for the menisci. In one configuration, the net drive of the advancing menisci does not exceed that of the receding menisci, thus maintaining the system statically stable.
Referring back to
Referring to
In certain embodiments, a plurality of wick feeds may be interactively connected in a multi-linked configuration such that an interchange of feeding paths, possibly crossing one another, may lead to the wick housing area. This configuration may help prevent complete blockage of the wick feeding mechanism if, for example, one or more feeding paths in the wick feed interchange are obstructed by way of the formation of gas bubbles or other types of clogging. Advantageously, instrumentation of multiple feeding paths may allow for vaporizable material 1302 to safely travel through one or more paths (or crossover to a different but open path) toward the wick housing area, even if some of the paths or certain routes in the wick feed interchange are fully or partially clogged or blocked.
Depending on implementation, a wick feed path may be shaped to be tubular with, for example, a circular or multifaceted cross-diameter shape. For example, the hollow cross-section of the wick feed may be triangular, rectangular, pentagonal or in any other suitable geometrical shape. In one or more embodiments, the cross-sectional perimeter of the wick feed may be in shape of a hollow cross, for example, such that the arms of the cross have a narrower width in relationship to the diameter of the central crossover portion of the cross from which the arms extend. More generally, a wick feed channel (also referred to herein as a first channel) may have a cross-sectional shape with at least one irregularity (e.g., a protrusion, a side channel, etc.) that provides an alternative path for liquid vaporizable material to flow through in the event that an air bubble blocks the remainder of the cross-sectional area of the wick feed. The cross-shaped cross-section of the current example is an example of such a structure, but a skilled artisan will understand that other shapes are also contemplated and feasible consistent with the current disclosure.
A cross-shaped duct or tube implementation that is formed through a wick feed path may overcome clogging problems because a cross-shaped tube may be essentially considered as including five separate pathways (e.g., a central pathway formed at the hollow center of the cross and four additional pathways formed in the hollow arms of the cross). In such implementation, a blockage in the feeding tube by way of a gas bubble, for example, will likely be formed at the central portion of the cross-shaped tube, leaving sub-pathways (i.e., pathways that go through the arms of the cross-shaped tube) open to flow.
In accordance with one or more aspects, wick-feeding pathways may be sufficiently wide to allow the vaporizable material 1302 to travel freely through the feeding pathways and toward the wick. In some embodiments, the flow through the wick feed may be enhanced or accommodated by way of devising the relative diameter of certain portions of the wick feed to enforce capillary pull or pressure on the vaporizable material 1302 travelling through a wick feed path. In other words, depending on the shape and other structural or material factors, some wick feeding pathways may rely on gravitational or capillary forces to induce movement of vaporizable material 1302 toward the wick-housing portion.
In the cross-shaped tube implementation, for example, the feeding paths that go through the arms of the cross-shaped tube may be configured to feed the wick by way of capillary pressure instead of reliance on gravitational force. In such implementation, the central portion of the cross-shaped tube may feed the wick due to gravitational force, for example, while the flow of vaporizable material 1302 in the arms of the cross-shaped tube may be supported by capillary pressure. It is noted that the cross-shaped tube disclosed herein is for the purpose of providing an example embodiment.
It will be understood that a cross-shaped cross section of a wick feed path is only of multiple potential configurations consistent with implementations of the current subject matter. In other words, the concepts and functionality implemented in this example embodiment may be extended to wick feed paths with different cross-sectional shapes (e.g., tubes with hollow star-shaped cross-sections having two or more arms extending from a central tunnel running along a wick feed path). A general feature consistent with this aspect of the current subject matter is a cross-sectional shape that, for a wetting angle of the material forming the wick feed path and the liquid vaporizable material to be used, preferentially results in an air bubble being unable to fully block the entirety of the cross section, for example, because one or more protruding shapes in the cross-section are sized such that a meniscus forms across the protruding shape to maintain a continuous liquid flow path (e.g., in the portion of the wick feed path that forms the protruding part of the cross section) around any such bubble.
Referring again to
Wick feed mechanisms may be formed through the collector 1313 such that at least one wick feed path in the collector 1313 may be shaped as a multifaceted cross-diameter hollow tube. For example, the hollow cross-section of the wick feed may be in shape of a plus sign (e.g., a hollow cross-shaped wick feed if viewed from a top cross-sectional view), such that the arms of the cross have a narrower width in relationship to the diameter of the central crossover portion of the cross from which the arms extend.
Such central positioning of the gas bubble would ultimately leave sub-pathways (i.e., pathways that go through the arms of the cross-shaped tube) that remain open to flow of vaporizable material 1302, even when the central path is blocked by the gas bubble. Other implementations for a wick feed passageway structure are possible that can accomplish the same or similar objective as that disclosed above with respect to trapping gas bubbles or avoiding trapped gas bubbles from fully clogging the wick feed passageway.
The addition of more vents in the structure of the collector 1313 may allow for faster flow rates, depending on implementation, as a relatively larger collective volume of the vaporizable material 1302 may be displaced when additional vents are available. As such, even though not explicitly shown, embodiments with more than two vents (e.g., triple-vent implementations, quadruple-vent implementations, etc.) are also within the scope of the disclosed subject matter.
The wick housing 1315 may be inserted along with the other noted components into an end of the cartridge 1320 that is opposite to the mouthpiece to hold the components inside in a pressure-sealed or pressure-fit manner. The seal or fit of the wick housing 1315 and collector 1313 inside the inner walls of the receiving sleeve of the cartridge 1320 is desirably sufficiently tight to prevent leakage of vaporizable material 1302 held in the reservoir of the cartridge 1320. In some embodiments, the pressure seal between the wick housing 1315 and the collector 1313 and the inner walls of the receiving sleeve of the cartridge 1320 is also sufficiently tight to prevent the manual disassembly of the components with a user's bare hands.
Referring now to
Referring to now to
Vaporizing vaporizable material into an aerosol may result in condensate collecting along one or more internal channels and outlets (e.g., along a mouthpiece) of some vaporizers. For example, such condensate may include vaporizable material that was drawn from a reservoir, formed into an aerosol, and condensed into the condensate prior to exiting the vaporizer. Additionally, vaporizable material that has circumvented the vaporization process may also accumulate along the one or more internal channels and/or air outlets. This can result in the condensate and/or unvaporized vaporizable material exiting the mouthpiece outlet and depositing into the mouth of a user thereby creating both an unpleasant user experience as well as decreasing the amount of inhalable aerosol otherwise available. Furthermore, the buildup and loss of condensate can ultimately result in the inability to draw all of the vaporizable material from the reservoir into the vaporization chamber, thereby wasting vaporizable material. For example, as vaporizable material particulates accumulate in the internal channels of an air tube downstream of a vaporization chamber, the effective cross-sectional area of the airflow passageway narrows, thus increasing the flow rate of the air and thereby applying drag forces onto the accumulated fluid consequently amplifying the potential to entrain fluid from the internal channels and through the mouthpiece outlet. As such, in some implementations of the current subject matter, the vaporizer cartridge 1320 may include a condensate recycling system including, for example, a condensate collector 3201 and condensate recycling channels 3204 (e.g., micro-fluidic channels) that extend from the opening of the mouthpiece to the wicking element 1362. To further illustrate,
Referring to
Additional and/or alternative embodiments of the condensate recycler channels, and/or one or more other features for controlling, collecting, and/or recycling condensate in a vaporizer device are described and shown with respect to
One function of the grooves may include that vaporizable material condensate becomes trapped or is otherwise positioned within the grooves. The condensate, once positioned within the grooves, drains down to the wick due to the capillary action created by the wicking element. The draining of the condensate within the grooves may at least partially be achieved via capillary action. If any condensation exists inside the air tube, the vaporizable material particulates may fill into the grooves rather than forming or building a wall of condensate inside the air tube if the grooves were not present. When the grooves are filled enough to establish fluid communication with the wick, the condensate drains through and from the grooves and can be reused as vaporizable material. In some embodiments, the grooves may be tapered such that the grooves are narrower towards the wick and wider towards the mouthpiece. Such tapering may encourage fluid to move toward the vaporization chamber as more condensate collects in the grooves via higher capillary action at the narrower point.
As the effective cross-section of the air flow passageway narrows, either by accumulation of condensate in the airflow passageway or by design as discussed herein, the flow rate of the air moving through the air tube increases, applying drag forces on the accumulated fluid (e.g., condensate). Fluid exits the air outlet when the drag forces pulling the fluid out toward the user (e.g., responsive to inhalation on the vaporizer) are higher than the capillary forces pulling the fluid toward the wick.
