The exemplary embodiments of this invention relate generally to alarm noises and sounds and, more specifically, relate to variable alarm noises and sounds.
Various devices, programs and services exist that enable a user to select and employ custom alarm sounds (e.g., alarm noises). A user may set a computer audio file (e.g. an mp3 file) or a radio station as an alarm sound to be played when an alarm clock goes off at a preset time. However, the selected alarm sound or noise is fixed, and is not variable or adaptive.
In an exemplary embodiment of the invention, a method comprises storing data descriptive of a plurality of alarm sounds received from at least one source of alarm sounds, the stored data forming a set of alarm sounds; selecting an alarm sound from the set of alarm sounds; and playing the selected alarm sound at a predetermined time, where the selected alarm sound is one corresponding to data that was most recently stored.
In another exemplary embodiment of the invention there is a computer-readable memory that stores program instructions, the execution of which result in operations that comprise storing data descriptive of a plurality of alarm sounds received from at least one source of alarm sounds, the stored data forming a set of alarm sounds; selecting an alarm sound from the set of alarm sounds; and playing the selected alarm sound at a predetermined time, where the selected alarm sound is one corresponding to data that was most recently stored.
In another exemplary embodiment of the invention an apparatus comprises a controller configured with a memory to store data descriptive of a plurality of alarm sounds received from at least one source of alarm sounds, the stored data forming a set of alarm sounds. The controller is further configured to select an alarm sound from the set of alarm sounds and to play the selected alarm sound at a predetermined time, where the selected alarm sound is one corresponding to data that was most recently stored in the memory.
In another exemplary embodiment of the invention, a method comprises, in response to a user input, enabling an alarm function and recording a current time of day; monitoring the time of day and activating the alarm function when the time of day is equal to a predetermined time of day; and making an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on a difference in time between the recorded time of day and the predetermined time of day.
In another exemplary embodiment of the invention there is a computer-readable memory that stores program instructions, the execution of which result in operations that comprise, in response to a user input, enabling an alarm function and recording a current time of day; monitoring the time of day and activating the alarm function when the time of day is equal to a predetermined time of day; and making an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on a difference in time between the recorded time of day and the predetermined time of day.
In a further exemplary embodiment of the invention an apparatus comprises a controller configured with a clock to respond to a user input to enable an alarm function and record a current time of day. The controller is further configured to monitor the time of day and to activate the alarm function when the time of day is equal to a predetermined time of day. When activating the alarm function said controller makes an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on a difference in time between the recorded time of day and the predetermined time of day.
In a further exemplary embodiment of the invention, a method comprises monitoring at least a time of day; activating an alarm function when the time of day is equal to a predetermined time of day; and making an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on at least one of the predetermined time of day and a calendar date.
In another exemplary embodiment of the invention there is a computer-readable memory that stores program instructions, the execution of which result in operations that comprise monitoring a time of day, activating an alarm function when the time of day is equal to a predetermined time of day and making an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on at least one of the predetermined time of day and a calendar date.
In a further exemplary embodiment of the invention an apparatus comprises a controller configured with a clock to monitor a time of day and to activate an alarm function when the time of day is equal to a predetermined time of day, said controller being further configured to make an alarm sound audible, where the alarm sound is selected by said controller from a set of alarm sounds based at least in part on at least one of the predetermined time of day and a calendar date.
In another exemplary embodiment of the invention, a method comprises monitoring a time of day and a calendar date; activating an alarm function when the time of day is equal to a predetermined time of day and the calendar date is equal to a predetermined calendar date, where the predetermined time of day and predetermined calendar date are specified by an entry of an electronic calendar, the entry comprising associated note information; and making an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on a content of the note information.
