Variable angle bone plate

Information

  • Patent Grant
  • 11529176
  • Patent Number
    11,529,176
  • Date Filed
    Thursday, March 19, 2020
    4 years ago
  • Date Issued
    Tuesday, December 20, 2022
    a year ago
Abstract
A bone plate having at least one variable angle locking hole is described. The variable angle locking hole allows a bone anchor having a threaded head to be driven into underlying bone while oriented at an angle with respect to a central hole axis of the hole that is within a range of angles at which the head is configured to threadedly mate with the at least one thread of the bone plate. Accordingly, the bone anchor can be driven into the underlying bone until the threaded head threadedly purchases with the bone plate inside the variable angle locking hole.
Description
BACKGROUND

This disclosure relates generally to bone fixation implants, and in particular relates to a bone plate that is configured to lockingly receive a bone screw at an angular orientation in a range of permissible angular orientations at which the bone plate can lockingly receive the bone screw.


When bones are damaged through trauma, disease, distraction osteogenesis, or orthognathic surgery, the defect is typically reduced, and bone fixation plates are commonly applied to the bone on opposite sides of the defect to ensure union in the desired position. Bone plates are typically made from a rigid material, such as titanium, and include fixation holes that are sized to be driven through the fixation holes and into the underlying bone to secure the bone plate to the bone. One common bone screw used in such application is generally referred to as a compression screw. Compression screws have unthreaded heads and threaded shafts. Accordingly, the compression screw can be driven through the plate fixation hole and into the underlying bone until the head applies a compression force against the bone plate toward the underlying bone. Another common bone screw used in such applications is generally referred to as a locking screw. Locking screws have threaded heads and threaded shafts. Accordingly, the locking screw can be driven through the plate fixation hole and into the underlying bone until the head threadedly mates with the bone plate in the fixation hole. Thus, the head of the locking screw does not apply a compressive force against the bone plate toward the underlying bone.


Conventionally, locking screws were inserted through the screw hole along the central screw hole axis in order to ensure that the threaded screw head mates with the plate in the threaded fixation hole. Recently, however, bone plates have been developed having threaded fixation holes that are configured to receive locking screws at different trajectories within a range of trajectories whereby the bone plate threadedly mates with the locking screw head in the threaded hole. While bone plates having such holes, commonly referred to as variable angle holes, have proved to be satisfactory for their intended purpose, improved variable angle holes are nevertheless desired.


SUMMARY

In accordance with one embodiment, a bone plate can include an inner surface configured to face bone, and an outer surface opposite the inner surface along a transverse direction. The bone plate further includes an internal surface that extends from the outer surface to the inner surface, the internal surface defining a fixation hole that extends from the outer surface to the inner surface along a central hole axis and is sized to receive a shaft of a bone anchor that extends out with respect to a threaded head of the bone anchor along a central anchor axis. The bone plate can further include at least one thread that extends from the internal surface into the fixation hole. The bone plate can further define a plurality of recesses that extend through the bone plate body from the inner surface to the outer surface, the recesses further extending into the internal surface in a radially outward direction away from the central hole axis so as to divide the at least one thread into a plurality of columns of thread segments that are offset from each other along the transverse direction. The thread segments of each of the columns can have respective circumferential lengths that increase in an axially inward direction from the outer surface to the inner surface. The at least one thread can be configured to threadedly mate with the threaded head while the bone anchor is inserted into the fixation hole such that the central anchor axis is oriented at a first orientation with respect to the central hole axis, and the at least one thread is further configured to threadedly mate with the threaded head when the bone anchor is inserted into the fixation hole such that the central anchor axis is oriented at a second orientation angle with respect to the central anchor axis that is different than the first orientation.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description, is better understood when read in conjunction with the appended drawings. For the purpose of illustrating the reconstruction device and related method thereof, there is shown in the drawings exemplary embodiments, in which like reference numerals correspond to like reference numerals throughout. The reconstruction device and related methods are not limited to the specific embodiments and methods disclosed, and reference is made to the claims for that purpose.



FIG. 1 is a perspective view of a bone fixation system constructed in accordance with one embodiment, including a bone plate and a plurality of fixation members that attach the bone plate to an underlying bone;



FIG. 2A is a perspective view of the bone plate illustrated in FIG. 1, constructed in accordance with one embodiment;



FIG. 2B is a perspective view of a bone plate constructed in accordance with another embodiment;



FIG. 2C is a perspective view of a bone plate constructed in accordance with yet one embodiment;



FIG. 3A is a perspective view of a portion of the bone plate illustrated in FIG. 1, showing a variable angle locking hole;



FIG. 3B is another perspective view of a portion of the bone plate illustrated in FIG. 3A;



FIG. 4 is a top plan view of the portion of the bone plate illustrated in FIG. 3A;



FIG. 5 is a sectional side elevation view of the portion of the bone plate illustrated in FIG. 4, taken along line 5-5;



FIG. 6 is a sectional side elevation view of the portion of the bone plate illustrated in FIG. 4, taken along line 6-6;



FIG. 7 is a sectional side elevation view of the portion of the bone plate illustrated in FIG. 3A, shown with a bone anchor threadedly mated to the bone plate inside the variable angle locking hole at a first orientation;



FIG. 8 is a sectional side elevation view of the portion of the bone plate illustrated in FIG. 7, shown with a bone anchor threadedly mated to the bone plate inside the variable angle locking hole at a second orientation different than the first orientation;



FIG. 9A is a perspective view of the portion of the bone plate illustrated in FIG. 4, but shown in accordance with an alternative embodiment; and



FIG. 9B is a sectional perspective view of the portion of the bone plate illustrated in FIG. 9A.





DETAILED DESCRIPTION

Referring initially to FIG. 1, a bone fixation system 20 is configured to be implanted onto bone 22 so as to stabilize a first bone segment 24 with respect to a second bone segment 26 that is separated from the first bone segment 24 by a defect 28. In one example, the first bone segment 24 can be defined by the diaphysis of the bone, while the second bone segment 26 can be defined by the metaphysis of the bone. It should be appreciated, however, that the first and second bone segments 24 and 26 can be defined by any region of the bone 22 as desired. Further, the bone 22 can be any bone in the human or animal anatomy suitable for bone plate fixation. Further still, while the bone 22 is illustrated having first and second bone segments 24 and 26, it is appreciated that the bone 22 can include any number of defects or bone fragments as desired that are configured for fixation using the bone fixation system 20. For instance, the diaphysis of the bone can include a plurality of bone fragments.


The bone fixation system 20 can include a bone plate 30 and a plurality of bone anchors 32 that are configured to fix the bone plate 30 to the underlying bone 22, and in particular to each of the first and second bone segments 24 and 26. The bone anchors 32 include a head 33 and a shaft 35 that extends out with respect to the head 33 along a central anchor axis 53. The shaft 35 can extend directly from the head, or can extend from a neck that is disposed between the head 33 and the shaft 35. The shaft 35 can be threaded, such that the bone anchor 32 is configured as a bone screw 37 whose shaft 35 extends out relative to the head 33 along the central anchor axis 53, which can also be referred to as a central screw axis. The threaded shaft 35 can be configured to threadedly purchase in the underlying bone 22. For instance, one or more up to all of the bone screw 37 can be configured as a cortical screw whose threaded shaft 35 is designed and configured to threadedly mate to cortical bone. Alternatively or additionally, one or more of the bone screws 37 can be configured as a cancellous screw whose threaded shaft 35 is designed and configured to threadedly mate to cancellous bone. It is appreciated that cancellous bone screws have threads that have a greater pitch than threads of cortical bone screws. Further, the threads of cancellous bone screws typically extend out from the shaft of the bone screw a greater distance than the threads of cortical bone screws.


The bone plate 30 defines a bone plate body 31. The bone plate body 31, and thus the bone plate 30, defines an inner surface 34 configured to face the underlying bone 22, and an outer surface 36 that is opposite the inner surface 34 along a transverse direction T. The bone plate 30 further defines a plurality of fixation holes 38 that extend through the bone plate body 31 from the inner surface 34 to the outer surface 36. In particular, the bone plate body 31, and thus the bone plate 30, includes a plurality of internal surfaces 39 that extend from the outer surface 36 to the inner surface 34 and defines a respective fixation hole 38 that extends from the outer surface 36 to the inner surface 34 along a central hole axis 45 (see FIGS. 7-8). The central hole axis 45 can be oriented along the transverse direction T. Thus, the central hole axis 45 can be oriented normal to each of the inner surface 34 and the outer surface 36. It should be appreciated, of course, that the central hole axis 45 can be oriented along any suitable direction with respect to the inner surface 34 and outer surface 36 as desired.


The fixation holes 38 are sized to receive the shaft 35 of a respective one of the bone screws 37. Thus, the bone screws 37 that extend through fixation holes 38 are permanent bone screws, meaning that they remain after completion of the surgical procedure. This is distinguished from temporary fixation holes that, for instance, can be configured to receive temporary fixation members, such as Kirschner wires that are removed prior to completion of the surgical procedure. In this regard, the fixation holes 38 can be referred to as permanent fixation holes. Accordingly, during operation, the shaft 35 of the bone screw 37 can be inserted through a respective one of the fixation holes 38 and into the underlying bone 22. The bone screw 37 can then be rotated so as to cause the threaded shaft 35 to be driven into the underlying bone as the threaded shaft 35 threadedly purchases with the underlying bone. The threaded shaft 35 can be driven into the underlying bone until the head 33 engages the bone plate 30. One or more up to all of the bone screws 37 can be configured as a compression screw whose head 33 is configured to bear against the bone plate 30 so as to apply a compressive force against the bone plate 30 toward the underlying bone 22 when the shaft 35 is driven further into the underlying after the head 33 has contacted the internal surface 39. The shaft 35 can be driven into the underlying bone a sufficient distance until the desired compressive force has been imparted onto the bone plate 30. The head 33 of the compression screw is often unthreaded. Similarly, at least a portion up to an entirety of the internal surface 39 can be unthreaded.


In another example, one or more up to all of the bone screw 37 can be configured as locking screws that are configured to lock to the bone plate 30. In particular, the head 33 can be externally threaded. The internal surface 39 can be similarly threaded so as to be configured to threadedly mate with the threaded head 33. Accordingly, during operation, the shaft 35 can be inserted through the fixation hole 38 and driven into the underlying bone as described above. In particular, when the bone screw 37 is a locking screw, rotation of the screw 37 causes the threaded head to threadedly mate with the internal surface 39. As a result, the screw head 33 fastens the bone plate 30 to the underlying bone without applying a compressive force onto the bone plate 30 against the underlying bone. The bone plate 30 can be spaced from the underlying bone when locked to the head 33. Alternatively, the bone plate 30 can abut the underlying bone when locked to the head 33. At least a portion of the internal surface 39 is typically tapered as it extends in an axially inward direction from the outer surface 36 toward the inner surface 34. Thus, the internal surface 39 is configured to prevent the head 33 from passing completely through the fixation hole 38. The head 33 can be constructed in accordance with any embodiment as described in U.S. Pat. No. 8,574,268, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein. Thus, it is appreciated that the head 33 can define at least one external thread that is circumferentially continuous about the central anchor axis 53. It should be appreciated, however, that the head 33 can be alternatively constructed in any manner desired so as to threadedly mate with the internal surface 39 as described herein.


Referring now to FIGS. 1 and 3A-3B, at least one of the fixation holes 38 of the bone plate 30 is configured as a variable angle locking hole 44 that is configured to threadedly mate with the bone screw 37 at different orientations of the bone screw 37 with respect to the central hole axis 45. That is, when the fixation hole 38 is configured as a variable angle locking hole 44, the bone plate body 31, and thus the bone plate 30, includes at least one thread 46 that projects out from the internal surface 39 into the fixation hole 38.