To overcome this issue and encourage the condensate away from the mouthpiece outlet and back toward the vaporization chamber 342 and/or the wick, a tapered airflow passageway is provided such that a cross-section of the air tube grooves 364 proximate to the vaporization chamber 342 is narrower than a cross-section of the air tube grooves 364 proximate to the mouthpiece. Further, each of the internal grooves narrows such that the width of the internal grooves proximate to the air tube first end 362 may be wider than the width of the internal grooves proximate to the air tube second end 363. As such, the narrowing passageway increases the capillary drive of the air tube grooves 364 and encourages fluid movement of the condensate toward the chamber grooves 365. Further yet, the chamber grooves 365 proximate to the air tube second end 363 may be wider than the width of the chamber grooves 365 proximate to the wick. That is, each groove channel progressively narrows approaching the wick in addition to the airflow passageway itself narrowing toward the wick end.
To maximize the effectiveness of the capillary action provided by the condensate recycler system design, the air tube cross-sectional size relative to the groove size may be considered. While capillary drive may increase as groove width narrows, smaller groove sizes may result in the condensate overflowing the grooves and clogging the air tube. As such, groove width may range from approximately 0.1 mm to approximately 0.8 mm.
In some embodiments, the geometry or number of grooves may vary. For example, the grooves may not necessarily have a decreasing hydraulic diameter toward the wick. In some embodiments, a decreasing hydraulic diameter toward the wick may improve performance of the capillary drive, but other embodiments may be considered. For example, the internal grooves and channels may have a substantially straight structure, a tapered structure, a helical structure, and/or other arrangements.
In some implementations of the current subject matter, the geometric construction of the air inlet channel may provide for at least one of a minimum length, a minimum depth, or a maximum width, for example, to ensure a user can't completely cover or block the air inlet holes in the air inlet channel with a finger, a hand, and/or another body part. For example, the length of the air inlet channel may be longer than the width of an average human finger and the width and depth of the air inlet channel may be such that when a user's finger is pressed on top of the channel, the skin folds created does not interface with the air inlet holes inside the air inlet channel.
The air inlet channel may be constructed or formed as having rounded edges or shaped to wrap around one or more corners or areas of the vaporizer body 110, so that the air inlet channel cannot be easily covered by a user's finger or body part. In some implementations of the current subject matter, an optional cover may be provisioned to protect the air inlet channel so that a user's finger cannot not block or completely limit airflow into the air inlet channel. Alternatively and/or additionally, the air inlet channel may be disposed at an interface between the vaporizer cartridge 1320 and the vaporizer body 110. For example, the air inlet channel may be disposed within a recessed area, for example, a seam, a cavity, a groove, a gap, and/or the like, that is formed between the vaporizer cartridge 1320 and the vaporizer body 110 when the vaporizer cartridge 1320 is coupled with the vaporizer body 110. This recessed area may extend at least partially around the circumference of the vaporizer cartridge 1320 and the vaporizer body 110 such that a user's finger (or other body part) is able to cover only a portion of the recessed area and air may still enter the air inlet channel through the uncovered portion of the recessed area.
To prevent the vaporizable material 1302 that are present in the wick housing 1315, for example, the vaporizable material 1302 drawn into the wicking element 1362, from flowing out of the wick housing 1315, the interior dimensions (e.g., cross-sectional area, diameter, width, length, and/or the like) of the slots 596 may be stepped in order to provide, for example, one or more constriction points at which a meniscus may form to prevent the further egress of the vaporizable material 1302. To further illustrate,
In some implementations of the current subject matter, the dimensions of the slots 596 at the bottom of the wick housing 1315 may be between 1.0-1.4 millimeters long by 0.3-0.7 millimeters wide. For example, the slots 596 may be 1.2 millimeters long by 0.5 millimeters wide at the bottom of the wick housing 1315 but may exhibit a stepped interior such that the inner dimensions of the slots are approximately 1.0 millimeters long by 0.3 millimeters wide. The step may provide a constriction point at which a meniscus may form to prevent a further egress of the vaporizable material 1302 out of the slots 596. In particular, maintaining an air-liquid interface within the stepped interiors of the slots 596 may prevent the liquid vaporizable material 1302 from breaching the bottom of the wick housing 1315 and contaminating an external environment, including, for example, the vaporizer body 110 at locations (e.g., the cartridge receptacle 118) proximate to where the vaporizer cartridge 1320 couples with the vaporizer body 110.
In certain embodiments, the tab 4390 may be utilized to direct the orientation of the wick housing 1315 during assembly. For example, in one embodiment one or more vibrating mechanisms (e.g., vibrating bowls) may be utilized to temporarily store or stage the various components of the cartridge 1320. According to some implementations, the tab 4390 may be helpful in orienting the upper portion of the wick housing 1315 for a mechanical gripper for the purpose of easy engagement and correct automated assembly.
In some implementations of the current subject matter, the collector 1313 may include one or more features configured to encourage a mixing of the vaporized vaporizable material 1302 in the airflow passageway 1338. As noted, the central tunnel 1100 may traverse the collector 1313 to form a fluid connection between the airflow passageway 1338 and the wick housing 1315 in which the heating element 1350 and the wicking element 1362 are disposed. Accordingly, aerosol generated by the heating element 1350 heating the vaporizable material 1302 drawn into the wicking element 1362 may travel from the wick housing 1315 into the central tunnel 1100 in the collector 1313 before flowing into the airflow passageway 1338 for delivery to the user. To encourage mixing of the vaporized vaporizable material 1302 as the vaporized vaporizable material 1302 travels through the central tunnel 1100 and the airflow passageway 1338, the bottom surface of the collector 1313, which serves as an interface between the collector 1313 and the wick housing 1315, may include one or more features configured to direct the flow of the vaporized vaporizable material 1302.
To further illustrate,
Referring again to
In some implementations of the current subject matter, the flow controller 5220 may include one or more channels including, for example, a first channel 5225a and a second channel 5225b. In the example of the collector 1313 shown in
Moreover, each column of the vaporized vaporizable material 1302 may flow in a direction that is offset by the sloped interior contours of the first channel 5225a and the second channel 5225b. For example, instead of traveling straight up towards the airflow passageway 1338, the columns of the vaporized vaporizable material 1302 may be directed towards the walls of the central tunnel 1100 and the airflow passageway 1338. That is, the flow controller 5220 may be configured to disrupt the laminar flow of the vaporized vaporizable material 1302 in which layers of the vaporized vaporizable material 1302, each of which traveling at its own velocity and having its own temperature, travel independently without any disruption or comingling between the layers. Lateral mixing between the layers of the vaporized vaporizable material 1302 in a laminar flow may be minimal as well as slow (e.g., through diffusion mixing). As such, without the disruption introduced by the flow controller 5220, the vaporized vaporizable material 1302 may fail to undergo sufficient mixing before existing the airflow passageway 1338 for delivery to the user.
Contrastingly, because the first channel 5225a and the second channel 5225b are configured to offset the flow of the vaporized vaporizable material 1302, the flow controller 5220 may introduce turbulent flow into the vaporized vaporizable material 1302 passing through the flow controller 5220. For example, offsetting the flow direction of the vaporized vaporizable material 1302 may force each column of the vaporized vaporizable material 1302 to interact with the walls of the central tunnel 1100 and the airflow passageway 1338 as well as with each other. These interactions may disrupt the layers of the vaporized vaporizable material 1302 traveling at different velocities and having different temperatures to encourage a mixing of the layers of the vaporized vaporizable material 1302.
To further illustrate,
As noted above, the vaporizer cartridge 1320 consistent with implementations of the current subject matter may include one or more heating elements such as, for example, the heating element 1350. According to some implementations of the current subject matter, the heating element 1350 may desirably be shaped to receive the wicking element 1362 and/or crimped or pressed at least partially around the wicking element 1362. The heating element 1350 may be bent such that the heating element 1350 is configured to secure the wicking element 1362 between at least two or three portions of the heating element 1350. The heating element 1350 may be bent to conform to a shape of at least a portion of the wicking element 1362. The heating element 1350 may be manufactured more easily than typical heating elements. The heating element consistent with implementations of the current subject matter may also be made of an electrically conductive metal suitable for resistive heating and in some implementations, the heating element may include selective plating of another material to allow the heating element (and thus, the vaporizable material) to be more efficiently heated.
As explained in more detail below, at least a portion of the heating element 1350 is positioned between the housing 160 and the wick housing 1315 and is exposed to be coupled with a portion of the vaporizer body 110 (e.g., electrically coupled with the receptacle contacts 125). The wick housing 1315 may include four sides. For example, the wick housing 1315 may include two opposing short sides and two opposing long sides. The two opposing long sides may each include at least one (two or more) recess. The recesses may be positioned along the long side of the wick housing 1315 and adjacent to respective intersections between the long sides and the short sides of the wick housing 1315. The recesses may be shaped to releasably couple with a corresponding feature (e.g., a spring) on the vaporizer body 110 to secure the vaporizer cartridge 1320 to the vaporizer body 110 within the cartridge receptacle 118. The recesses provide a mechanically stable securement means to couple the vaporizer cartridge 1320 to the vaporizer body 110.