In another exemplary embodiment of the invention there is a computer-readable memory that stores program instructions, the execution of which result in operations that comprise monitoring a time of day and a calendar date; activating an alarm function when the time of day is equal to a predetermined time of day and the calendar date is equal to a predetermined calendar date, where the predetermined time of day and predetermined calendar date are specified by an entry of an electronic calendar, the entry comprising associated note information; and making an alarm sound audible, where the alarm sound is selected from a set of alarm sounds based at least in part on a content of the note information.
In yet another exemplary embodiment of the invention an apparatus comprises a controller configured with a clock to monitor a time of day and a calendar date and to activate an alarm function when the time of day is equal to a predetermined time of day and the calendar date is equal to a predetermined calendar date. The predetermined time of day and predetermined calendar date are specified by an entry of an electronic calendar, where the entry comprises associated note information. The controller is further configured to make an alarm sound audible, where the alarm sound is selected by said controller from a set of alarm sounds based at least in part on a content of the note information.
In a further exemplary embodiment of the invention, a method comprises monitoring the time of day and activating an alarm function when the time of day is equal to a predetermined time of day; and selecting an alarm sound and making the selected alarm sound audible, where the alarm sound comprises a musical track having a desired intensity that is obtained from a radio receiver, and where selecting comprises automatically tuning the radio receiver until a station is received that is playing a musical track having the desired intensity.
In another exemplary embodiment of the invention there is a computer-readable memory that stores program instructions, the execution of which result in operations that comprise monitoring the time of day and activating an alarm function when the time of day is equal to a predetermined time of day; and selecting an alarm sound and making the selected alarm sound audible, where the alarm sound comprises a musical track having a desired intensity that is obtained from a radio receiver, and where selecting comprises automatically tuning the radio receiver until a station is received that is playing a musical track having the desired intensity.
In yet another exemplary embodiment of the invention an apparatus comprises a radio receiver and a controller configured with a clock and with the radio receiver to monitor a time of day and to activate an alarm function when the time of day is equal to a predetermined time of day. The controller is further configured to select an alarm sound and to make the selected alarm sound audible. The alarm sound comprises a musical track having a desired intensity that is obtained from the radio receiver, and the controller tunes the radio receiver until a station is received that is playing a musical track having the desired intensity.
The foregoing and other aspects of embodiments of this invention are made more evident in the following Detailed Description, when read in conjunction with the attached Drawing Figures, wherein:
Many alarm clocks include a snooze function. When the alarm sounds, a user may employ the snooze function to have the alarm sound again a short time later (e.g. the alarm goes off again five or ten minutes later). In conjunction with the snooze function, conventional alarm clocks use the same alarm sound each time.
A user does not have the option of utilizing different alarm sounds for successive soundings of conventional alarm clocks. However, such utility would be desirable to provide a progressive means for a user to wake up. For example, the alarm sound of the alarm clock would initially be a gentle, soothing sound to peacefully wake the user. If the user hits the snooze button, successive soundings of the alarm would be less gentle, progressing to harsher alarm sounds. In such a manner, a user would wake up to an alarm clock in a progressive fashion, being presented with harsher, more severe alarm sounds the longer the user delays waking up (e.g. the more times the user presses the snooze button).
It would therefore be beneficial to provide a method, computer program product and device by which a user might employ different alarm sounds in a progressive nature.
Exemplary embodiments of the invention describe a methodology for providing variable alarm sounds.
ID3 tag information refers to the ID3v1 and ID3v2 standards for appending information to digital audio files. ID3 tags may contain information relating to song title, artist name, album name, year and genre, as non-limiting examples. Although ID3v1 tags are only available in conjunction with the mp3 audio file format, ID3v2 is intended to operate in conjunction with audio files of other types as well. As used herein, “ID3 tag” and “ID3 tag information” refer to both the ID3v1 and ID3v2 standards. Other exemplary embodiments of the invention may utilize other standards or forms of information appended to or employed in conjunction with digital audio files.
