Bone fixation plates are often positioned over a fractured or otherwise damaged portion of bone and secured thereto using bone screws inserted through screw holes of the bone fixation plate. The screw holes extend transversely through the bone plate and are sometimes formed with threads to lockingly engage a threaded head of the bone screw. Variable angle screws are often employed which permit a user to insert the screw through the plate at a user-selected angle relative to an axis of the plate hole. However, the engagement threads of the head of such variable angle screw heads with the threading of the plate hole may burr threads of one or both of the bone screw and the bone plate, causing a loss in bone fixation strength. Damage to the bone plate or bone screw in this manner may cause the bone fixation procedure to lose efficacy. Those skilled in the art continue to search for ways to increase the strength of the screw-plate interface in variable angle systems.
The present invention is directed to a bone fixation element comprising a threaded head and a shaft extending along a longitudinal axis from a proximal end to a distal end, an outer surface of the head being one of carburized and nitrided and including a first groove extending into an outer surface of the head along a path interrupting the threading and extending along an angle counter to an angle of the threading.
The present invention may be further understood with reference to the following description and the appended drawings, wherein like elements are referred to with the same reference numerals. The present invention relates to the stabilization of bones and, in particular, to the stabilization of a fractured or otherwise damaged bone using a bone screw inserted through a bone fixation device (e.g., a bone plate). Exemplary embodiments of the present invention describe a variable angle bone screw having a threaded head and a threaded shaft and having a carburized or nitrided outer surface configured to increase a surface hardness thereof to a desired level. The threaded head comprises one or more grooves extending into an outer surface thereof at an angle relative to a longitudinal axis of the bone screw to aid in alignment of the threads of the head with threads of a variable angle screw hole of the bone fixation device. The shaft comprises one or more notches extending into an outer surface thereof at any angle relative to the longitudinal axis within a permitted range of angulation, as will be described in greater detail later on. In one embodiment, the bone plate may be formed of a metallic alloy exhibiting a hardness within a predetermined range. The bone screw may be carburized or nitrided such that an outer surface of the bone screw has a hardness greater than a hardness of the bone plate. Thus, the exemplary bone screw according to the invention prevents burring of the screw during insertion into the bone plate while providing a consistent connection strength to the bone and bone plate. Furthermore, the exemplary system according to the invention reduces galling during use while also providing an increased overall strength when compared to standard screws including increased yield strength, ultimate tensile strength and fatigue strength, as those skilled in the art will understand. It should be noted that the terms “proximal” and “distal” as used herein, are intended to refer to a direction toward (proximal) and away from (distal) a user of the device.
As shown in
Each of the grooves 112 may be angled, for example, at an angle of approximately 8.5±1° relative to the line B-B, although any other angle may be used without deviating from the scope of the invention. In an exemplary embodiment, the grooves 112 are angled counter to a direction of the threading 110. For example, as seen in
In a first exemplary embodiment of the invention, the bone screw 100 may be formed with five grooves 112 disposed evenly circumferentially about the head 104 and equidistant from one another, as shown in
The head 104 may further comprises a recess 116 extending thereinto from the proximal end 102. The recess 116 is configured to permit engagement with a distal end of a driving mechanism (not shown) for applying torque to the bone screw 100 as would be understood by those skilled in the art. The embodiment of
The shaft 106 is provided with threading 118 having a pitch substantially the same as the pitch of the threads 110. In another embodiment of the invention (not shown), the pitch of the threading 118 may be greater than or smaller than the pitch of the threads 110. The threading 118 of the shaft 106 may be formed with two leads, as those skilled in the art will understand. The multi-lead configuration of the threading 118 aids in linear advancement of the bone screw 100 into the bone, as those skilled in the art will understand. As would be understood by those skilled in the art, the length of the shaft 106 is generally selected to conform to requirements of a target procedure. A distal portion of the shaft 106 may comprise one or more notches 120 configured to create a gap in the continuity of the threads 110 and permit self-tapping of the bone screw 100, as those skilled in the art will understand. The distal portion of the shaft 106 may taper to a smaller diameter at the distal end 106 to, for example, aid in insertion. The distal end 106 may be sharpened or blunt as desired.