In some implementations, the wick housing 1315 also includes an identification chip 174, which may be configured to communicate with a corresponding chip reader located on the vaporizer. The identification chip 174 may be glued and/or otherwise adhered to the wick housing 1315, such as on a short side of the wick housing 1315. The wick housing 1315 may additionally or alternatively include a chip recess that is configured to receive the identification chip 174. The chip recess may be surrounded by two, four, or more walls. The chip recess may be shaped to secure the identification chip 174 to the wick housing 1315.
The substrate material may be made of an electrically conductive metal suitable for resistive heating. In some implementations, the heating element 1350 includes a nickel-chromium alloy, a nickel alloy, stainless steel, and/or the like. As discussed below, the heating element 1350 may be plated with a coating in one or more locations on a surface of the substrate material to enhance, limit, or otherwise alter the resistivity of the heating element in the one or more locations of the substrate material (which can be all or a portion of the heating element 1350).
The heating element 1350 includes one or more tines 502 (e.g., heating segments) located in a heating portion 504, one or more connecting portions or legs 506 (e.g., one, two, or more) located in a transition region 508, and a cartridge contact 124 located in an electrical contact region 510 and formed at an end portion of each of the one or more legs 506. The tines 502, the legs 506, and the cartridge contacts 124 may be integrally formed. For example, the tines 502, the legs 506, and the cartridge contacts 124 form portions of the heating element 1350 that is stamped and/or cut from the substrate material. In some implementations, the heating element 1350 also includes a heat shield 518 that extends from one or more of the legs 506 and also may be integrally formed with the tines 502, the legs 506, and the cartridge contacts 124.
In some implementations, at least a portion of the heating portion 504 of the heating element 1350 is configured to interface with the vaporizable material drawn into the wicking element from the reservoir 1340 of the vaporizer cartridge 1320. The heating portion 504 of the heating element 1350 may be shaped, sized, and/or otherwise treated to create a desired resistance. For example, the tines 502 located in the heating portion 504 may be designed so that the resistance of the tines 502 matches the appropriate amount of resistance to influence localized heating in the heating portion 504 to more efficiently and effectively heat the vaporizable material from the wicking element. The tines 502 form thin path heating segments or traces in series and/or in parallel to provide the desired amount of resistance.
The tines 502 (e.g., traces) may include various shapes, sizes, and configurations. In some configurations, one or more of the tines 502 may be spaced to allow the vaporizable material to be wicked out of the wicking element and from there, vaporized off side edges of each of the tines 502. The shape, length, width, composition, etc., among other properties of the tines 502 may be optimized to maximize the efficiency of generating an aerosol by vaporizing vaporizable material from within the heating portion of the heating element 1350 and to maximize electrical efficiency. The shape, length, width, composition, etc., among other properties of the tines 502 may additionally or alternatively be optimized to uniformly distribute heat across the length of the tines 502 (or a portion of the tines 502, such as at the heating portion 504). For example, the width of the tines 502 may be uniform or variable along a length of the tines 502 to control the temperature profile across at least the heating portion 504 of the heating element 1350. In some examples, the length of the tines 502 may be controlled to achieve a desired resistance along at least a portion of the heating element 1350, such as at the heating portion 504. As shown in
The heating element 1350 may include portions of wider and/or thicker geometry, and/or differing composition relative to the tines 502. These portions may form electrical contact areas and/or more conductive parts, and/or may include features for mounting the heating element 1350 within the vaporizer cartridge. The legs 506 of the heating element 1350 extend from an end of each outermost tine 502A. The legs 506 form a portion of the heating element 1350 that has a width and/or thickness that is typically wider than a width of each of the tines 502. Though, in some implementations, the legs 506 have a width and/or thickness that is the same as or narrower than the width of each of the tines 502. The legs 506 couple the heating element 1350 to the wick housing 1315 or another portion of the vaporizer cartridge 1320, so that the heating element 1350 is at least partially or fully enclosed by the housing 160. The legs 506 provide rigidity to encourage the heating element 1350 to be mechanically stable during and after manufacturing. The legs 506 also connect the cartridge contacts 124 with the tines 502 located in the heating portion 504. The legs 506 are shaped and sized to allow the heating element 1350 to maintain the electrical requirements of the heating portion 504. As shown in
In some implementations, one or more of the legs 506 includes one or more locating features 516. The locating features 516 may be used for relative locating of the heating element 1350 or portions thereof during and/or after assembly by interfacing with other (e.g., adjacent) components of the vaporizer cartridge 1320. In some implementations, the locating features 516 may be used during or after manufacturing to properly position the substrate material for cutting and/or stamping the substrate material to form the heating element 1350 or post-processing of the heating element 1350. The locating features 516 may be sheared off and/or cut off before crimping or otherwise bending the heating element 1350.
In some implementations, the heating element 1350 includes one or more heat shields 518. The heat shields 518 form a portion of the heating element 1350 that extends laterally from the legs 506. When folded and/or crimped, the heat shields 518 are positioned offset in a first direction and/or a second direction opposite the first direction in the same plane from the tines 502. When the heating element 1350 is assembled in the vaporizer cartridge 1320, the heat shields 518 are configured to be positioned between the tines 502 (and the heating portion 504) and the body (e.g., plastic body) of the vaporizer cartridge 1320. The heat shields 518 can help to insulate the heating portion 504 from the body of the vaporizer cartridge 1320. The heat shields 518 help to minimize the effects of the heat emanating from the heating portion 504 on the body of the vaporizer cartridge 1320 to protect the structural integrity of the body of the vaporizer cartridge 1320 and to prevent melting or other deformation of the vaporizer cartridge 1320. The heat shields 518 may also help to maintain a consistent temperature at the heating portion 504 by retaining heat within the heating portion 504, thereby preventing or limiting heat losses while vaporization is occurring. In some implementations, the vaporizer cartridge 1320 may also or alternatively include a heat shield 518A that is separate from the heating element 1350.
As noted above, the heating element 1350 includes at least two cartridge contacts 124 that form an end portion of each of the legs 506. For example, as shown in
The cartridge contacts 124 may form conductive pins, tabs, posts, receiving holes, or surfaces for pins or posts, or other contact configurations. Some types of cartridge contacts 124 may include springs or other urging features to cause better physical and electrical contact between the cartridge contacts 124 on the vaporizer cartridge and receptacle contacts 125 on the vaporizer body 110. In some implementations, the cartridge contacts 124 include wiping contacts that are configured to clean the connection between the cartridge contacts 124 and other contacts or power source. For example, the wiping contacts would include two parallel, but offset, bosses that frictionally engage and slide against one another in a direction that is parallel or perpendicular to the insertion direction.
The cartridge contacts 124 are configured to interface with the receptacle contacts 125 disposed near a base of the cartridge receptacle of the vaporizer 100 such that the cartridge contacts 124 and the receptacle contacts 125 make electrical connections when the vaporizer cartridge 1320 is inserted into and coupled with the cartridge receptacle 118. The cartridge contacts 124 may electrically communicate with the power source 112 of the vaporizer device (such as via the receptacle contacts 125, etc.). The circuit completed by these electrical connections can allow delivery of electrical current to the resistive heating element to heat at least a portion of the heating element 1350 and may further be used for additional functions, such as for example for measuring a resistance of the resistive heating element for use in determining and/or controlling a temperature of the resistive heating element based on a thermal coefficient of resistivity of the resistive heating element, for identifying a cartridge based on one or more electrical characteristics of a resistive heating element or the other circuitry of the vaporizer cartridge, etc. The cartridge contacts 124 may be treated, as explained in more detail below, to provide improved electrical properties (e.g., contact resistance) using, for example, conductive plating, surface treatment, and/or deposited materials.
In some implementations, the heating element 1350 may be processed through a series of crimping and/or bending operations to shape the heating element 1350 into a desired three-dimensional shape. For example, the heating element 1350 may be performed to receive or crimped about a wicking element 1362 to secure the wicking element between at least two portions (e.g., approximately parallel portions) of the heating element 1350 (such as between opposing portions of the heating portion 504). To crimp the heating element 1350, the heating element 1350 may be bent along fold lines 520 towards one another. Folding the heating element 1350 along fold lines 520 forms a platform tine portion 524 defined by the region between the fold lines 520 and side tine portions 526 defined by the region between the fold lines 520 and the outer edges 503 of the tines 502. The platform tine portion 524 is configured to contact one end of the wicking element 1362. The side tine portions 526 are configured to contact opposite sides of the wicking element 1362. The platform tine portion 524 and the side tine portions 526 form a pocket that is shaped to receive the wicking element 1362 and/or conform to the shape of at least a portion of the wicking element 1362. The pocket allows the wicking element 1362 to be secured and retained by the heating element 1350 within the pocket. The platform tine portion 524 and the side tine portions 526 contact the wicking element 1362 to provide a multi-dimensional contact between the heating element 1350 and the wicking element 1362. Multi-dimensional contact between the heating element 1350 and the wicking element 1362 provides for a more efficient and/or faster transfer of the vaporizable material from the reservoir 1340 of the vaporizer cartridge 1320 to the heating portion 504 (via the wicking element 1362) to be vaporized.