In other exemplary embodiments, the plurality of sound data may comprise one or more audio channels associated with video files or broadcasts. As non-limiting examples, such a plurality of sound data may comprise a sound channel from one or more television stations, video tapes, digital video disks (DVDs), and/or digital video broadcasts (DVBs). In further embodiments wherein the first and/or second alarm sound comprises an audio channel associated with a video file or broadcast and the device playing the alarm sound (e.g. the alarm clock) has video capabilities, the associated video file or broadcast may be displayed in conjunction with the playing of the associated alarm sound.
The method illustrated in
In general, these categories or measures may be considered to be descriptive of an ‘intensity’ of the sound, where a ‘gentle’ sound category or measure would be considered to have a lower intensity than a ‘harsh’ sound category or measure.
The method of
As is apparent, a user is presented with less gentle, harsher alarm sounds (higher intensity) for successive activations of the snooze function. In such a manner, different alarm sounds are employed in a progressive nature to wake the user.
In other exemplary embodiments, the VAS 34 may be combined with the AC 36. In further embodiments, the AC 36 may be combined with the SD 42. In other exemplary embodiments, the VAS 34, AC 36 and SD 42 may be combined in one computer program product and/or device. In further embodiments, the clock 38 may be provided by an external entity to the AC 36.
In other exemplary embodiments, the set of alarm sounds may be stored (e.g. updated) ahead of time (e.g. well before the first alarm sound is selected; see
The method of
In box 80 of
In other exemplary embodiments, the initial value of C (e.g. gentle in
The method of
Once it is time for the alarm clock to go off (e.g. Time=AT; “yes” to box 130), the method proceeds to box 134. In box 134, audio data is received from a radio station. The radio station is one of the radio stations from the plurality of radio stations the user previously selected to employ in conjunction with the alarm clock. In box 136, the audio data is analyzed to determine the current category designation. In box 138, the set of alarm sounds is updated to include the current category designation for the analyzed audio data. In box 140, the method inquires whether there is another radio station of the plurality of radio stations that needs to be analyzed. If there is another radio station (“yes” to box 140), the method goes to box 134 and repeats boxes 134, 136 and 138 for the next radio station. If there is no other radio station (“no” to box 140), the method proceeds to box 142. In such a manner, steps 134, 136 and 138 are performed (e.g. repeated, iterated) for each radio station to be included in the set of alarm sounds. Furthermore, the set of alarm sounds is updated in response to the alarm clock going off (e.g. in real time). As such, the exemplary method of
In box 142, an alarm sound is selected from the set of alarm sounds using C. For the first time the alarm clock goes off, C is set to gentle and a radio station currently having the gentle designation is selected as the first alarm sound. The method then proceeds to box 144 where the alarm sound is played. In box 146, the method inquires whether a user, in response to the alarm sound being played, has hit the snooze button. If a user hits the snooze button (“yes”), the method moves to box 148 where it stops playing the alarm sound. In box 150, AT is set to equal five (5) minutes from the current time (Time). In box 152, C is incremented by one degree if possible. For example, if C was set to gentle, it is incremented by one degree and has a new value of average. If C was set to average, it is incremented by one degree and has a new value of harsh. If C was set to harsh, it is not incremented since there is no higher value. The method then moves to box 132 where it pauses before returning to box 128. In such a manner, the new values for AT and C will be employed to have the alarm clock go off at a new time and to select a new alarm sound. If a user does not hit the snooze button (“no” to box 146), the method moves to box 154. In box 154, the method inquires whether the user has turned the alarm clock off. If a user has not turned the alarm clock off (“no”), the method pauses at box 156 before returning to box 146. If a user has turned the alarm clock off (“yes”), the method moves to box 158 where it stops playing the alarm sound. The method then pauses at box 122 before returning to box 120. In such a manner, the alarm sound continues to be played, perhaps even looping, until a user either hits the snooze button (“yes” to box 146) or turns the alarm clock off (“yes” to box 154).
