1. Field of the Invention
The present invention relates generally to varactor bank switching, and in particular to configuration of varactor bank switches.
2. Background Information
Varactor banks are applied in LC-tank voltage controlled oscillators (VCO) to perform a coarse tuning of the oscillation frequency. LC-tank oscillators are typically used in communication systems, such as in generating high frequency oscillator signals in microwave or radio frequency apparatus. A typical LC-tank circuit includes inductors (L) and capacitors (C) configured in a circuit such that the inductors and capacitors oscillate because of current or voltage exchange between inductors and capacitors at a specified frequency. To achieve a high Cmax/Cmin-ratio, switches are used in the varactor bank, where Cmax and Cmin denote the maximum and minimum capacitance values of the varactor at e.g. a logical low and high biasing voltage. If the process technology provides varactors with an inherently high variability of the capacitance, i.e. a high Cmax/Cmin-ratio, the variable capacitors in the varactor bank can directly be driven by a control signal (i.e. logical low for Cmax and logical high for Cmin) and dedicated switches within the varactor banks are not necessary. This invention, however, assumes that the process technology available (e.g., a typical digital CMOS process for mainstream applications) does only provide varactors with a low or medium Cmax/Cmin-ratio, which requires the application of switches to maximize the overall Cmax/Cmin-ratio of the varactor bank.
If the varactor bank switches in the off-state become conductive during certain fractions of the oscillation period, the phase noise of the LC-tank VCO may significantly degrade.
A disadvantage of the circuit in
The impact of these partially conductive states on the phase noise performance is shown in Table I below, which summarizes certain measured results of a VCO design in 45 nm CMOS technology that applies the varactor bank switching of
A system and apparatus for varactor bank switching for a voltage controlled oscillator is disclosed. One embodiment involves partitioning a varactor bank switch into two anti-parallel branches, wherein each branch comprises a pass-gate circuit that is series-connected to a varactor or a fixed capacitor; and maintaining an output common mode voltage of an actual oscillator signal at the varactor-side output terminal of each pass-gate circuit, such that a threshold voltage is not exceeded and the switch remains in an off-state.
Other aspects and advantages of the present invention will become apparent from the following detailed description, which, when taken in conjunction with the drawings, illustrate by way of example the principles of the invention.
For a fuller understanding of the nature and advantages of the invention, as well as a preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings, in which:
a-d show equivalent circuits of an LC oscillator using a PMOS tail current source together with a varactor bank switch connected in parallel to an inductor coil, according to embodiments of the invention.
a-b show conventional varactor bank switching topology examples, and
The following description is made for the purpose of illustrating the general principles of the invention and is not meant to limit the inventive concepts claimed herein. Further, particular features described herein can be used in combination with other described features in each of the various possible combinations and permutations. Unless otherwise specifically defined herein, all terms are to be given their broadest possible interpretation including meanings implied from the specification as well as meanings understood by those skilled in the art and/or as defined in dictionaries, treatises, etc.
The description may disclose several preferred embodiments of varactor banks, as well as operation and/or component parts thereof. While the following description will be described in terms of varactor bank for LC-tank voltage controlled oscillators for clarity and to place the invention in context, it should be kept in mind that the teachings herein may have broad application to all types of oscillators.
The embodiments described below disclose a new system for varactor bank switching based on anti-parallel branch configuration. According to one general embodiment, varactor bank switching based on an anti-parallel branch varactor bank switch is provided that prevents the varactor bank switch from getting turned on during certain fractions of the oscillation signal period despite the varactor bank switch being in the off-state.
A preferred embodiment of a varactor bank switching according to the invention involves partitioning a varactor bank switch into two anti-parallel branches, wherein each branch comprises a pass-gate circuit that is series-connected to a varactor with inherently small tuning range (low Cmax/Cmin-ratio) or a fixed capacitor; and, maintaining an output common mode voltage of an actual oscillator signal at the varactor-side terminal of each pass-gate circuit, such that a threshold voltage of the switch transistor within the pass-gate is not exceeded and the switch remains in an off-state. The output common mode voltage of the actual oscillator signal is maintained at the drain and source nodes of the varactor bank switch (i.e., pass-gate circuit) such that the threshold voltage is not exceeded and the switch does not get turned on in its off-state. The pass-gates are not floating in between two varactors because one of their terminals is always connected to either the positive or negative output port of the LC oscillator. The anti-parallel configuration can be applied between the two ports of the LC-tank allowing a reduction of the silicon area by a factor of four in comparison to conventional varactor bank switching.
a shows a generic equivalent topology (i.e., circuit) of an LC VCO 10, and
An example varactor bank switch topology according to the invention is described below, suitable for VCO topologies with a high and mid range output common mode voltage (with respect to the dc-supply voltage).
The pass-gates 54 are not floating in between the two varactors 53 because one terminal 56 of each pass-gate 54 is always connected to either the positive output port (outp) or the negative output port (outn) of a LC VCO 55. Thus, there is no necessity for a biasing network at the varactor-side terminal 57 of each pass-gate 54 in order to assure that the potential of the varactor's diffusion node terminal may assume appropriate voltage levels at the beginning of the on-state of the pass-gate 54. Not requiring a dedicated biasing network is advantageous.
A pass-gate is used instead of a single transistor switch in order to ensure that the varactor bank remains turned on during the positive-going half-waves of the LC VCO signals. In the off-state, the potential of the varactor-side terminal of each pass-gate follows the corresponding oscillator output signal minus a small voltage shift Vshift that is due to the finite resistance of the pass-gates in the off-state. For each pass-gate, as long as inequality relation (1) below holds true,
Vgs,M1n(t)=Vctrlp−(Vcm−Vshift−Vswing/2·sin (2πfosct))<Vth, m1n (1)
then the NFET M1n of the pass-gate does not turn on and remains in the off-state as desired. In the inequality (1) above, Vctrlp denotes a digital control signal (either 0V or 1V), Vcm denotes the output common mode voltage, Vswing denotes the signal swing, 2πfosct denotes the instantaneous phase of the oscillation and Vth,M1 denotes a threshold voltage of the transistor M1n. Note that the PFET M1p is not affected by the discussed problem of becoming conductive in its off-state because the oscillation signal cannot exceed the dc-supply voltage and the gate-source voltage of M1p remains below the threshold voltage of M1p in the off-state.
The invention improves the varactor bank switching in such a way that the phase noise degradation of conventional designs (
To achieve this equivalent varactor capacitance, the conventional circuit of
As is known to those skilled in the art, the aforementioned example embodiments described above, according to the present invention, can be implemented in many ways, such as program instructions for execution by a processor, as software modules, as computer program product on computer readable media, as logic circuits, as silicon wafers, as integrated circuits, as application specific integrated circuits, as firmware, etc. Though the present invention has been described with reference to certain versions thereof; however, other versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred versions contained herein.
Those skilled in the art will appreciate that various adaptations and modifications of the just-described preferred embodiments can be configured without departing from the scope and spirit of the invention. Therefore, it is to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.