The bone screw 37 is configured to be inserted into the fixation hole 38 such that the central anchor axis 53 is at one of a plurality of orientations with respect to the central hole axis 45 within a range of orientations at which the threaded head 33 is configured to threadedly mate with the at least one thread 46 in the fixation hole 38. For instance, the bone screw 37 is configured to be inserted into the fixation hole 38 such that the central anchor axis 53 is at one of a plurality of angles within a range of angles defined by the central anchor axis 53 and the central hole axis 45 at which the threaded head 33 is configured to threadedly mate with the at least one thread 46 in the fixation hole 38. The range of angles can be from approximately zero degrees to approximately 15 degrees. Thus, the range of angles can define a cone of up to approximately thirty degrees. Thus, it can be said that the at least one thread 46 is configured to threadedly mate with the threaded screw head 33 while the bone screw 37 is inserted into the fixation hole 38 such that the central anchor axis 53 is oriented at a first angle with respect to the central hole axis 45, and the at least one thread 46 is further configured to threadedly mate with the threaded screw head 33 when the bone screw 37 is inserted into the fixation hole 38 such that the central anchor axis 53 is oriented at a second angle with respect to the central hole axis 45 that is different than the first angle. At least one or both of the first and second angles can be non-zero angles. Alternatively, the central anchor axis 53 can be coincident with the central hole axis 45 in one of the orientations in the range of orientations. The threads 46 and the threads of the head 33 are defined prior to insertion of the bone screw 37 into the variable angle locking hole 44. That is, the internal surface 39 is not designed or configured to cut threads into the bone screw head 33. Similarly, the bone screw head 33 is not designed or configured to cut threads into the internal surface 39. The variable angle locking hole 44 is described in more detail below.


Referring now to FIGS. 2A-2C, the bone plate 30 can be configured in any suitable manner as desired. In one example, the bone plate body 31, and thus the bone plate 30, can include a first plate portion 40 and a second plate portion 42. In one example, the first plate portion 40 can define a plate head portion 41 that is configured to overlie the second bone segment 26, and the second plate portion 42 can be referred to as a plate shaft portion 43 that is configured to overlie the first bone segment 24. Each of the plate head portion 41 and the plate shaft portion 43 can include at least one up to a plurality of bone fixation holes 38. Thus, bone anchors 32 that extend through respective fixation holes 38 of the plate head portion 41 can be driven into the metaphysis region of the underlying bone, and bone anchors 32 that extend through respective fixation holes 38 of the plate shaft portion 43 can be driven into the diaphysis region of the underlying bone. The metaphysis region can, for instance, be defined by the distal region of the radius bone. Any one or more up to all of the fixation holes 38 of the bone plate 30 can be compression holes, locking holes, or variable angle locking holes 44.


In one example, all of the fixation holes 38 in the first plate portion 40 are variable angle locking holes 44. Further, in one example, all of the fixation holes 38 in the second plate portion 42 are compression holes configured to receive cortical bone screws. Further, at least one or more up to all of the compression holes can be configured as slots that are elongate along a central longitudinal axis of the bone plate to allow for positional flexibility of the bone screw received therein. Alternatively or additionally, at least one or more up to all of the compression holes can have a circular cross-section so as to locate the position of the bone screw received therein. As described above, however, it should be appreciated that the bone plate 30 can be configured to attach to any region or regions of any suitable bone in the human or animal anatomy suitable for bone plate fixation.


Referring to FIGS. 2A-2C, the bone plate 30 is illustrated in accordance with three non-limiting examples. In FIGS. 2A-2C, the bone plate 30 defines a length that extends along a longitudinal direction L, a width that is less than the length and extends along a lateral direction A that is perpendicular to the longitudinal direction L, and a thickness that is less than both the length and the width and extends along the transverse direction T that is perpendicular to each of the longitudinal direction Land the lateral direction A. The bone plate 30 defines a distal direction from the plate shaft portion 43 to the plate head portion 41, and a proximal direction from the plate head portion 41 to the plate shaft portion 43. The distal and proximal directions can be oriented along the longitudinal direction L. The bone plate 30 illustrated in FIGS. 2A-2C has an outer perimeter 48 that is defined by the plate shaft portion 43 and the plate head portion 41. Further, at least a portion of the plate head portion 41 of the bone plate 30 illustrated in FIGS. 2A-2C can be angled so as to extend outward as it extends in the distal direction away from the plate shaft portion 43.


Referring now to FIG. 2A in particular, the outer perimeter 48 can be substantially Y-shaped. That is, the outer perimeter 48 can flare away outward as it extends along the distal direction from the plate shaft portion 43. Thus, the width of the bone plate 30 at the plate head portion 41 increases as it extends in the distal direction. The width can increase at a constant rate. Alternatively, the width can increase at an increasing rate. Alternatively still, the width can increase at a decreasing rate. The plate head portion 41 can define a plurality of fixation holes 38. One or more up to all of the fixation apertures in the plate head portion 41 can be configured as variable angle locking holes 44.


The fixation holes 38 of the head portion 41 can be arranged in a first row 50a and a second row 50b that is offset from the first row 50a in the proximal direction. The first row 50a can contain a greater number of fixation holes 38 than the second row 50b. For instance, the first row 50a can contain double the number of fixation apertures of the second row 50b. In one example, the first row 50a can include four fixation holes 38, with first and second ones 38a and 38b of the fixation holes 38 of the first row 50a disposed on a first side of a longitudinal centerline of the bone plate 30, and third and fourth ones 38c and 38d of the fixation holes 38 of the first row 50a disposed on a second side of the longitudinal centerline of the bone plate 30 opposite the first side. The first one 38a of the fixation holes 38 of the first row 50a can be disposed laterally outward with respect to the second one 38b of the fixation holes 38 of the first row 50a. Similarly, the third one 38c of the fixation holes 38 of the first row 50a can be disposed laterally outward with respect to the fourth one 38d of the fixation holes 38 of the first row 50a. Further still, the central hole axis of the fourth one 38d of the fixation holes 38 of the first row 50a can be offset from the central hole axis of all other ones of the fixation holes 38 of the first row 50a in the distal direction. It should be appreciated, of course, that the first row 50a can include any number of fixation holes 38 as desired, arranged as desired. Further, the first and second rows 50a and 50b can be linear rows or can be curved as desired. In one example, the central hole axes of the fixation holes 38 of the fixed row lie on a nonlinear path.


The second row 50b can include likewise include any number of fixation holes 38 as desired. In one example, the second row 50b can include first and second ones 38e and 38f, respectively, of the fixation holes 38. The central hole axes of the fixation holes 38 of the second row 50b are spaced from the central hole axes of the fixation holes 38 of the first row 50a in the proximal direction. The first one 38e of the fixation holes 38 of the second row 50b can be disposed between the first and second ones 38a and 38b of the fixation holes 38 of the first row 50a with respect to the lateral direction A. Similarly, the second one 38f of the fixation holes 38 of the second row 50b can be disposed between the third and fourth ones 38c and 38d of the fixation holes 38 of the first row 50a with respect to the lateral direction A.


The first and second ones 38a and 38b of the fixation holes 38 of the first row 50a and the first one 38e of the fixation holes 38 of the second row 50b can be configured to receive bone screws that are driven into one of the lunate fossa and the sigmoid notch. The third one 38c of the fixation holes 38 of the first row 50a can be configured to receive a bone screw that is driven into the scaphoid fossa. The fourth one 38d of the fixation holes 38 of the first row 50a and the second one 38f of the fixation holes 38 of the second row 50b can be configured to receive bone screws that are driven into one of the styloid process. It is recognized that the central hole axes 45 of one or more up to all of the fixation holes 38a-38f can be perpendicular to one or both of the bone plate surfaces 34 and 36, or nonperpendicular to one or both of the bone plate surfaces 34 and 36. In one example, the respective central hole axes 45 of the fixation holes 38d and 38f may define an angle with respect to one or both of the bone plate surfaces 34 and 36 that is less than the angle defined by the central hole axes of the other fixation holes 38a-38c and 38e and the one or both of the bone plate surfaces 34 and 36. Thus, the bone fixation holes 38d and 38f can be said to have increased angulation with respect to the other fixation holes 38a-38c and 38e. The increased angulation can allow bone screws that are inserted through the fixation holes 38d and 38f to be aligned with the styloid reach for fixation to the styloid reach.


Referring now to FIG. 2B in particular, the outer perimeter 48 can be substantially T-shaped. That is, the outer perimeter 48 can define opposed shoulders that flare out from the plate shaft portion 43 along the lateral direction A so as to define a proximal-most aspect of the plate head portion 41. The outer perimeter 48 can flare outward along the lateral direction A as it extends in the distal direction from the shoulders. Thus, the width of the bone plate 30 at the plate head portion 41 increases as it extends in the distal direction. The width can increase at a constant rate. Alternatively, the width can increase at an increasing rate. Alternatively still, the width can increase at a decreasing rate. The plate head portion 41 can define a plurality of fixation holes 38. One or more up to all of the fixation apertures in the plate head portion 41 can be configured as variable angle locking holes 44.


The fixation holes 38 of the head portion 41 can be arranged in a first row 50a and a second row 50b that is offset from the first row 50a in the proximal direction. The first row 50a can contain a greater number of fixation holes 38 than the second row 50b. For instance, the first row 50a can contain double the number of fixation apertures of the second row 50b. In one example, the first row 50a can include four fixation holes 38, with first and second ones 38a and 38b of the fixation holes 38 of the first row 50a disposed on a first side of a longitudinal centerline of the bone plate 30, and third and fourth ones 38c and 38d of the fixation holes 38 of the first row 50a disposed on a second side of the longitudinal centerline of the bone plate 30 opposite the first side. The first one 38a of the fixation holes 38 of the first row 50a can be disposed laterally outward with respect to the second one 38b of the fixation holes 38 of the first row 50a. Similarly, the third one 38c of the fixation holes 38 of the first row 50a can be disposed laterally outward with respect to the fourth one 38d of the fixation holes 38 of the first row 50a. Further still, the central hole axis of the fourth one 38d of the fixation holes 38 of the first row 50a can be offset from the central hole axis of all other ones of the fixation holes 38 of the first row 50a in the distal direction. It should be appreciated, of course, that the first row 50a can include any number of fixation holes 38 as desired, arranged as desired. Further, the first and second rows 50a and 50b can be linear rows or can be curved as desired. In one example, the central hole axes of the fixation holes 38 of the fixed row lie on a nonlinear path.


The second row 50b can include likewise include any number of fixation holes 38 as desired. In one example, the second row 50b can include first and second ones 38e and 38f, respectively, of the fixation holes 38. The central hole axes of the fixation holes 38 of the second row 50b are spaced from the central hole axes of the fixation holes 38 of the first row 50a in the proximal direction. The first one 38e of the fixation holes 38 of the second row 50b can be disposed between the first and second ones 38a and 38b of the fixation holes 38 of the first row 50a with respect to the lateral direction A. Similarly, the second one 38f of the fixation holes 38 of the second row 50b can be disposed between the third and fourth ones 38c and 38d of the fixation holes 38 of the first row 50a with respect to the lateral direction A.


The first and second ones 38a and 38b of the fixation holes 38 of the first row 50a and the first one 38e of the fixation holes 38 of the second row 50b can be configured to receive bone screws that are driven into one of the lunate fossa and the sigmoid notch. The third one 38c of the fixation holes 38 of the first row 50a can be configured to receive a bone screw that is driven into the scaphoid fossa. The fourth one 38d of the fixation holes 38 of the first row 50a and the second one 38f of the fixation holes 38 of the second row 50b can be configured to receive bone screws that are driven into one of the styloid process. As described above with respect to FIG. 2A, it is recognized that the central hole axes 45 of one or more up to all of the fixation holes 38a-38f can be perpendicular to one or both of the bone plate surfaces 34 and 36, or nonperpendicular to one or both of the bone plate surfaces 34 and 36. In one example, the respective central hole axes 45 of the fixation holes 38d and 38f may define an angle with respect to one or both of the bone plate surfaces 34 and 36 that is less than the angle defined by the central hole axes of the other fixation holes 38a-38c and 38e and the one or both of the bone plate surfaces 34 and 36. Thus, the bone fixation holes 38d and 38f can be said to have increased angulation with respect to the other fixation holes 38a-38c and 38e. The increased angulation can allow bone screws that are inserted through the fixation holes 38d and 38f to be aligned with the styloid reach for fixation to the styloid reach.