In other exemplary embodiments, the initial value of C (e.g. gentle in
Although illustrated in
Reference is made to
Reference is made to
The MEM 184 may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. The DP 182 may be of any type suitable to the local technical environment, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on a multicore processor architecture, as non-limiting examples.
In other exemplary embodiments, the electronic device 180 of
If including a battery or other power source, the electronic device may be a portable electronic device. In general, the various embodiments of such a portable electronic device can include, but are not limited to, cellular telephones, personal digital assistants (PDAs), portable computers, image capture devices such as digital cameras, gaming devices, music storage and playback appliances (e.g., mp3 players), Internet appliances permitting wireless Internet access and browsing, as well as portable units or terminals that incorporate combinations of such functions.
In conjunction with the exemplary embodiments of
In
The playlist shown in
The GUI 300 further comprises a play function 320, a phone memory display 322, and a set of pull-down menus 324. The play function 320 allows a user to preview the collection of mp3 files by listening to the mp3 files. The play function 320 of
In other exemplary embodiments, the GUI may enable a user to manage a collection of sound data comprising types of sound data other than mp3 files (e.g. wav files). In further embodiments, different categories of available information may be utilized. In other exemplary embodiments, the GUI may not comprise a play function, a phone memory display, and/or a set of pull-down menus. In further embodiments, a user can sort the mp3 files in the collection by interacting (e.g. left clicking, right clicking, using a contextual menu) with the category labels shown in the category bar. In other exemplary embodiments, the information (e.g. metadata) associated with each mp3 file (e.g. sound data) may be contained within each corresponding mp3 file (e.g. each item of sound data). As a non-limiting example, ID3 tags may be employed to provide and/or retain the desired information.
In other exemplary embodiments, a manager program may be employed. The manager program may be an application for managing mobile music on a computer or a mobile device (e.g. cellular telephone, mp3 player, portable gaming device). Using the manager program, a user can convert music files and transfer the tracks to a mobile device. Metadata may be included in the files created with the manager program. The metadata may contain information such as artist, genre and song title information, as non-limiting examples. With the manager program a user can also compose playlists. The playlists may be created on a computer or a mobile device, as non-limiting examples. For example, a user can create a playlist on a computer and transfer it to a mobile device. As an additional non-limiting example, a user can create a playlist directly on the mobile device, perhaps by using the manager program.
The manager program may display BPM and tempo information by default when certain mobile devices are connected to the computer running the manager program. The manager program may read the BPM from a database of music information (e.g. Gracenote®) or calculate the BPM itself, as non-limiting examples. The manager program may write the BPM in the metadata of the music file.
The tempo value comprises the BPM multiplied by a user selectable value. As a non-limiting example, a user may be able to select between two settings: Run and Walk. Each setting has a preset user selectable value. Furthermore, each setting corresponds to a different exercise type (e.g. running, walking). Thus, between the two settings a user may choose one of two values that correspond to an exercise type and subsequently affects the tempo values (e.g. by affecting the user selectable value that the BPM multiplied by). The tempo values may not be stored in the files (e.g. in the metadata) but rather may be recalculated when they are displayed.
The tempo value describes the pace of the music track. As a non-limiting example, four tempo values may be employed, namely: training, stretching, cooling, and warm up. In training exercises it is usually important to have and maintain an appropriate pace. Using the tempo as a selection or definition criteria, a user can define the training pace as indicated by the music tracks being played (e.g. according to the music the user is listening to). Each tempo value corresponds to a training pace. In such a manner, the training pace of the workout of the user may be set by the music the user is listening to (e.g. the tempo of the music). The four exemplary tempo values may be ordered, from lowest pace to highest pace as: stretching, cooling, warm up, and training. The order is a relative one that generally corresponds to a desired relative order of the training pace for the four activities. For example, usually the pace of a workout when a user is warming up (e.g. in a warm up phase of a workout) is greater than the pace of a workout when a user is stretching or cooling off (“cooling”). As such, the music defining the pace of a workout may reflect the pace by the tempo value of the music.