In some implementations, portions of the legs 506 of the heating element 1350 may also be bent along fold lines 522 away from one another. Folding the portions of the legs 506 of the heating element 1350 along fold lines 522 away from one another locates the legs 506 at a position spaced away from the heating portion 504 (and tines 502) of the heating element 1350 in a first and/or second direction opposite the first direction (e.g., in the same plane). Thus, folding the portions of the legs 506 of the heating element 1350 along fold lines 522 away from one another spaces the heating portion 504 from the body of the vaporizer cartridge 1320.
In some implementations of the current subject matter, the heating element 1350 may also be bent along fold lines 523. For example, the cartridge contacts 124 may be bent towards one another (into and out of the page shown in
In use, when a user puffs on the mouthpiece 130 of the vaporizer cartridge 1320 when the heating element 1350 is assembled into the vaporizer cartridge 1320, air flows into the vaporizer cartridge and along an air path. In association with the user puff, the heating element 1350 may be activated, e.g., by automatic detection of the puff via a pressure sensor, by detection of a pushing of a button by the user, by signals generated from a motion sensor, a flow sensor, a capacitive lip sensor, and/or another approach capable of detecting that a user is taking or about to be taking a puff or otherwise inhaling to cause air to enter the vaporizer 100 and travel at least along the air path. Power can be supplied from the vaporizer device to the heating element 1350 at the cartridge contacts 124, when the heating element 1350 is activated.
When the heating element 1350 is activated, a temperature increase results due to current flowing through the heating element 1350 to generate heat. The heat is transferred to some amount of the vaporizable material through conductive, convective, and/or radiative heat transfer such that at least a portion of the vaporizable material vaporizes. The heat transfer can occur to vaporizable material in the reservoir and/or to vaporizable material drawn into the wicking element 1362 retained by the heating element 1350. In some implementations, the vaporizable material can vaporize along one or more edges of the tines 502, as mentioned above. The air passing into the vaporizer device flows along the air path across the heating element 1350, stripping away the vaporized vaporizable material from the heating element 1350. The vaporized vaporizable material can be condensed due to cooling, pressure changes, etc., such that it exits the mouthpiece 130 as an aerosol for inhalation by a user.
As noted above, the heating element 1350 may be made of various materials, such as nichrome, stainless steel, or other resistive heater materials. Combinations of two or more materials may be included in the heating element 1350, and such combinations can include both homogeneous distributions of the two or more materials throughout the heating element or other configurations in which relative amounts of the two or more materials are spatially heterogeneous. For example, the tines 502 may have portions that are more resistive and thereby be designed to grow hotter than other sections of the tines or heating element 1350. In some implementations, at least the tines 502 (such as within the heating portion 504) may include a material that has high conductivity and heat resistance.
The heating element 1350 may be entirely or selectively plated with one or more materials. Since the heating element 1350 is made of a thermally and/or electrically conductive material, such as stainless steel, nichrome, or other thermally and/or electrically conductive alloy, the heating element 1350 may experience electrical or heating losses in the path between the cartridge contacts 124 and the tines 502 in the heating portion 504 of the heating element 1350. To help to reduce heating and/or electrical losses, at least a portion of the heating element 1350 may be plated with one or more materials to reduce resistance in the electrical path leading to the heating portion 504. In some implementations consistent with the current subject matter, it is beneficial for the heating portion 504 (e.g., the tines 502) to remain unplated, with at least a portion of the legs 506 and/or cartridge contacts 124 being plated with a plating material that reduces resistance (e.g., either or both of bulk and contact resistance) in those portions.
For example, the heating element 1350 may include various portions that are plated with different materials. In another example, the heating element 1350 may be plated with layered materials. Plating at least a portion of the heating element 1350 helps to concentrate current flowing to the heating portion 504 to reduce electrical and/or heat losses in other portions of the heating element 1350. In some implementations, it is desirable to maintain a low resistance in the electrical path between the cartridge contacts 124 and the tines 502 of the heating element 1350 to reduce electrical and/or heat losses in the electrical path and to compensate for the voltage drop that is concentrated across the heating portion 504.
In some implementations, the cartridge contacts 124 may be selectively plated. Selectively plating the cartridge contacts 124 with certain materials may minimize or eliminate contact resistance at the point where the measurements are taken and the electrical contact is made between the cartridge contacts 124 and the receptacle contacts. Providing a low resistance at the cartridge contacts 124 can provide more accurate voltage, current, and/or resistance measurements and readings, which can be beneficial for accurately determining the current actual temperature of the heating portion 504 of the heating element 1350.
In some implementations, at least a portion of the cartridge contacts 124 and/or at least a portion of the legs 506 may be plated with one or more outer plating materials 550. For example, at least a portion of the cartridge contacts 124 and/or at least a portion of the legs 506 may be plated with at least gold, or another material that provides low contact resistance, such as platinum, palladium, silver, copper, or the like.
In some implementations, in order for the low resistance outer plating material to be secured to the heating element 1350, a surface of the heating element 1350 may be plated with an adhering plating material. In such configurations, the adhering plating material may be deposited onto the surface of the heating element 1350 and the outer plating material may be deposited onto the adhering plating material, defining first and second plating layers, respectively. The adhering plating material includes a material with adhesive properties when the outer plating material is deposited onto the adhering plating material. For example, the adhering plating material may include nickel, zinc, aluminum, iron, alloys thereof, or the like.
In some implementations, the surface of the heating element 1350 may be primed for the outer plating material to be deposited onto the heating element 1350 using non-plating priming, rather than by plating the surface of the heating element 1350 with the adhering plating material. For example, the surface of the heating element 1350 may be primed using etching rather than by depositing the adhering plating material.
In some implementations, all or a portion of the legs 506 and the cartridge contacts 124 may be plated with the adhering plating material and/or the outer plating material. In some examples, the cartridge contacts 124 may include at least a portion that has an outer plating material having a greater thickness relative to the remaining portions of the cartridge contacts 124 and/or the legs 506 of the heating element 1350. In some implementations, the cartridge contacts 124 and/or the legs 506 may have a greater thickness relative to the tines 502 and/or the heating portion 504.
In some implementations, rather than forming the heating element 1350 of a single substrate material and plating the substrate material, the heating element 1350 may be formed of various materials that are coupled together (e.g., via laser welding, diffusion processes, etc.). The materials of each portion of the heating element 1350 that is coupled together may be selected to provide a low or no resistance at the cartridge contacts 124 and a high resistance at the tines 502 or heating portion 504 relative to the other portions of the heating element 1350.
In some implementations, the heating element 1350 may be electroplated with silver ink and/or spray coated with one or more plating materials, such as the adhering plating material and the outer plating material.
As mentioned above, the heating element 1350 may include various shapes, sizes, and geometries to more efficiently heat the heating portion 504 of the heating element 1350 and more efficiently vaporize the vaporizable material 1302.
The tines 502 may be folded and/or crimped to define the pocket in which a wicking element 1362 (e.g., a flat pad) resides. The tines 502 include a platform tine portion 524 and side tine portions 526. The platform tine portion 524 is configured to contact one side of the wicking element 1362 and the side tine portions 526 are configured to contact other opposite sides of the wicking element 1362. The platform tine portion 524 and the side tine portions 526 form the pocket that is shaped to receive the wicking element 1362 and/or conform to the shape of at least a portion of the wicking element 1362. The pocket allows the wicking element 1362 to be secured and retained by the heating element 1350 within the pocket.
In this example, the tines 502 have various shapes and size, and are spaced apart from one another at the same or varying distances. For example, as shown, each of the side tine portions 526 includes at least four tines 502. In a first pair 570 of adjacent tines 502, each of the adjacent tines 502 is spaced apart at an equal distance from an inner region 576 positioned near the platform tine portion 524 to an outer region 578 positioned near the outer edge 503. In a second pair 572 of adjacent tines 502, the adjacent tines 502 are spaced apart by a varying distance from the inner region 576 to the outer region 578. For example, the adjacent tines 502 of the second pair 572 are spaced apart by a width that is greater at the inner region 576 than at the outer region 578. These configurations may help to maintain a constant and uniform temperature along the length of the tines 502 of the heating portion 504. Maintaining a constant temperature along the length of the tines 502 may provide higher quality aerosol, as the maximum temperature is more uniformly maintainable across the entire heating portion 504.