Referring now to FIG. 2C in particular, the outer perimeter 48 can be forked. That is, the plate head portion 41 can define first and second arms 41a and 41b that extend away from the plate shaft portion 43 in the distal direction, and are spaced from each other along the lateral direction A. Respective first portions of the first and second arms 41a and 41b can flare away from each other along the lateral direction A as they extend away from the plate shaft portion 43. Thus, the laterally outer perimeter 48 at the first portion of the plate head portion 41 can flare out along the lateral direction A as it extends in the distal direction. Respective second portions of the first and second arms 41a and 41b can flare toward from each other along the lateral direction A as they extend away from the respective first portions. Thus, the laterally outer perimeter 48 at the second portion of the plate head portion 41 can flare in along the lateral direction A as it extends in the distal direction. The arms 41a and 41b can be disposed on opposite sides of the longitudinal centerline of the plate 30.


Each of the first and second arms 41a and 41b can include at least one fixation hole 38 such as a plurality of fixation holes 38. One or more up to all of the fixation apertures in the plate head portion 41 can be configured as variable angle locking holes 44. The fixation holes 38 of each of the arms 41a and 41b can be arranged in a respective first row 50a and a second row 50b that is offset from the first row 50a in the proximal direction. The first row 50a can be oriented substantially parallel to the outer perimeter 48 at the distal-most end of the respective arms 41a and 41b. For instance, the first row 50a can contain double the number of fixation apertures of the second row 50b. In one example, the first row 50a can include first and second ones 38a and 38b of the fixation holes 38 of the first and second arms 41a and 41b, respectively. It should be appreciated, of course, that the first row 50a can include any number of fixation holes 38 as desired, arranged as desired.


The second row 50b of each of the first and second arms 41a and 41b can include likewise include any number of fixation holes 38 as desired. In one example, the second row 50b can include a respective one 38c of the fixation holes 38. The central hole axes of the fixation hole 38 of the second row 50b are spaced from the central hole axes of the fixation holes 38 of the first row 50a in the proximal direction. The respective one 38c of the fixation holes 38 of the second row 50b can be disposed between the first and second ones 38a and 38b of the fixation holes 38 of the first row 50a with respect to the lateral direction A.


The first and second ones 38a and 38b of the fixation holes 38 of the first rows 50a can be configured to receive bone screws that are driven into the lunate fossa and sigmoid notch. Bone screws inserted into the hole 38c can be aligned to be driven into the scaphoid fossa. Bone screws inserted into the hole 38d can be aligned to be driven into a styloid fragment. The fixation hole 38a of the second row 50b can be configured to receive a bone screw that is driven into the lunate fossa and sigmoid notch. Bone screws can be driven into hole 38f on the second row to reach and support a styloid fragment.


The variable angle locking hole 44 will now be described, with initial reference to FIGS. 3A-6. In particular, and as described above, the bone plate 30 can include at least one up to a plurality of variable angle locking holes 44. One of the locking holes 44 will now be described in detail, it being that the description is applicable to the other locking holes of the bone plate 30. The bone plate 30 includes the internal surface 39 that extends from the inner surface 34 to the outer surface 36. The internal surface 39 defines the fixation hole 38 that similarly extends through the bone plate body 31 from the outer surface to the inner surface along the central hole axis 45. In one example, the central hole axis 45 can extend along the transverse direction T. It should be appreciated, of course, that the central hole axis 45 can be oriented along any direction as desired, including a direction that is angularly offset with respect to the transverse direction T. As described above, the inner and outer surfaces 34 and 36 are opposite each other along the transverse direction T. Thus, in some examples, the transverse direction T defined by the head portion 41 of the bone plate 30 may be angularly offset with respect to the transverse direction T defined by the shaft portion 43 of the bone plate 30. In other examples, the transverse direction T can be constant along an entirety of the length of the bone plate 30.


The fixation hole 38 is sized to receive the shaft 35 of the bone anchor 32. In particular, the fixation holes 38 has a cross-sectional dimension that is defined from one location of the internal surface 39 to another radially opposite location of the internal surface 39 along a straight linear direction that passes through the central hole axis 45 and is perpendicular to the central hole axis 45. In one example, the cross-sectional dimension defines a diameter of the internal surface 39. Thus, the internal surface 39 can extend along a circular path in cross-section along a plane that is oriented normal to the central hole axis 45. However, it is recognized that the internal surface 39 can define any suitable geometry as desired. The cross-sectional dimension is greater than the outer diameter of the at least one thread of the bone anchor shaft 35, such that the shaft 35 can travel through the internal surface 39 so as to extend out from the inner surface 34 and into the underlying bone.


The variable angle locking hole 44 can include the at least one thread 46 that is configured to threadedly mate with the threaded head 33 of the bone anchor 32. In particular, the at least one thread 46 can extend from at least a portion of the internal surface 39 into the fixation hole 38. In one example, the thread 46 can be monolithic with the internal surface 39. Because the at least one thread 46 is an internal at least one thread 46, the at least one thread 46 defines a major diameter at the interface between the at least one thread 46 and the internal surface 39. The at least one thread 46 can extend out from the internal surface to a minor diameter that is radially inwardly spaced from the major diameter. The radially inward direction, as used herein, can be defined as a direction toward the central hole axis 45. A radially outward direction is opposite the radially inward direction. Thus, the radially outward direction, as used herein, can be defined as a direction away from the central hole axis 45. A direction normal to the central hole axis 45 can be said to be radial direction.


In one embodiment, the at least one thread 46 extends along a portion of the axial length of the internal surface 39. Alternatively, the at least one thread 46 can extend along an entirety of the axial length of the internal surface 39. The at least one thread 46 can define a thread path that is sloped with respect to a reference plane. The reference plane can be normal to the central hole axis 45. Thus, the reference plane can be defined by the radial direction. The thread path can be defined by the minor diameter of the at least one thread 46 that defines the thread crest. In one example, the at least one thread 46 can be a helical thread. Thus, the thread path can define a helix. Further, the at least one thread 46 can define a single thread. Alternatively, the at least one thread 46 can include multiple threads. For instance, the at least one thread 46 can be configured as a double lead thread or alternative multiple lead thread.


The internal surface 39 defines an axially inner end 52 that can extend to the inner surface 34. The axially inner end 52 can define an edge that is shared by the inner surface 34. Alternatively, the axially inner end 52 can flare radially outward as it extends in the axially inward direction toward the inner surface 34. In one example, the axially inner end 52 flares radially outward as it extends in the axially inward direction. The axially inner end of the internal surface 39 can be defined by an undercut 56 that flares radially outward to the axially inner surface 34. For instance, the undercut 56 can flare linearly to the axially inner surface 34. Alternatively, at least a portion up to all of the undercut 56 can be curved as it extends to the axially inner surface 34. The undercut 56 can extend about an entirety of the perimeter of the variable angle locking hole 44.


The at least one thread 46 can extend radially inward from the inner surface 34 at the undercut 56. Alternatively, the undercut 56 can be devoid of threads, and can be substantially smooth. As will be appreciated from the description below, the undercut 56 can cause the internal surface 39 to avoid contact with the shaft 35 at angles between the central anchor axis 53 and the central hole axis 45 that would be prevented due to contact between the internal surface 39 and the shaft 35 without the undercut 56. Thus, the undercut 56 can widen the range of angles that are defined by the central anchor axis 53 and the central hole axis 45 at which the threaded head 33 is configured to threadedly mate with the at least one thread 46 in the fixation hole 38.


The internal surface 39 defines an axially outer end 54 that is opposite the axially inner end 52. The axially outer end 54 can extend to the outer surface 36. The axially outer end 54 can define an edge that is shared by the inner surface 34. Alternatively, the axially outer end 54 can flare radially outward as it extends in an axially outward direction that is opposite the axially inward direction, and thus in a direction from the inner surface 34 toward the outer surface 36. For instance, the axially outer end 54 can flare radially outward as it extends in the outward direction to the outer surface 36. It should be appreciated that the axially inward and axially outward directions can be oriented along the transverse direction T, or can define an angle with respect to the transverse direction T. For instance, the internal surface 39 can be tapered and extend along both the axially inward direction and the axially outward direction.


The at least one thread 46 can extend from a first location 46a to a second location 46b that is offset from the first location 46a along the axially outward direction. The at least one thread terminates at the first location 46a and the second location 46b. The first location 46a can extend to the inner end 52 of the internal surface 39. Thus, the first location 46a can extend to the inner surface 34. Alternatively, the first location 46a can be offset from the inner surface 34 along the axially outward direction. The second location 46a can extend to the outer end 54 of the internal surface 39. Thus, the first location 46a can extend to a second region 49 of the internal surface 39 described in more detail below. Alternatively, the second location 46b can extend to the outer surface 36. Alternatively, the second location 46b can be offset from the outer surface 36 along the axially inward direction. As will be appreciated from the description below, the at least one thread 46 defines at least one discontinuous segment between the first location 46a and the second location 46b. The first location 46a can be defined by the inner end 52 of the internal surface 39. Thus, the first location 46a can extend inwardly to the inner surface 34. Alternatively, the first location 46a can be offset from the inner surface 34 along the axially outward direction.


With continuing reference to FIGS. 3A-6, the plate body 31, and thus the bone plate 30, can define a plurality of (e.g., at least two) recesses 60 that divide the at least one thread 46 into a plurality of (e.g., at least two) columns 62. In particular, the recesses 60 divide the at least one thread 46 into a plurality of columns of thread segments 64 that are described in more detail below. The columns 62 can extend from the axially outer surface 36 to the axially inner surface 34. Opposed pairs of the columns 62 can be disposed radially opposite each other through the central hole axis 45. At least a portion up to an entirety of each of the recesses 60 can extend through the threaded region 47 at least to the internal surface 39 along the radially outward direction away from the central hole axis 45. For instance, at least a portion up to an entirety of each of the recesses can extend into the internal surface 39 along the radially outward direction away from the central hole axis 45. Thus, the recesses 60 can further extend radially outward through the at least one thread 46 that is carried by the internal surface 39. Each of the recesses 60 terminates radially at a respective recessed surface 61 of the plate body 31. Thus, it can be said that the recesses 60 can be at least partially or fully defined by the recessed surface 61. It can further be said that each recessed surface 61 defines a radial outer perimeter of the respective recesses 60. The recesses 60 can extend through the bone plate body 31 from the axially inner surface 34 to the axially outer surface 36. The recessed surface 61 of each of the recesses 60 between adjacent ones of the columns 62 can define any suitable surface area as desired. For instance, the surface area of the recessed surface 61 of each of the recesses 60 from the inner surface 34 to the outer surface 36 can be between approximately 3 mm2 and approximately 7 mm2, such as between approximately 4 mm2 and approximately 6 mm2, and in one example can be approximately 5.1 mm2. The terms “approximate” and “substantially” as used herein with respect to dimensions and shapes recognizes that manufacturing tolerances along with other factors, such as rounding, can cause variation in measurements and distances. Further, term “between” with respect to ranges of dimensions is used herein to also include the respective dimensions.


In one example, the plate body 31 can include four recesses 60 that are circumferentially spaced apart from each other. However, it is appreciated that the plate body 31 can include any number of recesses 60, greater than one, as desired, so as to define the variable angle locking hole 44 of the type described herein. Further, the respective constant distance of the recessed surfaces of each of the recesses 60 can be the same as each other. In this regard, each of the recesses 60 can be substantially identical to each other. Further, the recesses 60 can be circumferentially equidistantly spaced from each other about the central hole axis 45. Alternatively, the recesses 60 can be circumferentially spaced from each other a variable distance about the central hole axis 45. Similarly, the plate body 31 can include four columns 62 of thread segments 64 that are circumferentially spaced apart from each other. However, it is appreciated that the plate body 31 can include any number of columns 62, greater than one, as desired, so as to define the variable angle locking hole 44 of the type described herein. The columns 62 can be substantially identical to each other. Further, the columns 62 can be circumferentially equidistantly spaced from each other about the central hole axis 45. Alternatively, the columns 62 can be circumferentially spaced from each other a variable distance about the central hole axis 45.