The bone screw 100 may be formed of a material selected to have a greater hardness that a material of a bone fixation device 200 with which it is to be employed. Specifically, the bone screw 100 may be formed of one of stainless steel and CCM (Co-28Cr-6Mo Alloy). The bone screw 100 may then be carburized or nitrided to further increase a surface hardness thereof to approximately 68 HRC or more, as those skilled in the art will understand. In an exemplary embodiment, the hardness of the bone screw 100 may be approximately 67-74 HRC and, more particularly, 67.5-70.3 HRC. In contrast, the bone fixation device 200 may be formed of commercially pure Titanium grades 1, 2, 3 and 4, Ti-6Al-7Nb, Ti-6Al-4V, Ti-6Al-4V ELI, Ti-15Mo, CCM (Co-28Cr-6Mo Alloy), stainless steel or another material different than the material of the bone screw 100. As those skilled in the art will understand, a hardness of the bone fixation device 200 may be between approximately 75 HRB (e.g., for a CP1 material) and approximately 45 HRC (e.g., for a CCM material). This configuration prevents burring of the threads 110 of the bone screw 100 as they are inserted into the bone fixation device 100 while also increasing a holding strength of the bone fixation system in the bone.
In an operative configuration, the bone screw 100 is inserted through the bone fixation device 200 and into the bone. As those skilled in the art will understand, a physician or other user may select a desired angle of insertion to conform to the requirements of a particular procedure. Multiple thread starts provided by the grooves 112 provided on the head 104 and the slots 207 provided in the hole 202 aid in alignment of the threads 110 of the head with the threaded portion 212 of the hole 202. As the bone screw 100 is screwed through the bone fixation device 200 and into the bone, the carburized or nitrided outer surface of the bone screw 100 prevents burring of the threads 110. The increased rigidity of the bone screw 100 relative to the bone fixation device 200 also permits removal and reinsertion of the bone screw 100 into the bone (e.g., to correct a position thereof within the bone) without causing a burring thereof.
It will be apparent to those skilled in the art that various modifications and variations can be made in the structure and the methodology of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided that they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5556483 | Tahara et al. | Sep 1996 | A |
5593510 | Tahara et al. | Jan 1997 | A |
5733287 | Tepic et al. | Mar 1998 | A |
5792282 | Tahara et al. | Aug 1998 | A |
6165597 | Williams et al. | Dec 2000 | A |
6206881 | Frigg et al. | Mar 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6461448 | Williams et al. | Oct 2002 | B1 |
7648588 | Hammond et al. | Jan 2010 | B2 |
7695502 | Orbay et al. | Apr 2010 | B2 |
7776076 | Grady et al. | Aug 2010 | B2 |
7905909 | Orbay et al. | Mar 2011 | B2 |
7955364 | Ziolo et al. | Jun 2011 | B2 |
8382811 | Crook et al. | Feb 2013 | B2 |
20070083207 | Ziolo et al. | Apr 2007 | A1 |
20070088360 | Orbay et al. | Apr 2007 | A1 |
20080234749 | Forstein | Sep 2008 | A1 |
20090018557 | Pisharodi | Jan 2009 | A1 |
20090143825 | Graham et al. | Jun 2009 | A1 |
20090292318 | White et al. | Nov 2009 | A1 |
20100016858 | Michel | Jan 2010 | A1 |
20100094357 | Wallenstein et al. | Apr 2010 | A1 |
20100100134 | Mocanu | Apr 2010 | A1 |
20100168841 | Furst et al. | Jul 2010 | A1 |
20110022173 | Melkent et al. | Jan 2011 | A1 |
20110077732 | Bayer et al. | Mar 2011 | A1 |
20110106172 | Wallenstein et al. | May 2011 | A1 |
20110118795 | Hashmi et al. | May 2011 | A1 |
20110224671 | Koay et al. | Sep 2011 | A1 |
20110238122 | Gradl | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2011154891 | Dec 2011 | WO |
Entry |
---|
“Forerunner plating System”, Featuring SphereLock Technology, Biomet Trauma, 2010, 27 sheets. |
“Cyprus Anterior Cervical Plate System”, Surgical Technique, Biomet Spine, 2008, 24 sheets. |
Number | Date | Country | |
---|---|---|---|
20140005728 A1 | Jan 2014 | US |