As noted above, each of the legs 506 may include and/or define a cartridge contact 124 that is configured to contact a corresponding receptacle contact 125 of the vaporizer 100. In some implementations, each pair of legs 506 (and the cartridge contacts 124) may contact a single receptacle contact 125. In some implementations, the legs 506 include retainer portions 180 that are configured to be bent and generally extend away from the heating portion 504. The retainer portions 180 are configured to be positioned within a corresponding recess in the wick housing 1315. The retainer portions 180 form an end of the legs 506. The retainer portions 180 help to secure the heating element 1350 and wicking element 1362 to the wick housing 1315 (and the vaporizer cartridge 1320). The retainer portions 180 may have a tip portion 180A that extends from an end of the retainer portion 180 towards the heating portion 504 of the heating element 1350. This configuration reduces the likelihood that the retainer portion will contact another portion of the vaporizer cartridge 1320, or a cleaning device for cleaning the vaporizer cartridge 1320.
The outer edge 503 of the tines 502 in the heating portion 504 may include a tab 580. The tab 580 may include one, two, three, four, or more tabs 580. The tab 580 may extend outwardly from the outer edge 503 and extend away from a center of the heating element 1350. For example, the tab 580 may be positioned along an edge of the heating element 1350 surrounding an internal volume defined by at least the side tine portions 526 for receiving the wicking element 1362. The tab 580 may extend outwardly away from the internal volume of the wicking element 1362. The tab 580 may also extend away in a direction opposite the platform tine portion 524. In some implementations, tabs 580 positioned on opposing sides of the internal volume of the wicking element 1362 may extend away from one another. This configuration helps to widen the opening leading to the internal volume of the wicking element 1362, thereby helping to reduce the likelihood that the wicking element 1362 will catch, tear, and/or become damaged when assembled with the heating element 1350. Due to the material of the wicking element 1362, the wicking element 1362 may easily catch, tear, and/or otherwise become damaged when assembled (e.g., positioned within or inserted into) with the heating element 1350. Contact between the wicking element 1362 and the outer edge 503 of the tines 502 may also cause damage to the heating element. The shape and/or positioning of the tab 580 may allow the wicking element 1362 to more easily be positioned within or into the pocket (e.g., the internal volume of the heating element 1350) formed by the tines 502, thereby preventing or reducing the likelihood that the wicking element 1362 and/or the heating element will be damaged. Thus, the tabs 580 help to reduce or prevent damage caused to the heating element 1350 and/or the wicking element 1362 upon entry of the wicking element 1362 into thermal contact with the heating element 1350. The shape of the tab 580 also helps to minimize impact on the resistance of the heating portion 504.
In some implementations, at least a portion of the cartridge contacts 124 and/or at least a portion of the legs 506 may be plated with one or more outer plating materials 550 to reduce contact resistance at the point where the heating element 1350 contacts the receptacle contacts 125.
The tines 502 may be folded and/or crimped to define the pocket in which a wicking element 1362 (e.g., flat pad) resides. The tines 502 include a platform tine portion 524 and side tine portions 526. The platform tine portion 524 is configured to contact one side of the wicking element 1362 and the side tine portions 526 are configured to contact other opposite sides of the wicking element 1362. The platform tine portion 524 and the side tine portions 526 form the pocket that is shaped to receive the wicking element 1362 and/or conform to the shape of at least a portion of the wicking element 1362. The pocket allows the wicking element 1362 to be secured and retained by the heating element 1350 within the pocket.
In this example, the tines 502 have the same shape and size and are spaced apart from one another at equal distances. Here, the tines 502 include a first side tine portion 526A and a second side tine portion 526B that are spaced apart by the platform tine portion 524. Each of the first and second side tine portions 526A, 526B include an inner region 576 positioned near the platform tine portion 524 to an outer region 578 positioned near the outer edge 503. At the outer region 578, the first side tine portion 526A is positioned approximately parallel to the second tine portion 526A. At the inner region 576, the first side tine portion 526A is positioned offset from the second tine portion 526B and the first and second side tine portions 526A, 526B are not parallel. This configuration may help to maintain a constant and uniform temperature along the length of the tines 502 of the heating portion 504. Maintaining a constant temperature along the length of the tines 502 may provide higher quality aerosol, as the maximum temperature is more uniformly maintainable across the entire heating portion 504.
As noted above, each of the legs 506 may include and/or define a cartridge contact 124 that is configured to contact a corresponding receptacle contact 125 of the vaporizer 100. In some implementations, each pair of legs 506 (and the cartridge contacts 124) may contact a single receptacle contact 125. In some implementations, the legs 506 include retainer portions 180 that are configured to be bent and generally extend away from the heating portion 504. The retainer portions 180 are configured to be positioned within a corresponding recess in the wick housing 1315. The retainer portions 180 form an end of the legs 506. The retainer portions 180 help to secure the heating element 1350 and wicking element 1362 to the wick housing 1315 (and the vaporizer cartridge 1320). The retainer portions 180 may have a tip portion 180A that extends from an end of the retainer portion 180 towards the heating portion 504 of the heating element 1350. This configuration reduces the likelihood that the retainer portion will contact another portion of the vaporizer cartridge 1320, or a cleaning device for cleaning the vaporizer cartridge 1320.
The outer edge 503 of the tines 502 in the heating portion 504 may include a tab 580. The tab 580 may extend outwardly from the outer edge 503 and extend away from a center of the heating element 1350. The tab 580 may be shaped to allow the wicking element 1362 to more easily be positioned within the pocket formed by the tines 502, thereby preventing or reducing the likelihood that the wicking element 1362 will get caught on the outer edge 503. The shape of the tab 580 helps to minimize impact on the resistance of the heating portion 504.
In some implementations of the current subject matter, at least a portion of the cartridge contacts 124 and/or at least a portion of the legs 506 may be plated with one or more outer plating materials 550 to reduce contact resistance at the point where the heating element 1350 contacts the receptacle contacts 125.
Referring to
To further illustrate,
The resulting voltage drop between the fourth point 1b and the third point 2a may correspond to a voltage drop between a fifth point C and a sixth point D. As shown in
R=VI (1)
In some implementations of the current subject matter, the first point 1a and the third point 2a, which are located at the tip portion 180A of the legs 506 of the heating element 1350, may coincide at least partially with the cartridge contacts 124 that form an electric coupling with the receptacle contacts 125 in the cartridge receptacle 118 of the vaporizer body 110. As such, the geometric configuration of the heating element 1350 may enable an isolated measurement of the resistance across the heating portion 504 of the heating element 1350 by measuring the voltage drop across the tip portion 180A of the legs 506 (e.g., the first point 1a and the third point 2a), which is disposed outside of the wick housing 1315 and more accessible than the heating portion 504 disposed at least partially inside the wick housing 1315.
The wick housing 1315 may also include a separate heat shield 518A. The heat shield 518A is positioned within the internal volume 594 within the wick housing 1315 between the walls of the wick housing 1315 and the heating element 1350. The heat shield 518A is shaped to at least partially surround the heating portion 504 of the heating element 1350 and to space the heating element 1350 from the side walls of the wick housing 1315. The heat shield 518A can help to insulate the heating portion 504 from the body of the vaporizer cartridge 1320 and/or the wick housing 1315. The heat shield 518A helps to minimize the effects of the heat emanating from the heating portion 504 on the of the vaporizer cartridge 1320 and/or the wick housing 1315 to protect the structural integrity of the body of the vaporizer cartridge 1320 and/or the wick housing 1315 and to prevent melting or other deformation of the vaporizer cartridge 1320 and/or the wick housing 1315. The heat shield 518A may also help to maintain a consistent temperature at the heating portion 504 by retaining heat within the heating portion 504, thereby preventing or limiting heat losses.
The heat shield 518A includes one or more slots 590 (e.g., three slots) at one end that align with one or more slots (e.g., one, two, three, four, five, six, or seven or more slots) 596 formed in a portion of the wick housing 1315 opposite the opening 593, such as a base of the wick housing 1315 (see
In some implementations, flooding may occur between the heating element 1350 (e.g., the legs 506) and an outer wall of the wick housing 1315 (or between portions of the heating element 1350). For example, liquid vaporizable material may build up due to capillary pressure between the legs 506 of the heating element 1350 and the outer wall of the wick housing 1315, as indicated by liquid path 599. In such cases, there may be sufficient capillary pressure to draw the liquid vaporizable material out of the reservoir and/or the heating portion 504. To help limit and/or prevent liquid vaporizable material from escaping the internal volume of the wick housing 1315 (or the heating portion 504), the wick housing 1315 and/or the heating element 1350 may include a capillary feature that causes an abrupt change in capillary pressure, thereby forming a liquid barrier that prevents the liquid vaporizable material from passing the feature without the use of an additional seal (e.g., a hermetic seal). The capillary feature may define a capillary break, formed by a sharp point, bend, curved surface, or other surface in the wick housing 1315 and/or the heating element 1350. The capillary feature allows a conductive element (e.g., the heating element 1350) to be positioned within both a wet and dry region.