A user can organize the music and playlists according to tempo values (e.g. training, stretching, cooling, warm up). As previously explained, the tempo values are mapped from the BPM and the setting (e.g. Run, Walk) affects the tempo value. As a non-limiting example of such a mapping as it relates to the selected setting, for the Walk setting the stretching tempo may comprise BPM values of 33-59 BPM while for the Run setting the stretching tempo may comprise BPM values of 60-107 BPM. In this example, the Run setting will result in faster tempos than the Walk setting to correlate to the faster pace of a workout under the Run setting. As further examples of such a mapping, for the Walk setting, the cooling tempo may comprise BPM values of 60-80 BPM, the warm up tempo may comprise BPM values of 81-106 BPM, and the training tempo may comprise BPM values of 107-138 BPM. For the Run setting, the cooling tempo may comprise BPM values of 108-122 BPM, the warm up tempo may comprise BPM values of 123-137 BPM, and the training tempo may comprise BPM values of 138-180 BPM.
The BPM may be calculated from each music track automatically. The BPM may be utilized to automatically generate a corresponding tempo value. The BPM may be stored to music file metadata for later usage while the tempo value may be re-calculated by the manager program based on the BPM information in the metadata.
Using this method, a user does not need to manually evaluate the pace and/or tempo of each music track. Once a tempo value is calculated for one or more music tracks, a user can sort the music files according to the tempo values and select appropriate music to listen to during a workout. In other exemplary embodiments, appropriate music may be suggested for a user to listen to during a workout.
The GUI 300 of
In other exemplary embodiments, a user may specify the tempo value associated with a music track. In such a manner, the tempo value may not be explicitly related to the BPM of the music track. Furthermore, the tempo value of such an embodiment may be stored in the metadata of the music track since the tempo value is no longer dependent on the BPM value (e.g. the tempo value is now a user-defined value).
If embodied as an electronic device, the structure of such manager program embodiments may be similar or identical to the structure of the embodiments described above with respect to
As can be appreciated from the foregoing, exemplary aspects of the manager program embodiment provide a method, computer program product and device that enable a user to utilize a tempo value of one or more music tracks (e.g. music files) to select appropriate and/or desired music tracks to listen to when performing various activities (e.g. exercising). The tempo value may be set by the user or the tempo value may be based on a mathematical relationship utilizing the beats per minute value (BPM) of the one or more music tracks. As a non-limiting example, the tempo value may be determined by multiplying the BPM by a user selectable value. As a further non-limiting example, the user selectable value may be based on one or more selected activities and/or activity types (e.g. running, walking).
The manager program embodiment may be employed in conjunction with the variable alarm sounds. As a non-limiting example, the tempo values may be utilized by an alarm clock function to provide variable alarm sounds. An alarm sound having a lower tempo value may be employed as the first alarm sound. Subsequent alarm sounds would be chosen based on the tempo value of the alarm sounds such that the tempo value of each successive alarm sound is greater than the tempo value of the previous alarm sound. In such a manner, a user would wake up to an alarm clock in a progressive fashion, being presented with faster tempo alarm sounds the longer the user delays waking up (e.g. the more times the user presses the snooze button or activates a snooze function). When employed in conjunction with the variable alarm sounds, it may be preferable to enable a user to define his or her own tempo values to be used with the manager program embodiment. Consequently, the alarm sounds would not be limited to default ones but rather a user could define intermediary steps, allowing for a user-defined progression when waking up using the exemplary embodiments of the invention.
Described now are even further exemplary and non-limiting embodiments of this invention, with reference to
In a first exemplary further embodiment, and referring to
As can thus be appreciated, the exemplary embodiments of this invention encompass a method, computer program stored in a memory, and an apparatus that provide, as in
In the foregoing method, computer program and apparatus, the set of alarm sounds comprises a database comprising received sound data, wherein the received sound data may comprise digital audio files, and where at least some of the digital audio files comprise an mp3 file. For example, the received sound data may comprise a digital audio file having ID3 tag information.
