The present invention is generally in the field of antennas.
Typical tapered slot antennas have an average low frequency response.
Typical TSA have an aspect ratio (i.e., length to height ratio) that is equal to 1. TSA length 154 of TSA 100 is defined as the distance between the feed end (proximate to axis 140) and the launch end (proximate to axis 146). TSA height 162 of TSA 100 is defined as the distance between the lateral edges of the antenna pair (i.e., the distance between lateral edge 114 and lateral edge 124) (i.e., the distance between axis 142 and axis 144). Thus, the aspect ratio of TSA 100 (i.e., ratio between TSA length 154 and TSA height 162) is equal to 1.
A need exists for tapered slot antennas having extended low frequency response.
The present invention is directed to VAR TSA For Extended Low Frequency Response Method.
The following acronyms and definitions are used herein:
Acronym(s):
I/O—Input/Output
RF—radio frequency
TSA—Tapered Slot Antenna
VAR—Variable Aspect Ratio
Definition(s):
Aspect ratio—the ratio between the length and height of a TSA
The variable aspect ratio (VAR) tapered slot antenna for extended low frequency response includes a TSA having an aspect ratio less than or equal to 1 to 2.16 (i.e., approximately 0.462963). The VAR TSA for extended low frequency response includes an antenna pair.
In one embodiment, TSA antenna elements 210, 220 have curvatures that can each be represented by the following Equation 1:
Y(x)=a(ebx−1); (Equation 1)
where, a and b are parameters selected to produce a desired curvature. In one embodiment, parameters “a” and “b” are approximately equal to 0.2801 and 0.1028, respectively.
VAR TSA for extended low frequency response 200 has an aspect ratio (i.e., length to height ratio) that is less than or equal to 1 to 2.16 (i.e., approximately 0.462963). In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 2.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 3. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 3.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 4. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 4.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 5.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 6. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 6.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 7. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 7.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 8. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 8.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 9. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 9.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 10. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 10.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 11. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 11.5. In one embodiment, VAR TSA for extended low frequency response 200 has an aspect ratio less than or equal to 1 to 12. TSA length 254 of VAR TSA for extended low frequency response 200 is defined as the distance between the feed end (proximate to axis 240) and the launch end (proximate to axis 246). TSA height 262 of VAR TSA for extended low frequency response 200 is defined as the distance between the lateral edges of the antenna pair (i.e., the distance between lateral edge 214 and lateral edge 224) (i.e., the distance between axis 242 and axis 244). Thus, the aspect ratio of VAR TSA for extended low frequency response 200 (i.e., ratio between TSA length 254 and TSA height 262) is less than or equal to 1 to 2.16. In one embodiment, TSA length 254 equals 1 foot and TSA height equals 2.16 feet. In one embodiment, TSA length 254 equals 2 feet and TSA height equals 4.32 feet.
Referring to
In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 2.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 3. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 3.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 4. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 4.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 5.
In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 5.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 6. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 6.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 7.
In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 7.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 8. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 8.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 9.
In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 9.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 10. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 10.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 11.
In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 11.5. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having an aspect ratio less than or equal to 1 to 12.
In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having a TSA length 254 equal to 1 foot and TSA height equal to 2.16 feet. In one embodiment, the method at Procedure 330 operatively couples the first antenna element and the second antenna element to form a tapered slot antenna pair having a TSA length 254 equal to 2 feet and TSA height equal to 4.32 feet.
This application is a continuation-in-part of U.S. Ser. No. 11/726,196, entitled “Variable Aspect Ratio Tapered Slot Antenna for Extended Low Frequency Response,” by HORNER et al. filed Mar. 8, 2007, which is hereby incorporated by reference herein in its entirety for its teachings and is hereinafter referred to as the “parent application.” (NC#098541). This application is related to U.S. Pat. No. 7,009,572, issued on Mar., 7, 2006, entitled “Tapered Slot Antenna”, by Rob Horner et al., Navy Case No. 96507, which is hereby incorporated by reference in its entirety herein for its teachings on antennas. This application is also related to U.S. Pat. No. 7,148,855, issued on Dec. 12, 2006, entitled “Concave Tapered Slot Antenna”, by Rob Horner et al., Navy Case No. 96109, which is hereby incorporated by reference in its entirety herein for its teachings on antennas.
This invention (Navy Case No. 098855) is assigned to the United States Government and is available for licensing for commercial purposes. Licensing and technical inquiries may be directed to the Office of Research and Technical Applications, Space and Naval Warfare Systems Center, San Diego, Code 2112, San Diego, Calif., 92152; voice (619) 553-2778; email T2@spawar.navy.mil. Reference Navy Case Number 098855.
Number | Name | Date | Kind |
---|---|---|---|
6008770 | Sugawara | Dec 1999 | A |
6043785 | Marino | Mar 2000 | A |
6075493 | Sugawara et al. | Jun 2000 | A |
6525696 | Powell et al. | Feb 2003 | B2 |
20070152898 | Mizuno et al. | Jul 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
Parent | 11726196 | Mar 2007 | US |
Child | 11843818 | US |