The recesses 60 can have a radial depth sufficient such that the recessed surface 61 is recessed with respect to the internal surface 39 along the radially outward direction. That is, the recessed surface 61 can define a radial distance from the central hole axis 45 that is greater than the radial distance from the central hole axis 45 to the major diameter of the at least one thread 46. Further, an entirety of the recessed surface 61 can define a curvature along a plane that is oriented normal to the central hole axis 45 from a first end of the recessed surface 61 that adjoins the internal surface 39 to a second end of the recessed surface 61 that adjoins the internal surface 39. The curvature can be a constant curvature from the first end to the second end. In one example, the recessed surface 61 extends along a circular path along the plane that is oriented normal to the central hole axis 45.


The recesses 60 further extend in a direction defined from the axially inner surface 34 toward the outer surface 36. In one example, each of the recesses 60 can extend from a respective axially first or inner terminal end to a respective opposed axially second or outer terminal end. The inner terminal end can be disposed at the axially inner surface 34. Alternatively or additionally, depending on the size of the undercut 56, the inner terminal end can be disposed at the undercut 56. The undercut 56 can be localized at a location aligned with the columns 62 so as to not extend circumferentially beyond the column 62. Alternatively, the undercut 56 can extend about the entire perimeter of the variable angle locking hole 44. The outer terminal end can be spaced axially inward from the axially outer surface 36. Accordingly, the axially outer surface 36 can define an opening 29 of the variable angle locking hole 44. The opening 29 thus has an outer perimeter that is defined by the axially outer surface 36 of the bone plate 30. The axially outer surface 36 at the opening 29 is defined by the internal surface 39 and each of the recessed surfaces 61. The axially outer surface 36 at the opening 29 at locations defined by the internal surface 39 can be concave to the central hole axis 45 and defined by a first radius of curvature, and the axially outer surface 36 at the opening 29 at locations defined by the recessed surfaces 61 can be concave to the central hole axis 45 and defined by a second radius of curvature that is less than the first radius of curvature. It should be appreciated, however, that the outer perimeter of the opening 29 can define any suitable alternative shape as desired. Further, an entirety of the recessed surfaces 61 of each of the recesses 60 can be offset from the outer perimeter of the opening 29 in the radially inward direction, that is toward the central hole axis 45.


Adjacent ones of the columns 62 can be separated by a common one of the recesses 60. The adjacent ones of the columns 62 can be referred to as circumferentially adjacent ones of the columns 62. The columns 62 and recesses 60 can define circumferential centerlines that extend along planes that intersect the central hole axis 45. The circumferential centerlines of the columns can be circumferentially offset from circumferential centerlines of the recesses 60 by 45 degrees. Each of the columns 62 includes a plurality of thread segments 64. The thread segments 64 can be defined by the least one thread 46 that is divided into the thread segments 64 by the recesses 60. Thus, circumferentially adjacent ones of the columns 62 of thread segments are separated from each other by a respective one of the recesses 60. The thread segments 64 of each of the columns 62 can be discontinuous with respect to the thread segments 64 of the other ones of the columns 62 at the recesses 60. Thus, each of the recesses 60 interrupts the at least one thread 46 and divides the at least one thread 46 into the corresponding plurality of thread segments 64.


The thread segments 64 of each of the columns 62 can thus be circumferentially offset from the thread segments 64 of the other ones of the columns 62. Further, adjacent ones of the circumferentially spaced thread segments 64 can be separated by a common one of the recesses 60. Thus at least one or more of the thread segments 64 up to all of the thread segments 64 are aligned with at least one other of the thread segments 64 of an adjacent one of the columns 62 along the thread path. For instance, at least one or more of the thread segments 64 up to all of the thread segments 64 are aligned with at least one other of the thread segments 64 of an adjacent one of the columns 62 along a helical path. In one example, each of a plurality of the thread segments 64 of a respective one of the columns 62 is aligned along a thread path with 1) a first one the thread segments 64 of a first other one of the columns 62 that is adjacent the respective one of the columns 62 along a first circumferential direction, and 2) a second one the thread segments 64 of a second other one of the columns 62 that is adjacent the respective one of the columns 62 along a second circumferential direction that is opposite the first circumferential direction. Thus, the respective one of the columns 62 is disposed circumferentially between the first other one of the columns and the second other one of the columns. Further, the thread segments 64 of the respective one of the columns 62 is disposed between the first one of the thread segments 64 and the second one of the thread segments 64 with respect to the transverse direction T.


Each of the columns 62 can define a circumferential length in a respective plane oriented normal to the central hole axis 45. The circumferential length of each of the columns 62 can increase in the radially inward direction. The thread segments 64 of each of the columns 62 are offset from each other along the transverse direction T. Further, each of the thread segments 64 defines first and second circumferentially opposed terminal ends. Each of the thread segments 64 defines a respective circumferential length from the first circumferentially terminal end to the second circumferentially terminal end. The circumferential lengths can be measured at the crests of the thread segments 64, which can be defined by the minor diameter. In one example, the circumferential lengths of the thread segments 64 increase in the axially inward direction. In particular, the columns 62 define at least three consecutive ones of the thread segments 64 whose circumferential lengths increase along the axially inward direction. It can thus also be said that the circumferential lengths of the at least three consecutive ones of the thread segments 64 decrease in the axially outward direction. The consecutive thread segments 64 are defined such that no other threads are disposed between the thread segments 64 of consecutive thread segments 64. Accordingly, each of the columns 62 can define a circumferentially flared region 63 as the column 62 extends in the axially inward direction. The circumferentially flared region 63 is defined by the thread segments 64 whose circumferential lengths increase in the axially inward direction. In one example, the circumferential lengths of the thread segments 64 of each of the columns 62 can increase from the axially outer end of the column 62 to the undercut 56. The circumferential length of the thread segments 64 can decrease in the axially inward direction from the circumferentially flared region 63 to the axially inner surface 34. In particular, the undercut 56 can define a thread segment 64 that is consecutive with an axially innermost one of the thread segments 64 of the circumferentially flared region 63, and defines a circumferential length less than that of the axially innermost one of the thread segments 64 of the circumferentially flared region 63. If the bone plate 30 does not include the undercut 56, the circumferential lengths of each of the columns 62 can increase from the axially outer end of the columns 62 to the inner surface 34.


The circumferential lengths of the thread segments 64 of each of the columns 62 can increase at a constant rate in the axially inward direction. Thus, the circumferentially flared region 63 can be conical with respect to a of the circumferentially outward tapered region perpendicular to the central hole axis. Alternatively, the circumferential lengths of the thread segments 64 of each of the columns 62 can increase at an increasing rate in the axially inward direction. Alternatively still, the circumferential lengths of the thread segments 64 of each of the columns 62 can increase at a decreasing rate in the axially inward direction.


The circumferentially flared region 63 is positioned so as to purchase with the threaded head 33 of the bone anchor 32 when the bone anchor 32 is oriented such that the angle defined by the central anchor axis 53 and the hole axis 45 are within the range of angles in which the threaded head 33 is configured to threadedly mate with the at least one thread 46 in the fixation hole 38. In particular, the threaded head is configured to thrededly mate with at least a portion of the circumferentially flared region 63 of the at least one thread 46 when the bone anchor 32 is oriented such that the angle defined by the central anchor axis 53 and the hole axis 45 are within the range of angles. Without being bound by theory, it is believed that the circumferentially flared region 63 can achieve reliable fixation with the bone anchor 32 due to increasing threaded surface area for purchase in the axially inward direction.


The plate body 31, and thus the plate 30, can define a plurality of steps 58 that project radially outward with respect to the internal surface 39 at the columns 62. For instance, the steps 58 can project radially outward from the internal surface 39 at the columns 62. The steps 58 can be oriented along a plane that is sloped with respect to a plane that is oriented normal to the central hole axis 45. For instance, each of the steps 58 can extend in the axially inward direction as it extends in the radially inward direction. Alternatively, the steps 58 can be oriented along a plane that is oriented normal to the central hole axis 45. Thus, it should be appreciated that the steps 58 can be oriented along any suitable direction as desired.


The steps 58 can separate the internal surface 39 at the columns 62 and a plurality of second regions 49 that extend from respective ones of the steps 58 to the axially outer surface 36. The second regions 49 can be inline with respective ones of the columns 62 with respect to the transverse direction T. Thus, the axially outer end 54 of the inner surface 39 can be defined by the second region 49. Further, the outer surface 36 at the perimeter of the opening 29 can be defined by the second regions 49 of the internal surface 39 and the recessed surfaces 61. In this regard, it should be appreciated that the recesses 60 can extend circumferentially between adjacent ones of the second regions 49. Each of the second regions 49 can be tapered radially inwardly as it extends in the axially inward direction. For instance, the second region 49 can be tapered radially inwardly from the axially outer surface 36 to the step 58. In one example, the second region 49 can be conical. Alternatively, the second region 49 can be curved as it extends in the axially inward direction.


The columns 62 can extend from the step 58 to the axially inner surface 34. Alternatively, the columns 62 can extend from the step 58 to the undercut 56. Further, each of the steps 58 can be circumferentially tapered inwardly as it extends radially inwardly from a radially outer end to a radially inner end. The steps 58 can adjoin to the second 49 region at the radially outer end. The radially inner end of each of the steps 58 can adjoin the axially outer end of a respective one of the columns 62 at an edge. The edge can define a circumferential length that is less than the circumferential length of the radially outer end of the step 58. For instance, in one example, the circumferential length of the edge can be between approximately 0.2 mm and approximately 0.6 mm, such as between approximately 0.3 mm and approximately 0.5 mm, for instance approximately 0.42 mm. The columns 62 can define any suitable height as desired.


The second region 49 of the internal surface 39 can flare radially outward from the step 58 to the axially outer surface 36. For instance, the second region 49 of the internal surface 39 can flare linearly along a direction from the step to the axially outer surface 36. Alternatively, at least a portion up to all of the second region 49 of the internal surface 39 can be curved as it extends from the step 58 to the axially outer surface 36. It should be appreciated that the internal surface 39 at the columns 62 can be offset in the radially inward direction from the second region 49. That is, the internal surface 39 at the columns 62 can be disposed between the second region 49 and the central hole axis 45 with respect to the radial direction.


Further, at least a portion up to all of the internal surface 39 at each of the columns 62 can be tapered radially inwardly along its length as it extends in the axially inward direction. For instance, the internal surface 39 at each of the columns 62 can be conical from its axially outer end to the undercut 56, or alternatively can be conical from its axially outer end to the axially inner surface 34 of the undercut 56 is not present. These areas can be referred to as tapered threaded areas 51 of the columns 62, and thus of the internal surface 39. The tapered threaded area 51 can define an axially outer end and an axially inner end. The axially outer end of the tapered threaded area 51 can be defined by the step 58. Alternatively, if the bone plate 30 does not include the step 58 as described below with respect to FIGS. 9A-9B, then the axially outer end of the tapered threaded area 51 can be defined by the axially outer surface 36. The axially inner end of the tapered threaded area 51 can be defined at the undercut 56. Alternatively, if the bone plate does not include the undercut 56, then the axially inner end of the tapered threaded area 51 can be defined by the axially inner surface 34. As described above, the circumferential lengths of consecutive thread segments 64 of each of the columns 62 can increase in the axially inward direction. The consecutive thread segments can be defined by the tapered threaded area 51 of the columns 62.


The first and second ends of an entirety of the recessed surface 61 at an entirety of the tapered threaded area 51 can diverge away from each other as they adjoin the internal surface 39. Further, a straight line that extends from the first end of the recessed surface to the second end of the recessed surface at the entirety of the tapered threaded area 51 can define a chord of a circle that defines the circular path of the recessed surface 61. The chord can be disposed between the center of the circle and the recessed surface 61. Thus, the first and second ends of the recessed surface can define a circumferential length that is less or equal to (e.g., no more than) than 180 degrees of the circle that defines the circular path of the recessed surface 61 along a plane that is normal to the central hole axis 45, along an entirety of the tapered threaded area 51. The circumferential length of the recessed surface 61 can decrease along the axially outward direction. For instance, the recessed surface 61 can define a minor arc along the plane from the first end of the recessed surface 61 to the second end of the recessed surface 61, at an entirety of the tapered threaded area 51.