In another exemplary further embodiment, and referring again to
In this embodiment a ‘more intense’ alarm sound may imply a higher volume and/or a selection of an alarm sound or music track that is more energetic (e.g., faster tempo) than a ‘less intensive’ alarm sound (e.g., hard rock versus soft rock).
As can thus be appreciated, the exemplary embodiments of this invention also encompass a method, computer program stored in a memory, and an apparatus that provide, as in
In the foregoing method, computer program and apparatus, where an intensity of the selected alarm sound is inversely proportional to the difference between the recorded time of day and the predetermined time of day.
In another exemplary further embodiment, and referring again to
As can thus be appreciated, the exemplary embodiments of this invention also encompass a method, computer program stored in a memory, and an apparatus that provide, as in
In the foregoing method, computer program and apparatus, where individual members of the set of alarm sounds comprise digital audio data and associated metadata, where the alarm sound is further selected in accordance with a relationship between the metadata and the at least one of the predetermined time of day and the calendar date.
In another exemplary further embodiment the PROG 190 is arranged to select an alarm sound (e.g., one of the MTs stored in the memory 184) as a function of an alarm triggered by a calendar (CAL) function 190A having an associated calendar database (CAL DB) 184B. In the calendar database 184B is stored a data structure organized in some suitable manner based on calendar dates, times and associated notes. For example, a typical calendar database record may be similar to the date/time/note tuple: Aug. 6, 2009; 10:00 AM; Meeting with staff”. In this embodiment the PROG 190 may be adapted to automatically analyze the content of a particular calendar note stored in the calendar database 184B, and then use the analyzed content to select an appropriate alarm sound when annunciating that particular calendar alert. As one non-limiting example, if the calendar note contains the word ‘yellow’, the calendar function 190A, in cooperation with the PROG 190, may automatically select as an alarm sound or indication a musical track containing the word ‘yellow’ in the title (e.g., “Yellow Submarine” by the Beatles). As another non-limiting example, if the calendar note entry for a certain date states ‘anniversary, don't forget to buy flowers’, the PROG 190 may automatically select as an alarm tone a musical track “The Wedding March”, or another musical track having as a part of the metadata a text string such as “our wedding song”, or “her favorite song”, etc. This latter example may assume that the user is enabled to specify and/or modify the metadata associated with a particular musical track, such as by using the graphical user interface 300 shown in
As can thus be appreciated, the exemplary embodiments of this invention also encompass a method, computer program stored in a memory, and an apparatus that provide, as in
In the foregoing method, computer program and apparatus, where individual members of the set of alarm sounds comprise digital audio data and associated metadata, and where the alarm sound is selected in accordance with a relationship between at least a part of the metadata and at least a part of the content of the note information.
In another exemplary further embodiment, and referring to
As can thus be appreciated, the exemplary embodiments of this invention also encompass a method, computer program stored in a memory, and an apparatus that provide, as in
In the foregoing method, computer program and apparatus, where selecting further comprises examining tag information associated with a received musical track to determine if the received musical track has the desired intensity, and if not, automatically tuning the radio receiver to another radio station to receive another musical track, and repeating examining and automatically tuning until a musical track having the desired intensity is received.
In another exemplary further embodiment that may be incorporated with any of the foregoing embodiments, a single alarm sound may comprise a concatenation of two or more sounds (e.g., musical tunes). For example, a first part of the alarm sound is gentle (low energy), and after some fixed or variable number of seconds the alarm sound changes to a higher intensity.