The capillary feature may be positioned on and/or form a part of the heating element 1350 and/or the wick housing 1315 and causes an abrupt change in capillary pressure. For example, the capillary feature may include a bend, sharp point, curved surface, angled surface, or other surface feature that causes an abrupt change in capillary pressure between the heating element and the wick housing, along a length of the heating element, or another component of the vaporizer cartridge. The capillary feature may also include a protrusion or other portion of the heating element and/or wick housing that widens a capillary channel, such as a capillary channel formed between portions of the heating element, between the heating element and the wick housing, and the like, that is sufficient to reduce the capillary pressure within the capillary channel (e.g., the capillary feature spaces the heating element from the wick housing) such that the capillary channel does not draw liquid into the capillary channel. Thus, the capillary feature prevents or limits liquid from flowing along a liquid path beyond the capillary feature, due at least in part to the abrupt change and/or reduction in capillary pressure. The size and/or shape of the capillary feature (e.g., the bend, sharp point, curved surface, angled surface, protrusion, and the like) may be a function of a wetting angle formed between materials, such as the heating element and wick housing, or other walls of a capillary channel formed between components, may be a function of a material of the heating element and/or the wick housing or other component, and/or may be a function of a size of a gap formed between two components, such as the heating element and/or wick housing defining the capillary channel, among other properties.
As an example,
As shown in
As another example, the heating element 1350 may include a capillary feature (e.g., a bridge 585) that is formed with the one or more legs 506 and spaces the legs 506 away from the heating portion 504. The bridge 585 may be formed by folding the heating element 1350 along the fold lines 520, 522. In some implementations, the bridge 585 helps to reduce or eliminate overflow of vaporizable material from the heating portion 504, such as due to capillary action. In some examples, such as the example heating elements 1350 shown in
As another example, the heating element 1350 may include a capillary feature 598 that defines a sharp point to causes an abrupt change in capillary pressure, thereby preventing liquid vaporizable material from flowing beyond the capillary feature 598. The capillary feature 598 may form an end of the bridge 585 that extends outwardly away from the heating portion by a distance that is greater than a distance between the legs 506 and the heating portion 504. The end of the bridge 585 may be a sharp edge to further help prevent liquid vaporizable material from passing to the legs 506 and/or out of the heating portion 504, thereby reducing leaking and increasing the amount of vaporizable material that remains within the heating portion 504.
As shown in
For example, as shown in
As shown, the wick housing 1315 also includes an opening 593 providing access to an internal volume 594, in which at least the heating portion 504 of the heating element 1350 and the wicking element 1362 are positioned.
The wick housing 1315 may also include one or more other cutouts that help to space the heating element 1350 from a surface of the wick housing 1315 to reduce the amount of heat that contacts the surface of the wick housing 1315. For example, the wick housing 1315 may include cutouts 170. The cutouts 170 may be formed along an outer surface of the wick housing 1315 proximate to the opening 593. The cutouts 170 may also include a capillary feature, such as the capillary feature 598. The capillary feature of the cutouts 170 may define a surface (e.g., curved surface) that breaks tangency points between adjacent (or intersecting) walls (such as the walls of the wick housing). The curved surface may have a radius that is sufficient to reduce or eliminate the capillarity formed between the adjacent outer walls of the wick housing.
Referring to
As shown in
As shown in
In vaporizers in which the power source 112 is part of a vaporizer body 110 and a heating element is disposed in a vaporizer cartridge 1320 configured to couple with the vaporizer body 110, the vaporizer 100 may include electrical connection features (e.g., means for completing a circuit) for completing a circuit that includes the controller 104 (e.g., a printed circuit board, a microcontroller, or the like), the power source, and the heating element. These features may include at least two contacts 124 on a bottom surface of the vaporizer cartridge 1320 (referred to herein as cartridge contacts 124) and at least two contacts 125 disposed near a base of the cartridge receptacle (referred to herein as receptacle contacts 125) of the vaporizer 100 such that the cartridge contacts 124 and the receptacle contacts 125 make electrical connections when the vaporizer cartridge 1320 is inserted into and coupled with the cartridge receptacle 118. The circuit completed by these electrical connections can allow delivery of electrical current to the resistive heating element and may further be used for additional functions, such as for example for measuring a resistance of the resistive heating element for use in determining and/or controlling a temperature of the resistive heating element based on a thermal coefficient of resistivity of the resistive heating element, for identifying a cartridge based on one or more electrical characteristics of a resistive heating element or the other circuitry of the vaporizer cartridge, etc.
In some examples of the current subject matter, the at least two cartridge contacts and the at least two receptacle contacts can be configured to electrically connect in either of at least two orientations. For example, one or more circuits necessary for operation of the vaporizer can be completed by insertion of a vaporizer cartridge 1320 in the cartridge receptacle 118 in a first rotational orientation (around an axis along which the end of the vaporizer cartridge having the cartridge is inserted into the cartridge receptacle 118 of the vaporizer body 110) such that a first set of cartridge contacts of the at least two cartridge contacts 124 is electrically connected to a first set of receptacle contacts of the at least two receptacle contacts 125 and a second set of cartridge contacts of the at least two cartridge contacts 124 is electrically connected to a second set of receptacle contacts of the at least two receptacle contacts 125. Furthermore, the one or more circuits necessary for operation of the vaporizer can be completed by insertion of a vaporizer cartridge 1320 in the cartridge receptacle 118 in a second rotational orientation such that the first set of cartridge contacts of the at least two cartridge contacts 124 is electrically connected to the second set of receptacle contacts of the at least two receptacle contacts 125 and the second set of cartridge contacts of the at least two cartridge contacts 124 is electrically connected to the first set of receptacle contacts of the at least two receptacle contacts 125. This feature of a vaporizer cartridge 1320 being reversible insertable into a cartridge receptacle 118 of the vaporizer body 110 is described further below.
In one example of an attachment structure for coupling a vaporizer cartridge 1320 to the vaporizer body 110, the vaporizer body 110 includes one or more detents (e.g., a dimple, protrusion, spring connector, etc.) protruding inwardly from an inner surface the cartridge receptacle 118. One or more exterior surfaces of the vaporizer cartridge 1320 can include corresponding recesses (not shown in
Further to the discussion above about the electrical connections between a vaporizer cartridge and a vaporizer body being reversible such that at least two rotational orientations of the vaporizer cartridge in the cartridge receptacle are possible, in some vaporizers the shape of the vaporizer cartridge, or at least a shape of the end of the vaporizer cartridge that is configured for insertion into the cartridge receptacle may have rotational symmetry of at least order two. In other words, the vaporizer cartridge or at least the insertable end of the vaporizer cartridge may be symmetric upon a rotation of 180° around an axis along which the vaporizer cartridge is inserted into the cartridge receptacle. In such a configuration, the circuitry of the vaporizer may support identical operation regardless of which symmetrical orientation of the vaporizer cartridge occurs. In some aspects, the first rotational position may be more than or less than 180° from the second rotational position.
In some examples, the vaporizer cartridge, or at least an end of the vaporizer cartridge configured for insertion in the cartridge receptacle may have a non-circular cross section transverse to the axis along which the vaporizer cartridge is inserted into the cartridge receptacle. For example, the non-circular cross section may be approximately rectangular, approximately elliptical (e.g., have an approximately oval shape), non-rectangular but with two sets of parallel or approximately parallel opposing sides (e.g., having a parallelogram-like shape), or other shapes having rotational symmetry of at least order two. In this context, approximately having a shape indicates that a basic likeness to the described shape is apparent, but that sides of the shape in question need not be completely linear and vertices need not be completely sharp. Rounding of both or either of edges or vertices of the cross-sectional shape is contemplated in the description of any non-circular cross section referred to herein.
As shown in
As shown in
In implementations where the pod retention features 415 are disposed inside the cartridge receptacle 118, the pod retention features 415 may be configured to form a mechanical coupling with, for example, at least a portion of the heating element 1350 (e.g., a portion of the one or more legs 506 disposed outside of the wick housing 1315) and/or a portion of the wick housing 1315 (e.g., the recesses in the wick housing 1315). Alternatively and/or additionally, in example implementations where the pod retention features 415 are disposed on an exterior of the cosmetic sheath 1219, the pod retention features 415 may be configured to form a mechanical coupling with the housing of the vaporizer cartridge 1320. It should be appreciated that the pod retention features 415 may include various means of securing the cartridge 1320 within the cartridge receptacle 118. Moreover, the pod retention features 415 may be disposed at any suitable location in the vaporizer body 110.