The undercut 56 can extend out from the axially inner end of the radially inwardly tapered region of the internal surface 39. Further, the undercut 56 can carry a portion of the at least one thread 46, and thus can define a portion of the columns 62. Alternatively, the undercut 56 can be devoid of threads. In one example, one or both of the steps 58 and the second region 49 of the internal surface 39 can be devoid of threads designed to purchase with the threaded head 33 of the bone anchor 32. Thus, one or both of the steps 58 and the second region 49 of the internal surface 39 can be said to be substantially smooth. Thus, the fixation hole 38 can be configured to receive the head of a compression screw, such that the head of the compression screw abuts the second region 49 and applies a compression force to the bone plate that urges the bone plate toward, for instance against, the underlying bone as the compression screw is driven into the underlying bone.


The steps 58 can be disposed circumferentially between adjacent ones of the recesses 60. Similarly, the second regions 49 can be disposed circumferentially between adjacent ones of the recesses 60. Thus, the steps 58 can be aligned with the columns 62 with respect to the transverse direction T. Accordingly, the internal surface 39 of each one of the columns 62 at the step 58 can define a constant curvature along its circumferential length along a plane that is oriented normal to the central hole axis 45. The constant curvature can, for instance, extend along a circular path. The recessed surfaces 61 can similarly define a constant circumferential curvature along the plane that is oriented normal to the central hole axis 45. The circumferential curvature of the recessed surfaces 61 can be greater than the circumferential curvature of the step 58. Thus, the circumferential curvature of the step 58 can be defined by a first radius, and the circumferential curvature of the recessed surface 61 can be defined by a second radius that is less than the first radius. Similarly, the internal surface 39 of each of the second regions 49 can define a constant curvature along its circumferential length along a plane that is oriented normal to the central hole axis 45. The constant curvature can, for instance, extend along a circular path. The circumferential curvature of the recessed surfaces 61 be greater than the circumferential curvature of each of the second regions 49.


The internal surface 39 of each one of the columns 62 at the step 58 can define any circumferential length and shape as desired. In one example, the circumferential length of the internal surface 39 of each of the columns 62 at the step 58 can be between approximately 0.2 mm and approximately 0.6 mm, such as between approximately 0.3 mm and approximately 0.5 mm, for instance approximately 0.42 mm. The columns 62 can define any suitable height as desired, such as between approximately 1.2 mm to approximately 2.0 mm, for instance, approximately 1.6 mm.


The recesses 60 can be oriented in any direction as desired. For instance, the recesses 60 can each be sloped with respect to the central hole axis 45 as it extends along the axially outward direction. Accordingly, in one example, the recessed surface 61 of each of the recesses 60 can be spaced from the central hole axis 45 a respective distance that increases along its length along the axially outward direction. Further, the circumferential length of the recessed surface 61 along a respective plane oriented normal to the central hole axis 45 can increase as the recessed surface 61 extends in the radially outward direction at a location whereby the respective plane further extends into the circumferentially flared region 63.


The internal surface 39 at each of the columns 62 from the step 58 to the axially inner surface 34 can define any suitable surface area as desired. The columns 62 can thus include the tapered threaded area 51 and the undercut 56. For instance, the surface area defined by each of the columns 62 can be between approximately 2 mm2 and approximately 6 mm2, such as between approximately 3 mm2 and approximately 5 mm2, such as approximately 4.2 mm2. In one example, the plate body 31 can define an interface between the axially inner end of the circumferentially flared region 63 and the undercut 56. The interface can have any suitable length as desired. For instance, the length of the interface can be between approximately 0.2 mm and approximately 0.9 mm, such as between approximately 0.3 mm and approximately 0.7 mm, such as approximately 0.5 mm.


Fabrication of the bone plate 30 can include the step of creating a through-hole through the bone plate body 31 from the axially outer surface 36 to the axially inner surface 34. The creating step can, for instance, include the step of creating the through-hole through the bone plate body 31 so as to define an interior surface of the plate body 31. The through-hole can be created such that the interior surface of the bone plate body 31 tapers radially inward toward the central hole axis 45 as it extends in the axially inward direction, as described above. The creating step can, in one example, include the step of drilling the through-hole through the bone plate body 31. The drilling step can be performed in a single step, or in multiple steps of creating a through-hole, and then defining the through-hole to have a conical shape. Further, the drilling step can include the step of creating a counterbore so as to define the step 58 and the corresponding second region 49 as described above. However, as recognized from the description below, the bone plate 30 can be devoid of the step 58, such that the internal surface 39 defines the columns 62 and not the second region 49. Accordingly, the internal surface 39 can define a constant taper from the axially outer surface 36 to the undercut 56, or to the axially inner surface 34 if the bone plate 30 does not include the undercut. The method can further include the step of creating the undercut 56 at the axially inner surface 34. The undercut 56 can be created during the step of creating the through-hole, or after the through-hole has been created.


Next, the method can include the step of cutting the at least one thread 46 into the interior surface so as to define the internal surface 39 and the at least one thread 46. It should be appreciated that the minor diameter of the at least one thread 46 can be defined by the crest of the at least one thread, and the major diameter of the at least one thread can be defined by the internal surface 39. The at least one thread 46 can define a height from the minor diameter to the major diameter along its length. In one example, the height can be constant along at least a plurality of revolutions of the at least one thread 46 about the central hole axis 45. Thus, the minor diameter of the thread can lie on a conical geometric shape. In another example, the height can increase or decrease along the length of the at least one thread 46 as the at least one thread 46 extends in the axially inward direction. The method can further include the step of creating the recesses 60 in the internal surface 39. The step of creating the recesses 60 can similarly create the columns 62. Thus, the step of creating the recesses 60 can be performed after the at least one thread is formed 46. Alternatively, the step of creating the recesses 60 can be performed prior to forming the at least one thread 46. The recesses 60 can be created in the interior surface to define the columns 62, and the at least one thread 46 can then be created in the columns 62 so as to define the interior surface 39 and the at least one thread. Because the recessed surfaces 61 are curved along an entirety of their length along a plane oriented normal to the central hole axis 45, the step of creating the recesses 60 can be achieved by drilling into the bone plate 30 along at least a portion of the internal surface 39. Thus, each of the recesses 60 defines a circumferential end that is open at the internal surface 39. In one example, each of the recesses 60 can be drilled into the axially inner surface 34 along the axially inward direction, such that the inner end of the recesses 60 have a radial depth that increases as the recesses 60 extend in the axially outward direction. For instance, a drilling tool having a conical shape can be used to drill the recesses 60 to the axially inner surface 34. Next, a second drilling operation can create the undercut 56 by drilling in the axially outward direction from the axially inner surface 34. The radial depth of the recesses 60 can be selected so as to define the columns 62 of thread segments 64 as described above.


The bone plate body 31 can define a height along the transverse direction T from the axially inner surface 34 to the axially outer surface 36. The height can be any suitable height as desired. In one example, the height can be between approximately 1.3 mm and approximately 3.0 mm, such as approximately 2.25 mm. This height can also be said to define the height of the columns 62.


A method of bone fixation using the bone fixation system 20 will now be described with further reference to FIGS. 7-8. In particular, the bone plate 30 is brought into proximity with the underlying bone. For instance, the axially inner surface 34 can be brought into contact with the underlying bone, or can be spaced from the underlying bone. A plurality of bone anchors can be inserted through respective bone fixation holes 38 of the bone plate 30 so as to fix the bone plate 30 to the underlying bone at opposite locations of a bone defect of the underlying bone. The method of fixing the bone plate 30 to the underlying bone through the variable angle locking holes 44 includes the step of inserting the shaft 35 of the bone anchor 32 through the fixation hole 38, which can be configured as the variable angle locking hole 44, and into the underlying bone. The bone anchor 32 can be rotated about the central anchor axis 53 so as to drive the shaft 35 into the underlying bone. As the bone anchor 32 is being driven into the bone, the central anchor axis 53 can define any suitable angle with respect to the central hole axis 45 within a range of angles. The range of angles can extend from 0 degrees to 15 degrees as defined by the central anchor axis 53 and the central hole axis 45 in any direction about the central hole axis 45, that is along the full 360 degree circumference about the central hole axis 45. The range of angles can be achieved when bone screw fixation instrumentation, such as a drill guide, is also inserted into the fixation hole 38. The range of angles of the central hole axis 45 with respect to the central anchor axis 53 can define a cone about the central hole axis 45. Thus, the central hole axis 45 can define the axis of the cone.


Continuing rotation of the bone anchor 32 while the angle defined by the central anchor axis 53 and the central hole axis 45 is in the range of angles causes the threaded head 33 to advance into the variable angle locking hole 44, such that the threaded head 33 threadedly mates with the at least one thread 46 of the variable angle locking hole 44. For instance, a portion of the threaded head 33 can threadedly mate with the at least one thread at the circumferentially flared region 63. The continuously flared region 63 is configured to define increasing area for threaded fixation for the head 33 along the axially inward direction with respect to conventional variable angle locking holes having recesses that separate an entirety of a thread into a plurality of columns of thread segments, thereby increasing the reliability of the threaded purchase between the bone plate and the bone anchor 32. It is recognized that different angles between the central anchor axis 53 and the central hole axis 45 will cause the threaded head 33 to threadedly purchase with different locations of the at least one thread 46 with respect to the transverse direction T.


Without being bound by theory, it is believed that the recesses 60 assist in the ability of the bone anchor 32 to angulate with respect to the central hole axis 45 within the range of angles while threadedly purchasing with the at least one thread 46. Further, without being bound by theory, it is believed that the ability of the threaded head 33 to threadedly purchase with both the columns 62 of thread segments 64 at the circumferentially flared region 63 of the at least one thread 46 can provide more reliable fixation than conventional variable angle locking holes.


Referring now to FIGS. 9A-9B, it is recognized that the plate 30 can be constructed in accordance with numerous examples, some of which have been described above. In one example, the bone plate 30 can be devoid of the step 58 and the second region 49 of the internal surface 39. Accordingly, the surface that previously defined the step 58 of the bone plate 30 can define the axially outer surface 36. Thus, each of the columns 62, can extend from the axially outer surface 36 to the axially inner surface 34. The circumferentially flared region 63 can extend from the axially outer surface 36 to the undercut 56. Alternatively, for instance if the bone plate 30 does not include the undercut 56, the circumferentially flared region 63 can extend from the axially outer surface 36 to the axially inner surface 34.


Without being bound by theory, it is believed that removing the second region 49 such that the step 58 defines the axially outer surface 36 allows the bone plate 30 to have a decreased height with respect to conventional variable angle bone plates while exhibiting increased purchase between the threaded screw head 33 and the bone plate 30 in the variable angle locking hole 44. Thus, in one example, the height of the bone plate 30 from the axially inner surface 34 to the axially outer surface 36 along the transverse direction T can be between approximately 1.2 mm and approximately 2.0 mm, such as approximately 1.6 mm.


The embodiments described in connection with the illustrated embodiments have been presented by way of illustration, and the present invention is therefore not intended to be limited to the disclosed embodiments. Accordingly, those skilled in the art will realize that the invention is intended to encompass all modifications and alternative arrangements included within the spirit and scope of the invention, as set forth by the appended claims.