As a further refinement to the foregoing exemplary embodiments, the PROG 190 may be adapted so as to avoid playing a music track (or other stored content) which has been played recently, e.g., to avoid playing the same music track two days in a row. In this case the PROG 190 may be adapted to also store in the time tag (TT) the time/date when a particular music track is played, which may be obtained from the CLK 183, and to then check this information before selecting the associated music track to be played again. The amount of time permitted between playing music tracks may be fixed, or it may be selectable by the user.
Note that these further exemplary embodiments described in relation to
The various blocks shown in
In general, the various embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although exemplary embodiments of the invention are not limited thereto. While various aspects of the exemplary embodiments of the invention may be illustrated and described as block diagrams, flow charts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
Exemplary embodiments of the inventions may be practiced in various components such as integrated circuit modules. The design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.
Various modifications and adaptations may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings and the appended claims. However, all such and similar modifications of the teachings of this invention will still fall within the scope of this invention.
Furthermore, some of the features of the exemplary embodiments of this invention could be used to advantage without the corresponding use of other features. As such, the foregoing description should be considered as merely illustrative of the principles of the invention, and not in limitation thereof.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 11/472,835, filed Jun. 21, 2006, now abandoned which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6539395 | Gjerdingen et al. | Mar 2003 | B1 |
6678215 | Treyz et al. | Jan 2004 | B1 |
6798886 | Smith et al. | Sep 2004 | B1 |
7468934 | Janik | Dec 2008 | B1 |
20010004397 | Kita et al. | Jun 2001 | A1 |
20020099550 | Emerick, Jr. | Jul 2002 | A1 |
20020181711 | Logan et al. | Dec 2002 | A1 |
20020186618 | Kirkpatrick | Dec 2002 | A1 |
20030142591 | Baweja et al. | Jul 2003 | A1 |
20050174889 | Marcantonio et al. | Aug 2005 | A1 |
20060280036 | Hegarty | Dec 2006 | A1 |
20070057775 | O'Reilly et al. | Mar 2007 | A1 |
20090073813 | Stephens | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
1 589 385 | Oct 2005 | EP |
2 296 346 | Jun 1996 | GB |
Entry |
---|
“Wake UP News”, http://www.wakeupnews.com, Aug. 7, 2006, 7 pages. |
“MP3 Radio”, http://users3.ev1.net/-randgreg/mp3—radio/Index.html, May 18, 2006. |
“MP3 Radio”, http://wwww.freedownloadscenter.com/Multimedia—and—Graphics/MPEG—Audio—Players—and—Editors/MP3—Radio.html,Aug. 8, 2006, 3 pages. |
“Pandora”,http://wwww.pandora.com/, Jun. 26, 2006, 3 pages. |
“The Music Genome Project”, (http://www.pandora.com/mgp.shtml), 1 page. |
“MusicIP Mixer” (http://www.musicip.com/listener/, Jun. 26, 2006, 2 pages. |
“MusicIP Mixer”, (http://www.musicip.com/listener/mixer—tips), Jun. 26, 2006, 3 pages. |
“MoodLogic”, (http://www.moodlogic.com/), Jun. 26, 2006, 2 pages. |
“MoodLogic”, (http://www.moodlogic.com/mlnetwork-about.html), Jun. 26, 2006, 1 page. |
“MoodLogic”, (http://www.moodlogic.com/m120features.html), Jun. 26, 2006, 2 pages. |
“Squeezebox/SqueezeNetwork”, (http://www.slimdevices.com/pi—features.html), Jun. 26, 2006, 1 page. |
“Squeezebox/SqueezeNetwork”, (http://www.slimdevices.com/pi—overview.html), Jun. 26, 2006, 2 pages. |
“Content-based Filtering System for Music Data”, Kazuhiro Iwahama et al., IEEE 2004, 8 pages. |
“Tagging introduction”, (http://www.id3.org/intro.html), Jun. 8, 2006, 2 pages. |
ID3v2 FAQ, (http://www.id3.org/faq.html), Jun. 8, 2006, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20090231964 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11472835 | Jun 2006 | US |
Child | 12386024 | US |