As noted, one or more air inlets may be formed and/or maintained while the cartridge 1320 is coupled with the vaporizer body 110, for example, by being inserted into the cartridge receptacle 118. The one or more air inlets may be in fluid communication with the one or more slots 596 in the wick housing 1315 such that air entering through the one or more air inlets may further enter the wick housing 1315 through the one or more slots 596 to flow past and/or around the wicking element 1362. As noted, adequate airflow through the wick housing 1315 may be necessary to enable a proper and timely vaporization of the vaporizable material 1302 drawn into the wicking element 1362. In examples in which there are more than one air inlet, this plurality of air inlets may be disposed around the assembly including the cartridge 1320 and the vaporizer body 110. For example, two or more air inlets may be disposed on substantially opposite sides of the assembly including the vaporizer cartridge 1320 and the vaporizer body 110. It is also within the scope of the current subject matter to have more than one air inlet disposed on a same side of the assembly including the vaporizer cartridge 1320 and the vaporizer body 110 or to have air inlets on different, but not substantially opposite (e.g., adjacent), sides of such an assembly.
In some implementations of the current subject matter, the air inlets may be configured to admit sufficient air to enable the vaporization of the vaporizable material 1302 and the generation of an inhalable aerosol. Further as noted, the one or more air inlet may be configured to be resistant to blockage, for example, by a user's finger, hand, or other body part. For example, the one or more the air inlets may be disposed at an interface between the vaporizer cartridge 1320 and the vaporizer body 110. As shown in
It should be appreciated that the air inlets may present at least some constriction to airflow into the vaporizer cartridge 1320. For example, in the pressure maps shown in
Alternatively and/or additionally, the air inlet 1605 may be in fluid communication with the air vent 1318 disposed at one end of the overflow channel 1104 in the overflow volume 1344 of the collector 1313. As noted, air may travel into and out of the collector 1313 via the air vent 1318. For example, air bubbles trapped inside the collector 1313 may be released via the air vent 1318. Moreover, air may also enter the collector 1313 via the air vent 1318 in order to increase the pressure inside the reservoir 1340. Accordingly, it should be appreciated that the dimensions of the air inlet 1605, the shape of the air inlet 1605, and/or the position of the air inlet 1605 on the shell 1220 may be such that at least a portion of ambient air entering the air inlet 1605 may enter the collector 1313 via the air vent 1318 and that at least a portion of the air released from the collector 1313 from the air vent 1318 may exit via the air inlet 1605. The air inlet 1605 may be substantially round and have a diameter between 0.6 millimeters and 1.0 millimeters. For example, in some implementations of the current subject matter, the air inlet 1605 may be substantially round and have a diameter of approximately 0.8 millimeters. In some implementations of the current subject matter, the air vent 1318 may also be in fluid communication with the air passageway 1338. Accordingly, ambient air entering the air inlet 1605 may supply the collector 1313 (e.g., via the air vent 1318) and the air passageway 1338 (e.g., to create an inhalable aerosol).
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present.
Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments and implementations only and is not intended to be limiting. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
In the descriptions above and in the claims, phrases such as “at least one of” or “one or more of” may occur followed by a conjunctive list of elements or features. The term “and/or” may also occur in a list of two or more elements or features. Unless otherwise implicitly or explicitly contradicted by the context in which it used, such a phrase is intended to mean any of the listed elements or features individually or any of the recited elements or features in combination with any of the other recited elements or features. For example, the phrases “at least one of A and B;” “one or more of A and B;” and “A and/or B” are each intended to mean “A alone, B alone, or A and B together.” A similar interpretation is also intended for lists including three or more items. For example, the phrases “at least one of A, B, and C;” “one or more of A, B, and C;” and “A, B, and/or C” are each intended to mean “A alone, B alone, C alone, A and B together, A and C together, B and C together, or A and B and C together.” Use of the term “based on,” above and in the claims is intended to mean, “based at least in part on,” such that an unrecited feature or element is also permissible.
Spatially relative terms, such as “forward”, “rearward”, “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings provided herein.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the teachings herein. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments, one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the claims.
One or more aspects or features of the subject matter described herein can be realized in digital electronic circuitry, integrated circuitry, specially designed application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) computer hardware, firmware, software, and/or combinations thereof. These various aspects or features can include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which can be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. The programmable system or computing system may include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.
These computer programs, which can also be referred to programs, software, software applications, applications, components, or code, include machine instructions for a programmable processor, and can be implemented in a high-level procedural language, an object-oriented programming language, a functional programming language, a logical programming language, and/or in assembly/machine language. As used herein, the term “machine-readable medium” refers to any computer program product, apparatus and/or device, such as for example magnetic discs, optical disks, memory, and Programmable Logic Devices (PLDs), used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor. The machine-readable medium can store such machine instructions non-transitorily, such as for example as would a non-transient solid-state memory or a magnetic hard drive or any equivalent storage medium. The machine-readable medium can alternatively or additionally store such machine instructions in a transient manner, such as for example, as would a processor cache or other random access memory associated with one or more physical processor cores.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application claims priority to U.S. Provisional Application No. 62/913,135, entitled “HEATING ELEMENT” and filed on Oct. 9, 2019, U.S. Provisional Application No. 62/812,148, entitled “RESERVOIR OVERFLOW CONTROL WITH CONSTRICTION POINTS and filed on Feb. 28, 2019, U.S. Provisional Application No. 62/812,161, entitled “CARTRIDGE FOR A VAPORIZER DEVICE” and filed on Feb. 28, 2019, U.S. Provisional Application No. 62/915,005, entitled “CARTRIDGE FOR A VAPORIZER DEVICE” and filed on Oct. 14, 2019, U.S. Provisional Application No. 62/930,508, entitled “VAPORIZER DEVICE” and filed on Nov. 4, 2019, U.S. Provisional Application No. 62/947,496, entitled “VAPORIZER DEVICE” and filed on Dec. 12, 2019, and U.S. Provisional Application No. 62/981,498, entitled “VAPORIZER DEVICE WITH VAPORIZER CARTRIDGE” and filed on Feb. 25, 2020. The disclosures of the foregoing applications are incorporated herein by reference in their entirety. This application is a continuation-in-part of U.S. patent application Ser. No. 16/653,455, entitled “HEATING ELEMENT” and filed on Oct. 15, 2019, and U.S. patent application Ser. No. 16/656,360, entitled “CARTRIDGE FOR A VAPORIZER DEVICE” and filed on Oct. 17, 2019, the disclosures of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