Claims
  • 1. A bone fixation system comprising: a bone plate that defines an inner surface configured to face bone and an outer surface opposite the inner surface along an axially outward direction, the bone plate including: (a) an internal surface defining a fixation hole that extends from the outer surface to the inner surface along a central hole axis oriented along a transverse direction; and(b) at least one thread that extends from the internal surface into the fixation hole,wherein the bone plate further defines a plurality of recesses that extend along a radial direction away from the central hole axisand divide the at least one thread into a plurality of columns of thread segments offset from each other along the transverse direction, such that the thread segments of each of the columns are consecutive with each other and have respective circumferential lengths that sequentially increase in an axially inward direction that is opposite the axially outward direction, anda bone anchor having a threaded head and a shaft that extends out with respect to the threaded head, wherein the threaded head is configured to threadedly mate with the at least one thread selectively when the bone anchor is oriented at first and second different orientations with respect to the central hole axis.
  • 2. The bone fixation system as recited in claim 1, wherein the circumferential lengths of the consecutive thread segments increase at a constant rate in the axially inward direction.
  • 3. The bone fixation system as recited in claim 1, wherein the inner surface defines an undercut that flares radially outward as it extends along the axially inward direction from the outer surface toward the inner surface.
  • 4. The bone fixation system as recited in claim 3, wherein the columns further include a portion of the undercut.
  • 5. The bone fixation system as recited in claim 3, wherein the undercut defines a thread segment that is consecutive with an innermost one of the thread segments of the columns with respect to the axially inward direction, and the undercut defines a circumferential length less than that of the innermost one of the thread segments of the columns.
  • 6. The bone fixation system as recited in claim 1, wherein the internal surface tapers inwardly as it extends in the axially inward direction.
  • 7. The bone fixation system as recited in claim 6, wherein the internal surface is conical.
  • 8. The bone fixation system as recited in claim 1, wherein the at least one thread extends along a helical thread path.
  • 9. The bone fixation system as recited in claim 1, wherein the internal surface defines a radially outwardly extending step that separates the internal surface at the columns from a plurality of second regions that are disposed between the columns and the outer surface.
  • 10. The bone fixation system as recited in claim 9, wherein the second regions are radially outwardly offset from the internal surface at the columns.
  • 11. The bone fixation system as recited in claim 9, wherein the second regions are inwardly tapered as they extend in the axially inward direction.
  • 12. The bone fixation system as recited in claim 11, wherein the second regions are conical.
  • 13. The bone fixation system as recited in claim 9, wherein the second regions are unthreaded.
  • 14. The bone fixation system as recited in claim 9, wherein the second regions are disposed circumferentially between adjacent ones of the recesses.
  • 15. The bone fixation system as recited in claim 14, wherein the recesses are defined by respective recessed surfaces, the second regions are defined by a first curvature along a plane that is oriented normal to the central hole axis, and the recessed surfaces are defined by a second curvature along the plane that is greater than the first curvature.
  • 16. The bone fixation system as recited in claim 9, wherein the internal surface defines a tapered threaded area that extends in the radially inward direction as it extends in the axially inward direction, wherein the tapered threaded area is disposed between the step and the inner surface.
  • 17. The bone fixation system as recited in claim 1, wherein the recesses extend through both the inner and outer surfaces.
  • 18. The bone fixation system as recited in claim 1, wherein the recesses are defined by recessed surfaces that are constantly curved from a first end that adjoins the internal surface to a second end that adjoins the internal surface along a plane that is oriented normal to the central hole axis.
  • 19. The bone fixation system as recited in claim 18, wherein the recessed surfaces define respective circumferential lengths from the first end to the second end that is no more than 180 degrees.
  • 20. The bone fixation system of claim 1, wherein the thread segments of each of the columns are aligned with at least one other thread segment of an adjacent one of the columns along a thread path.
CROSS-REFERENCE TO RELATED APPLICATIONS

This is a continuation application of U.S. Ser. No. 15/260,694 filed Sep. 9, 2016, which claims priority to U.S. Patent Application Ser. No. 62/385,092 filed on Sep. 8, 2016, the disclosure of each of which is hereby incorporated by reference as if set forth in its entirety herein.

US Referenced Citations (550)
Number Name Date Kind
327296 Mcginnis Sep 1885 A
1105105 Sherman Jul 1914 A
1203546 Parsons Oct 1916 A
2228584 Piace Jan 1941 A
2352297 Wales Jun 1944 A
2414882 Longfellow Jan 1947 A
2443363 Kenneth et al. Jun 1948 A
2477430 Swanstrom Jul 1949 A
2496126 Haboush Jan 1950 A
2526959 Lorenzo Oct 1950 A
2612159 Collison Sep 1952 A
2627855 Price Feb 1953 A
2699774 Livingston Jan 1955 A
2772676 Pohl Dec 1956 A
2801631 Charnley Aug 1957 A
2846701 Bedford, Jr. Aug 1958 A
2874691 Mason Feb 1959 A
3025853 Mason Mar 1962 A
3229743 Derby Jan 1966 A
3263949 Conrad Aug 1966 A
3314326 Bedford, Jr. Apr 1967 A
3364807 Holton Jan 1968 A
3374786 Callender, Jr. Mar 1968 A
3388732 Holton Jun 1968 A
3463148 Treace Aug 1969 A
3489143 Halloran Jan 1970 A
3534731 Muller Oct 1970 A
3551389 Prince, Jr. Dec 1970 A
3552389 Allgower et al. Jan 1971 A
3561437 Orlich Feb 1971 A
3577601 Mariani et al. May 1971 A
3630261 Gley Dec 1971 A
3668972 Allgower et al. Jun 1972 A
3688972 Mahon Sep 1972 A
3695259 Yost Oct 1972 A
3695618 Woolley et al. Oct 1972 A
3716050 Johnston Feb 1973 A
3741205 Markolf et al. Jun 1973 A
3744488 Cox Jul 1973 A
3779240 Kondo Dec 1973 A
3782374 Fischer Jan 1974 A
3824995 Getscher et al. Jul 1974 A
3842825 Wagner Oct 1974 A
3877339 Muenchinger Apr 1975 A
RE28841 Martin et al. Jun 1976 E
3967049 Brandt Jun 1976 A
3996834 Reynolds Dec 1976 A
3996931 Callender, Jr. Dec 1976 A
4009712 Burstein et al. Mar 1977 A
4029091 Von et al. Jun 1977 A
4040129 Steinemann et al. Aug 1977 A
4095591 Graham et al. Jun 1978 A
4120298 Fixel Oct 1978 A
4172452 Forte et al. Oct 1979 A
4175555 Herbert Nov 1979 A
4219015 Steinemann Aug 1980 A
4236512 Aginsky Dec 1980 A
4263904 Judet Apr 1981 A
4269180 Dall et al. May 1981 A
4304039 Asmus Dec 1981 A
4338926 Kummer et al. Jul 1982 A
4355198 Gartland, Jr. Oct 1982 A
4379451 Getscher Apr 1983 A
4388921 Sutter et al. Jun 1983 A
4408601 Wenk Oct 1983 A
4429690 Angelino-Pievani Feb 1984 A
4438762 Kyle Mar 1984 A
4454876 Mears Jun 1984 A
RE31628 Allgower et al. Jul 1984 E
4484570 Sutter et al. Nov 1984 A
4484750 Scruggs Nov 1984 A
4488543 Tornier Dec 1984 A
4491317 Bansal Jan 1985 A
4493317 Klaue Jan 1985 A
4494535 Haig Jan 1985 A
4513744 Klaue Apr 1985 A
4537185 Stednitz Aug 1985 A
4565193 Streli Jan 1986 A
4580225 Thompson Apr 1986 A
4612920 Lower Sep 1986 A
4612923 Kronenthal Sep 1986 A
4616638 Griggs Oct 1986 A
4617922 Griggs Oct 1986 A
4621629 Koeneman Nov 1986 A
4628923 Medoff Dec 1986 A
4629455 Kanno Dec 1986 A
4630985 Simons Dec 1986 A
4651724 Berentey et al. Mar 1987 A
4657001 Fixel Apr 1987 A
4683878 Carter Aug 1987 A
4717613 Ottaviano Jan 1988 A
4747613 Brichoud et al. May 1988 A
4776329 Treharne Oct 1988 A
4776330 Chapman et al. Oct 1988 A
4781183 Casey et al. Nov 1988 A
4791918 Von Hasselbach Dec 1988 A
4794918 Wolter Jan 1989 A
4795473 Grimes Jan 1989 A
4800874 David et al. Jan 1989 A
4838252 Klaue Jun 1989 A
4848328 Laboureau et al. Jul 1989 A
4858601 Glisson Aug 1989 A
4867144 Karas et al. Sep 1989 A
4903691 Heinl Feb 1990 A
4905680 Tunc Mar 1990 A
4927421 Goble et al. May 1990 A
4955886 Pawluk Sep 1990 A
4957496 Schmidt Sep 1990 A
4957497 Hoogland et al. Sep 1990 A
4964403 Karas et al. Oct 1990 A
4966599 Pollock Oct 1990 A
4973332 Kummer Nov 1990 A
4973333 Treharne Nov 1990 A
4988350 Herzberg Jan 1991 A
5002544 Klaue et al. Mar 1991 A
5006120 Carter Apr 1991 A
5013313 Surer May 1991 A
5013315 Barrows May 1991 A
5015248 Burstein et al. May 1991 A
5027904 Miller et al. Jul 1991 A
5039265 Rath et al. Aug 1991 A
5041113 Biedermann et al. Aug 1991 A
5041114 Chapman et al. Aug 1991 A
5041116 Wilson Aug 1991 A
5053036 Perren et al. Oct 1991 A
5085660 Lin Feb 1992 A
5087260 Fixel Feb 1992 A
5108399 Eitenmuller et al. Apr 1992 A
5108449 Gray Apr 1992 A
5116336 Frigg May 1992 A
5127914 Calderale et al. Jul 1992 A
5129901 Decoste Jul 1992 A
5139497 Tilghman et al. Aug 1992 A
5147361 Ojima et al. Sep 1992 A
5147363 Haerle Sep 1992 A
5151103 Tepic et al. Sep 1992 A
5152794 Davidson Oct 1992 A
5190544 Chapman et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5201733 Etheredge, III Apr 1993 A
5261910 Warden et al. Nov 1993 A
5269784 Mast Dec 1993 A
5275601 Gogolewski et al. Jan 1994 A
5290281 Tschakaloff Mar 1994 A
5300074 Frigg Apr 1994 A
5304180 Slocum Apr 1994 A
5306275 Bryan Apr 1994 A
5324290 Zdeblick et al. Jun 1994 A
5324292 Meyers Jun 1994 A
5336224 Selman Aug 1994 A
5356410 Pennig Oct 1994 A
5360429 Jeanson et al. Nov 1994 A
5360448 Thramann Nov 1994 A
5364398 Chapman et al. Nov 1994 A
5364399 Lowery et al. Nov 1994 A
5372598 Luhr et al. Dec 1994 A
5376126 Lin Dec 1994 A
5395372 Holt et al. Mar 1995 A
5403136 Mathys Apr 1995 A
5413577 Pollock May 1995 A
5429641 Gotfried Jul 1995 A
5433719 Pennig Jul 1995 A
5458654 Tepic Oct 1995 A
5462547 Weigum Oct 1995 A
5484439 Olson et al. Jan 1996 A
5514138 McCarthy May 1996 A
5520690 Errico et al. May 1996 A
5522902 Yuan et al. Jun 1996 A
5531746 Errico et al. Jul 1996 A
5534032 Hodorek Jul 1996 A
5558674 Heggeness et al. Sep 1996 A
5569248 Mathews Oct 1996 A
5571109 Bertagnoli Nov 1996 A
5571198 Drucker et al. Nov 1996 A
5586985 Putnam et al. Dec 1996 A
5591168 Judet et al. Jan 1997 A
5601551 Faylor et al. Feb 1997 A
5601553 Trebing et al. Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5607427 Tschakaloff Mar 1997 A
5607428 Lin Mar 1997 A
5620445 Brosnahan et al. Apr 1997 A
5647872 Gilbert et al. Jul 1997 A
5655089 Bucci Aug 1997 A
5658339 Tronzo et al. Aug 1997 A
5662655 Laboureau et al. Sep 1997 A
5674222 Berger et al. Oct 1997 A
5676667 Hausman Oct 1997 A
5681311 Foley et al. Oct 1997 A
D385963 Hansson Nov 1997 S
5690633 Taylor et al. Nov 1997 A
5693055 Zahiri et al. Dec 1997 A
5702396 Hoenig et al. Dec 1997 A
5702399 Kilpela et al. Dec 1997 A
5709682 Medoff Jan 1998 A
5709686 Talos et al. Jan 1998 A
5709687 Pennig Jan 1998 A
5718704 Medoff Feb 1998 A
5718705 Sammarco Feb 1998 A
5728099 Tellman et al. Mar 1998 A
5733287 Tepic et al. Mar 1998 A
5735853 Olerud Apr 1998 A
5741256 Bresina Apr 1998 A
5741258 Klaue et al. Apr 1998 A
5743912 Lahille et al. Apr 1998 A
5749872 Kyle et al. May 1998 A
5766175 Martinotti Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5779706 Tschakaloff Jul 1998 A
5785713 Jobe Jul 1998 A
5797916 McDowell Aug 1998 A
5800553 Albrektsson et al. Sep 1998 A
5810821 Vandewalle Sep 1998 A
5810822 Mortier Sep 1998 A
5810823 Klaue et al. Sep 1998 A
5827286 Incavo et al. Oct 1998 A
5853413 Carter et al. Dec 1998 A
5921988 Legrand Jul 1999 A
5928084 Green Jul 1999 A
5931801 Burbank et al. Aug 1999 A
5931839 Medoff Aug 1999 A
5938664 Winquist et al. Aug 1999 A
5954722 Bono Sep 1999 A
5961524 Crombie Oct 1999 A
5968046 Castleman Oct 1999 A
5968047 Reed Oct 1999 A
5973223 Tellman et al. Oct 1999 A
5976139 Bramlet Nov 1999 A
5976141 Haag et al. Nov 1999 A
5989255 Pepper et al. Nov 1999 A
5999940 Ranger Dec 1999 A
6001099 Huebner Dec 1999 A
6007535 Rayhack et al. Dec 1999 A
6022352 Vandewalle Feb 2000 A
6030162 Huebner Feb 2000 A
6030389 Wagner et al. Feb 2000 A
6059785 Schavan et al. May 2000 A
6066141 Dall et al. May 2000 A
6096040 Esser Aug 2000 A
6113603 Medoff Sep 2000 A
6129728 Schumacher et al. Oct 2000 A
6129730 Bono et al. Oct 2000 A
6152927 Farris et al. Nov 2000 A
6155756 Mericle et al. Dec 2000 A
6183474 Bramlet et al. Feb 2001 B1
6183475 Lester et al. Feb 2001 B1
6187007 Frigg et al. Feb 2001 B1
6206881 Frigg et al. Mar 2001 B1
6221073 Weiss et al. Apr 2001 B1
6221075 Toermala et al. Apr 2001 B1
D443060 Benirschke et al. May 2001 S
6224602 Hayes May 2001 B1
6228085 Theken et al. May 2001 B1
6235032 Link May 2001 B1
6235033 Brace et al. May 2001 B1
6258250 Weissenbacher et al. Jul 2001 B1
6261291 Talaber et al. Jul 2001 B1
6283969 Grusin et al. Sep 2001 B1
6287309 Baccelli et al. Sep 2001 B1
6290703 Ganem Sep 2001 B1
6306136 Baccelli Oct 2001 B1
6306140 Siddiqui Oct 2001 B1
6322562 Wolter Nov 2001 B1
6325803 Schumacher et al. Dec 2001 B1
6338734 Burke et al. Jan 2002 B1
6342055 Eisermann et al. Jan 2002 B1
6348052 Sammarco Feb 2002 B1
6350265 Blaustein et al. Feb 2002 B1
6355041 Martin Mar 2002 B1
6355042 Winquist et al. Mar 2002 B2
6358250 Orbay Mar 2002 B1
6364882 Orbay Apr 2002 B1
6375657 Doubler et al. Apr 2002 B1
6379359 Dahners Apr 2002 B1
D458374 Bryant et al. Jun 2002 S
D458683 Bryant et al. Jun 2002 S
D458684 Bryant et al. Jun 2002 S
D458996 Bryant et al. Jun 2002 S
6423064 Kluger Jul 2002 B1
6440131 Haidukewych Aug 2002 B1
6440135 Orbay et al. Aug 2002 B2
D463557 Bryant et al. Sep 2002 S
D463558 Bryant et al. Sep 2002 S
D463559 Bryant et al. Sep 2002 S
6454769 Wagner et al. Sep 2002 B2
6454770 Klaue Sep 2002 B1
D464136 Bryant et al. Oct 2002 S
D464731 Bryant et al. Oct 2002 S
6468278 Mueckter Oct 2002 B1
6488685 Manderson Dec 2002 B1
D469532 Bryant et al. Jan 2003 S
D469533 Bryant et al. Jan 2003 S
D469534 Bryant et al. Jan 2003 S
6503252 Hansson Jan 2003 B2
6503281 Mallory Jan 2003 B1
6508819 Orbay Jan 2003 B1
D469874 Bryant et al. Feb 2003 S
D469875 Bryant et al. Feb 2003 S
D470588 Bryant et al. Feb 2003 S
6525525 Azinger Feb 2003 B1
6527776 Michelson Mar 2003 B1
6533789 Hall et al. Mar 2003 B1
6565525 Burbank et al. May 2003 B1
6565569 Assaker et al. May 2003 B1
6575975 Brace et al. Jun 2003 B2
6602256 Hayes Aug 2003 B1
6605090 Trieu et al. Aug 2003 B1
D479331 Pike et al. Sep 2003 S
D480141 Benirschke et al. Sep 2003 S
6623486 Weaver et al. Sep 2003 B1
6648891 Kim Nov 2003 B2
6666868 Fallin Dec 2003 B2
6669700 Farris et al. Dec 2003 B1
6669701 Steiner et al. Dec 2003 B2
6712820 Orbay Mar 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730091 Pfefferle et al. May 2004 B1
6767351 Orbay et al. Jul 2004 B2
6835197 Roth et al. Dec 2004 B2
6863483 Koenig et al. Mar 2005 B2
6866665 Orbay Mar 2005 B2
6875215 Taras et al. Apr 2005 B2
6893443 Frigg et al. May 2005 B2
6955677 Dahners Oct 2005 B2
6974461 Wolter Dec 2005 B1
7001388 Orbay et al. Feb 2006 B2
7044953 Capanni May 2006 B2
7128744 Weaver et al. Oct 2006 B2
7169149 Hajianpour Jan 2007 B1
7179260 Gerlach et al. Feb 2007 B2
7229445 Hayeck et al. Jun 2007 B2
7282053 Orbay Oct 2007 B2
7294130 Orbay Nov 2007 B2
7309340 Fallin et al. Dec 2007 B2
7316687 Aikins et al. Jan 2008 B2
7338491 Baker et al. Mar 2008 B2
7341589 Weaver et al. Mar 2008 B2
7354441 Frigg Apr 2008 B2
7517350 Weiner et al. Apr 2009 B2
7527639 Orbay et al. May 2009 B2
7537596 Jensen May 2009 B2
7635381 Orbay Dec 2009 B2
7637928 Fernandez Dec 2009 B2
7641677 Weiner et al. Jan 2010 B2
7695472 Young Apr 2010 B2
7695502 Orbay et al. Apr 2010 B2
7766916 Leyden et al. Aug 2010 B2
7771433 Orbay et al. Aug 2010 B2
7771457 Kay et al. Aug 2010 B2
7776076 Grady et al. Aug 2010 B2
7776916 Freeman et al. Aug 2010 B2
7857838 Orbay Dec 2010 B2
7867260 Meyer et al. Jan 2011 B2
7905909 Orbay et al. Mar 2011 B2
7951176 Grady et al. May 2011 B2
8075561 Wolter Dec 2011 B2
8092505 Sommers Jan 2012 B2
8118846 Leither et al. Feb 2012 B2
8118848 Ducharme et al. Feb 2012 B2