6155268 | Takeuchi | Dec 2000 | A |
6909840 | Harwig et al. | Jun 2005 | B2 |
7367334 | Faison, Jr. et al. | May 2008 | B2 |
8528569 | Newton | Sep 2013 | B1 |
8752545 | Buchberger | Jun 2014 | B2 |
8881737 | Collett et al. | Nov 2014 | B2 |
8948578 | Buchberger | Feb 2015 | B2 |
9504279 | Chen | Nov 2016 | B2 |
9549573 | Monsees et al. | Jan 2017 | B2 |
9623205 | Buchberger | Apr 2017 | B2 |
9687027 | Poston et al. | Jun 2017 | B2 |
9802011 | Davidson et al. | Oct 2017 | B2 |
9986761 | Thorens et al. | Jun 2018 | B2 |
9986762 | Alarcon et al. | Jun 2018 | B2 |
9999250 | Minskoff et al. | Jun 2018 | B2 |
10034988 | Wensley et al. | Jul 2018 | B2 |
10045568 | Monsees et al. | Aug 2018 | B2 |
10085481 | Verleur et al. | Oct 2018 | B2 |
10085485 | Hunt et al. | Oct 2018 | B2 |
10104915 | Bowen et al. | Oct 2018 | B2 |
10130123 | Hatton et al. | Nov 2018 | B2 |
10131532 | Murison et al. | Nov 2018 | B2 |
10159282 | Monsees et al. | Dec 2018 | B2 |
10188148 | Althorpe et al. | Jan 2019 | B2 |
10194693 | Wensley et al. | Feb 2019 | B2 |
10206429 | Davis et al. | Feb 2019 | B2 |
10420374 | Liu | Sep 2019 | B2 |
10426199 | Turner et al. | Oct 2019 | B2 |
10517331 | Atkins et al. | Dec 2019 | B2 |
20030215335 | Crivelli | Nov 2003 | A1 |
20060047368 | Maharajh et al. | Mar 2006 | A1 |
20090133691 | Yamada et al. | May 2009 | A1 |
20090230117 | Fernando et al. | Sep 2009 | A1 |
20100253281 | Li | Oct 2010 | A1 |
20110226236 | Buchberger | Sep 2011 | A1 |
20130042865 | Monsees et al. | Feb 2013 | A1 |
20130087160 | Gherghe | Apr 2013 | A1 |
20130104916 | Bellinger et al. | May 2013 | A1 |
20130192615 | Tucker et al. | Aug 2013 | A1 |
20130284192 | Peleg et al. | Oct 2013 | A1 |
20130306064 | Thorens | Nov 2013 | A1 |
20130306065 | Thorens et al. | Nov 2013 | A1 |
20140190496 | Wensley et al. | Jul 2014 | A1 |
20140261487 | Chapman et al. | Sep 2014 | A1 |
20140353856 | Dubief | Dec 2014 | A1 |
20150114409 | Brammer et al. | Apr 2015 | A1 |
20150144145 | Chang et al. | May 2015 | A1 |
20150181944 | Li | Jul 2015 | A1 |
20150208729 | Monsees | Jul 2015 | A1 |
20150216237 | Wensley et al. | Aug 2015 | A1 |
20150237916 | Farine et al. | Aug 2015 | A1 |
20150264979 | Thorens et al. | Sep 2015 | A1 |
20150305408 | Liu | Oct 2015 | A1 |
20150313287 | Verleur et al. | Nov 2015 | A1 |
20150320116 | Bleloch et al. | Nov 2015 | A1 |
20150327596 | Alarcon et al. | Nov 2015 | A1 |
20150357839 | Cai et al. | Dec 2015 | A1 |
20160015082 | Liu | Jan 2016 | A1 |
20160057811 | Alarcon et al. | Feb 2016 | A1 |
20160150824 | Memari et al. | Jun 2016 | A1 |
20160150828 | Goldstein et al. | Jun 2016 | A1 |
20160192709 | Liu | Jul 2016 | A1 |
20160262454 | Sears et al. | Sep 2016 | A1 |
20160302485 | Alima | Oct 2016 | A1 |
20160309786 | Holtz | Oct 2016 | A1 |
20160331035 | Cameron | Nov 2016 | A1 |
20160332754 | Brown et al. | Nov 2016 | A1 |
20160341419 | Fluhrer | Nov 2016 | A1 |
20160366725 | Tucker et al. | Dec 2016 | A1 |
20160366945 | Rado | Dec 2016 | A1 |
20170043106 | Hyland et al. | Feb 2017 | A1 |
20170043910 | Hopps | Feb 2017 | A1 |
20170045994 | Murison et al. | Feb 2017 | A1 |
20170056883 | Aarts et al. | Mar 2017 | A1 |
20170135399 | Gavrielov et al. | May 2017 | A1 |
20170164657 | Batista | Jun 2017 | A1 |
20170188629 | Dickens et al. | Jul 2017 | A1 |
20170196263 | Sur | Jul 2017 | A1 |
20170208865 | Nettenstrom et al. | Jul 2017 | A1 |
20170231276 | Mironov et al. | Aug 2017 | A1 |
20170258134 | Kane | Sep 2017 | A1 |
20170259170 | Bowen et al. | Sep 2017 | A1 |
20170280779 | Qiu | Oct 2017 | A1 |
20170303597 | Tsui | Oct 2017 | A1 |
20170325504 | Liu | Nov 2017 | A1 |
20170354186 | Johnson et al. | Dec 2017 | A1 |
20170367402 | Lau et al. | Dec 2017 | A1 |
20170367407 | Althorpe et al. | Dec 2017 | A1 |
20180016040 | Ewing et al. | Jan 2018 | A1 |
20180027877 | Tucker et al. | Feb 2018 | A1 |
20180027879 | Gavrielov et al. | Feb 2018 | A1 |
20180027883 | Zuber et al. | Feb 2018 | A1 |
20180035721 | Cypher et al. | Feb 2018 | A1 |
20180049466 | Cypher et al. | Feb 2018 | A1 |
20180077967 | Hatton | Mar 2018 | A1 |
20180116292 | Atkins et al. | May 2018 | A1 |
20180117268 | Selby et al. | May 2018 | A1 |
20180125120 | Gavrielov | May 2018 | A1 |
20180132536 | Henry, Jr. | May 2018 | A1 |
20180146711 | Mazur | May 2018 | A1 |
20180184722 | Murison et al. | Jul 2018 | A1 |
20180199627 | Bowen et al. | Jul 2018 | A1 |
20180220707 | Biel | Aug 2018 | A1 |
20180279682 | Guo | Oct 2018 | A1 |
20180279685 | Thorens et al. | Oct 2018 | A1 |
20180280637 | Mayle et al. | Oct 2018 | A1 |
20180296777 | Terry et al. | Oct 2018 | A1 |
20190046745 | Nettenstrom et al. | Feb 2019 | A1 |
20190099561 | Nettenstrom | Apr 2019 | A1 |
20190104764 | Tucker | Apr 2019 | A1 |
20190166913 | Trzecieski | Jun 2019 | A1 |
20190246693 | Nettenstrom | Aug 2019 | A1 |
20190373953 | Atkins et al. | Dec 2019 | A1 |
20200022417 | Atkins et al. | Jan 2020 | A1 |
20200046033 | Robert et al. | Feb 2020 | A1 |
20200107585 | Atkins et al. | Apr 2020 | A1 |
20200114094 | Atkins et al. | Apr 2020 | A1 |
20200128874 | Atkins et al. | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
2469408 | Jan 2014 | CA |
103859604 | Jun 2014 | CN |
105011375 | Nov 2015 | CN |
207011686 | Feb 2018 | CN |
108158039 | Jun 2018 | CN |
208113970 | Nov 2018 | CN |
109259313 | Jan 2019 | CN |
109588779 | Apr 2019 | CN |
110226778 | Sep 2019 | CN |
105473012 | Jun 2020 | CN |
2404515 | Jan 2012 | EP |
3170414 | May 2017 | EP |
3117860 | Jan 2019 | EP |
3488715 | May 2019 | EP |
3664631 | Jun 2020 | EP |
3694357 | Aug 2020 | EP |
2013113551 | Jun 2013 | JP |
2015-198985 | Nov 2015 | JP |
2017511703 | Apr 2017 | JP |
2018-509158 | Apr 2018 | JP |
2018-523976 | Aug 2018 | JP |
88052 | Sep 2009 | UA |
WO-2013060781 | May 2013 | WO |
WO-2013083635 | Jun 2013 | WO |
WO-2014047948 | Apr 2014 | WO |
WO-2014150979 | Sep 2014 | WO |
WO-2015042412 | Mar 2015 | WO |
WO-2015120588 | Aug 2015 | WO |
WO-2016000233 | Jan 2016 | WO |
WO-2016023173 | Feb 2016 | WO |
WO-2016023809 | Feb 2016 | WO |
WO-2016079155 | May 2016 | WO |
WO-2016079151 | May 2016 | WO |
WO-2016082158 | Jun 2016 | WO |
WO-2016090602 | Jun 2016 | WO |
WO-2016108694 | Jul 2016 | WO |
WO-2016109929 | Jul 2016 | WO |
WO-2016109933 | Jul 2016 | WO |
WO-2016109942 | Jul 2016 | WO |
WO-2016115691 | Jul 2016 | WO |
WO-2016119496 | Aug 2016 | WO |
WO-2016122417 | Aug 2016 | WO |
WO-2016123763 | Aug 2016 | WO |
WO-2016138665 | Sep 2016 | WO |
WO-2016145072 | Sep 2016 | WO |
WO-2016145613 | Sep 2016 | WO |
WO-2016149932 | Sep 2016 | WO |
WO-2017054424 | Apr 2017 | WO |
WO-2017082728 | May 2017 | WO |
WO-2017085240 | May 2017 | WO |
WO-2017093535 | Jun 2017 | WO |
WO-2017121296 | Jul 2017 | WO |
WO-2017139595 | Aug 2017 | WO |
WO-2017139963 | Aug 2017 | WO |
WO-2017163046 | Sep 2017 | WO |
WO-2017163051 | Sep 2017 | WO |
WO-2017163052 | Sep 2017 | WO |
WO-2018122380 | Jul 2018 | WO |
WO-2018172765 | Sep 2018 | WO |
WO-2018197515 | Nov 2018 | WO |
WO-2018202403 | Nov 2018 | WO |
WO-2019073010 | Apr 2019 | WO |
WO-2019173923 | Sep 2019 | WO |
WO-2019232086 | Dec 2019 | WO |
WO-2020020788 | Jan 2020 | WO |
WO-2020025644 | Feb 2020 | WO |
Entry |
---|
U.S. Appl. No. 16/653,455, filed Oct. 15, 2019, US 2020-0114094. |
U.S. Appl. No. 16/657,857, filed Oct. 18, 2019, US 2020-0120991. |
U.S. Appl. No. 16/656,360, filed Oct. 17, 2019, US 2020-0128874. |
U.S. Appl. No. 16/653,455, filed Oct. 15, 2019, U.S. Pat. No. 10,905,835. |
U.S. Appl. No. 17/161,590, filed Jan. 28, 2021. |
Number | Date | Country | |
---|---|---|---|
20200275696 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
62812148 | Feb 2019 | US | |
62812161 | Feb 2019 | US | |
62913135 | Oct 2019 | US | |
62915005 | Oct 2019 | US | |
62930508 | Nov 2019 | US | |
62947496 | Dec 2019 | US | |
62981498 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16653455 | Oct 2019 | US |
Child | 16805672 | US | |
Parent | 16656360 | Oct 2019 | US |
Child | 16653455 | US |