8337535 White et al. Dec 2012 B2
8343196 Schneider Jan 2013 B2
8403967 Orbay Mar 2013 B2
8506607 Eckhof et al. Aug 2013 B2
8518042 Winslow et al. Aug 2013 B2
8556945 Orbay Oct 2013 B2
8574268 Chan et al. Nov 2013 B2
8579946 Orbay Nov 2013 B2
8641744 Weaver et al. Feb 2014 B2
8758346 Koay et al. Jun 2014 B2
8814918 Orbay et al. Aug 2014 B2
8845698 Schneider Sep 2014 B2
8852245 Schneider Oct 2014 B2
8876873 Schneider Nov 2014 B2
8894693 Petit et al. Nov 2014 B2
8940029 Leung et al. Jan 2015 B2
9072558 Orbay Jul 2015 B2
9101423 Hulliger Aug 2015 B2
9107711 Hainard Aug 2015 B2
9168075 Dell'Oca Oct 2015 B2
9265542 Koay et al. Feb 2016 B2
9277947 Koay et al. Mar 2016 B2
9295505 Schneider Mar 2016 B2
9308034 Grady Apr 2016 B2
9314284 Chan et al. Apr 2016 B2
9387022 Koay et al. Jul 2016 B2
9433454 Paolino et al. Sep 2016 B2
9492212 Ahrens Nov 2016 B2
9498267 Pfeiffer et al. Nov 2016 B2
9510880 Terrill et al. Dec 2016 B2
9554909 Donner et al. Jan 2017 B2
9603641 Hulliger Mar 2017 B2
9855083 Mighell et al. Jan 2018 B2
9867643 Terrill et al. Jan 2018 B2
9931148 Grady Apr 2018 B2
10342586 Schneider Jul 2019 B2
10772665 Bosshard Sep 2020 B2
20010000186 Bramlet et al. Apr 2001 A1
20010011172 Orbay et al. Aug 2001 A1
20010012940 Tunc Aug 2001 A1
20020009889 Sakai Jan 2002 A1
20020013587 Winquist et al. Jan 2002 A1
20020032446 Orbay Mar 2002 A1
20020045901 Wagner et al. Apr 2002 A1
20020049445 Hall et al. Apr 2002 A1
20020062127 Schumacher et al. May 2002 A1
20020065516 Winquist et al. May 2002 A1
20020128654 Steger et al. Sep 2002 A1
20020143337 Orbay et al. Oct 2002 A1
20020143338 Orbay et al. Oct 2002 A1
20020156474 Wack et al. Oct 2002 A1
20020183752 Steiner et al. Dec 2002 A1
20020183753 Manderson Dec 2002 A1
20030040748 Aikins et al. Feb 2003 A1
20030055435 Barrick Mar 2003 A1
20030060827 Coughln Mar 2003 A1
20030083660 Orbay May 2003 A1
20030083661 Orbay et al. May 2003 A1
20030105461 Putnam Jun 2003 A1
20030125738 Khanna Jul 2003 A1
20030135212 Y. Chow Jul 2003 A1
20030135216 Sevrain Jul 2003 A1
20040030339 Wack et al. Feb 2004 A1
20040049193 Capanni Mar 2004 A1
20040059334 Weaver et al. Mar 2004 A1
20040059335 Weaver et al. Mar 2004 A1
20040073218 Dahners Apr 2004 A1
20040097937 Pike et al. May 2004 A1
20040097941 Weiner et al. May 2004 A1
20040111089 Stevens et al. Jun 2004 A1
20040215198 Marnay et al. Oct 2004 A1
20040254579 Buhren et al. Dec 2004 A1
20040260291 Jensen Dec 2004 A1
20040260306 Fallin et al. Dec 2004 A1
20050015089 Young et al. Jan 2005 A1
20050049593 Duong et al. Mar 2005 A1
20050080421 Weaver et al. Apr 2005 A1
20050085818 Huebner Apr 2005 A1
20050107796 Gerlach et al. May 2005 A1
20050165400 Fernandez Jul 2005 A1
20050171544 Falkner, Jr. Aug 2005 A1
20050187555 Biedermann et al. Aug 2005 A1
20050216001 David Sep 2005 A1
20050261688 Grady et al. Nov 2005 A1
20050277937 Leung et al. Dec 2005 A1
20060004361 Hayeck et al. Jan 2006 A1
20060009771 Orbay et al. Jan 2006 A1
20060058797 Mathieu et al. Mar 2006 A1
20060173459 Kay et al. Aug 2006 A1
20060200151 Ducharme et al. Sep 2006 A1
20060217722 Dutoit et al. Sep 2006 A1
20060235400 Schneider Oct 2006 A1
20060264946 Young Nov 2006 A1
20070016205 Beutter et al. Jan 2007 A1
20070083207 Ziolo et al. Apr 2007 A1
20070088360 Orbay et al. Apr 2007 A1
20070162016 Matityahu Jul 2007 A1
20070206244 Kobayashi Sep 2007 A1
20070208378 Bonutti et al. Sep 2007 A1
20070225716 Deffenbaugh et al. Sep 2007 A1
20070260244 Wolter Nov 2007 A1
20070276386 Gerlach et al. Nov 2007 A1
20070276402 Frankel et al. Nov 2007 A1
20080065070 Freid et al. Mar 2008 A1
20080132960 Weaver et al. Jun 2008 A1
20080140130 Chan et al. Jun 2008 A1
20080208259 Gilbert et al. Aug 2008 A1
20080234749 Forstein Sep 2008 A1
20080234752 Dahners Sep 2008 A1
20080300637 Austin et al. Dec 2008 A1
20090018557 Pisharodi Jan 2009 A1
20090018588 Eckhof et al. Jan 2009 A1
20090024172 Pizzicara Jan 2009 A1
20090036933 Dube et al. Feb 2009 A1
20090076553 Wolter Mar 2009 A1
20090076554 Huebner et al. Mar 2009 A1
20090099610 Johnson et al. Apr 2009 A1
20090118768 Sixto et al. May 2009 A1
20090143824 Austin et al. Jun 2009 A1
20090143825 Graham et al. Jun 2009 A1
20090216242 Riemer et al. Aug 2009 A1
20090281543 Orbay et al. Nov 2009 A1
20090287258 Vannemreddy Nov 2009 A1
20090292318 White et al. Nov 2009 A1
20090312803 Austin et al. Dec 2009 A1
20100016858 Michel Jan 2010 A1
20100030277 Haidukewych et al. Feb 2010 A1
20100057086 Price et al. Mar 2010 A1
20100076496 Fernandez Mar 2010 A1
20100094357 Wallenstein et al. Apr 2010 A1
20100100134 Mocanu Apr 2010 A1
20100137919 Wolter Jun 2010 A1
20100274296 Appenzeller et al. Oct 2010 A1
20100312285 White et al. Dec 2010 A1
20100312286 Dell Oca Dec 2010 A1
20110046681 Prandi et al. Feb 2011 A1
20110087229 Kubiak et al. Apr 2011 A1
20110106081 Graham et al. May 2011 A1
20110224671 Koay et al. Sep 2011 A1
20110224736 Humphrey Sep 2011 A1
20110301608 Roth et al. Dec 2011 A1
20120123484 Lietz et al. May 2012 A1
20120143193 Hulliger Jun 2012 A1
20120197307 Fritzinger et al. Aug 2012 A1
20120245642 Giannoudis et al. Sep 2012 A1
20130096631 Leung et al. Apr 2013 A1
20130116735 Schneider May 2013 A1
20130172943 Austin et al. Jul 2013 A1
20130190828 Schneider Jul 2013 A1
20130197589 Schneider Aug 2013 A1
20130245699 Orbay et al. Sep 2013 A1
20130261675 Fritzinger Oct 2013 A1
20140005728 Koay et al. Jan 2014 A1
20140018862 Koay et al. Jan 2014 A1
20140066998 Martin Mar 2014 A1
20140180345 Chan et al. Jun 2014 A1
20140207194 Wolter Jul 2014 A1
20140222084 Fritzinger et al. Aug 2014 A1
20140236154 Liao et al. Aug 2014 A1
20140271028 Arnett Sep 2014 A1
20140277180 Paolino et al. Sep 2014 A1
20140316473 Pfeiffer et al. Oct 2014 A1
20140324108 Orbay et al. Oct 2014 A1
20150051651 Terrill et al. Feb 2015 A1
20150105829 Laird Apr 2015 A1
20150250485 Niederberger et al. Sep 2015 A1
20150257802 Wolf et al. Sep 2015 A1
20150327897 Hulliger Nov 2015 A1
20150327898 Martin Nov 2015 A1
20150359575 Pech et al. Dec 2015 A1
20160074081 Weaver et al. Mar 2016 A1
20160089191 Pak et al. Mar 2016 A1
20160143676 Koay et al. May 2016 A1
20160166294 Schneider Jun 2016 A1
20160242829 Kim et al. Aug 2016 A1
20160278826 Epperly Sep 2016 A1
20160310184 Kazanovicz et al. Oct 2016 A1
20160317205 Baker Nov 2016 A1
20160367299 Paolino et al. Dec 2016 A1
20170086891 Wolf et al. Mar 2017 A1
20170265915 Langdale et al. Sep 2017 A1
20170319248 Milella et al. Nov 2017 A1
20180008326 Hulliger et al. Jan 2018 A1
20180036049 Kobayashi Feb 2018 A1
20180064476 Lopez et al. Mar 2018 A1
20180064477 Lopez et al. Mar 2018 A1
20180064479 Lopez et al. Mar 2018 A1
20180132913 Davison et al. May 2018 A1
20180235681 Chambers et al. Aug 2018 A1
20190290338 Bosshard et al. Sep 2019 A1
20190298426 Bosshard et al. Oct 2019 A1
Foreign Referenced Citations (211)
Number Date Country
2004245023 Dec 2004 AU
1112803 Nov 1981 CA
2047521 Jan 1992 CA
2536960 Mar 2005 CA
2920883 Feb 2015 CA
611147 May 1979 CH
670755 Jul 1989 CH
672245 Nov 1989 CH
675531 Oct 1990 CH
1486162 Mar 2004 CN
1819799 Aug 2006 CN
101272743 Sep 2008 CN
101355911 Jan 2009 CN
101505670 Aug 2009 CN
101600398 Dec 2009 CN
101778604 Jul 2010 CN
101842057 Sep 2010 CN
102497830 Jun 2012 CN
102791211 Nov 2012 CN
103417281 Dec 2013 CN
103889350 Jun 2014 CN
203970523 Dec 2014 CN
104287820 Jan 2015 CN
104684494 Jun 2015 CN
2933637 Apr 1980 DE
3442004 Apr 1986 DE
3722852 Jan 1989 DE
3743638 Jul 1989 DE
4004941 Aug 1990 DE
3942326 Jun 1991 DE
4201531 Jul 1993 DE
4341980 Jun 1995 DE
4343117 Jun 1995 DE
4438264 Mar 1996 DE
19636733 Apr 1997 DE
19629011 Jan 1998 DE
9321544 Sep 1999 DE
19832513 Feb 2000 DE
19858889 Jun 2000 DE
10015734 Sep 2001 DE
10125092 Dec 2001 DE
20309361 Sep 2003 DE
20317651 Mar 2004 DE
10319781 Aug 2004 DE
102004009429 Sep 2005 DE
102005042766 Jan 2007 DE
202006019220 May 2007 DE
202008000914 Mar 2008 DE
202007017159 May 2008 DE
102010048052 Apr 2012 DE
102016112845 Jan 2018 DE
202014011161 Mar 2018 DE
0053999 Jun 1982 EP
0158030 Oct 1985 EP
0180532 May 1986 EP
0207884 Jan 1987 EP
0241914 Oct 1987 EP
0244782 Nov 1987 EP
0251583 Jan 1988 EP
0266146 May 1988 EP
0274713 Jul 1988 EP
0290138 Nov 1988 EP
0291632 Nov 1988 EP
0299160 Jan 1989 EP
0337288 Oct 1989 EP
0360139 Mar 1990 EP
0381462 Aug 1990 EP
0382256 Aug 1990 EP
0410309 Jan 1991 EP
0436885 Jul 1991 EP
0471418 Feb 1992 EP
0506420 Sep 1992 EP
0515828 Dec 1992 EP
0530585 Mar 1993 EP
0532421 Mar 1993 EP
0546460 Jun 1993 EP
0649635 Apr 1995 EP
0668059 Aug 1995 EP
0760231 Mar 1997 EP
0848600 Jun 1998 EP
0988833 Mar 2000 EP
1132052 Sep 2001 EP
1468655 Oct 2004 EP
1604619 Dec 2005 EP
1658015 May 2006 EP
1712197 Oct 2006 EP
1741397 Jan 2007 EP
1767160 Mar 2007 EP
1878394 Jan 2008 EP
1568329 Aug 2008 EP
2248479 Nov 2010 EP
2529685 Dec 2012 EP
0742618 Mar 1933 FR
2233973 Jan 1975 FR
2405062 May 1979 FR
2405705 May 1979 FR
2405706 May 1979 FR
2496429 Jun 1982 FR
2606268 May 1988 FR
2622431 May 1989 FR
2650500 Feb 1991 FR
2671966 Jul 1992 FR
2674118 Sep 1992 FR
2677876 Dec 1992 FR
2706763 Dec 1994 FR
2739151 Mar 1997 FR
2757370 Jun 1998 FR
2802082 Jun 2001 FR
0997733 Jul 1965 GB
1237405 Jun 1971 GB
1250413 Oct 1971 GB
1312189 Apr 1973 GB
1385398 Feb 1975 GB
2017502 Oct 1979 GB
1575194 Sep 1980 GB
2090745 Jul 1982 GB
2245498 Jan 1992 GB
2257913 Jan 1993 GB
02-121652 May 1990 JP
03-058150 Mar 1991 JP
03-158150 Jul 1991 JP
04-138152 May 1992 JP
06-045941 Feb 1994 JP
06-125918 May 1994 JP
06-245941 Sep 1994 JP
08-098846 Apr 1996 JP
08-126650 May 1996 JP
08-257034 Oct 1996 JP
08-266562 Oct 1996 JP
09-108237 Apr 1997 JP
10-118096 May 1998 JP
11-076259 Mar 1999 JP
11-299804 Aug 1999 JP
11-276501 Oct 1999 JP
11-512004 Oct 1999 JP
11-318930 Nov 1999 JP
2000-000247 Jan 2000 JP
2000-152944 Jun 2000 JP
2001-149379 Jun 2001 JP
2001-161704 Jun 2001 JP
2001-514039 Sep 2001 JP
2001-525701 Dec 2001 JP
2001-525702 Dec 2001 JP
2002-095673 Apr 2002 JP
2002-232185 Aug 2002 JP
2002-532185 Oct 2002 JP
2002-345836 Dec 2002 JP
2002-542875 Dec 2002 JP
2003-024344 Jan 2003 JP
2003-038508 Feb 2003 JP
2003-038509 Feb 2003 JP
2003-509107 Mar 2003 JP
2003-521303 Jul 2003 JP
2010-536427 Dec 2010 JP
2011-529346 Dec 2011 JP
2015-525616 Sep 2015 JP
2016-512711 May 2016 JP
2017-507739 Mar 2017 JP
10-2007-0034449 Mar 2007 KR
10-2008-0028917 Apr 2008 KR
1037911 Aug 1983 SU
1279626 Dec 1986 SU
8700419 Jan 1987 WO
8706982 Nov 1987 WO
8803781 Jun 1988 WO
9211819 Jul 1992 WO
9311714 Jun 1993 WO
9315678 Aug 1993 WO
9322982 Nov 1993 WO
9402073 Feb 1994 WO
9532674 Dec 1995 WO
9617556 Jun 1996 WO
9625892 Aug 1996 WO
9629948 Oct 1996 WO
9708999 Mar 1997 WO
9709000 Mar 1997 WO
9720514 Jun 1997 WO
9802105 Jan 1998 WO
9805263 Feb 1998 WO
9851226 Nov 1998 WO
9851368 Nov 1998 WO
9925266 May 1999 WO
9944529 Sep 1999 WO
0053110 Sep 2000 WO
0053111 Sep 2000 WO
0066012 Nov 2000 WO
0119267 Mar 2001 WO
0119268 Mar 2001 WO
0126566 Apr 2001 WO
0154601 Aug 2001 WO
0189400 Nov 2001 WO
0271963 Sep 2002 WO
0296309 Dec 2002 WO
0302856 Jan 2003 WO
0322166 Mar 2003 WO
0328567 Apr 2003 WO
0357055 Jul 2003 WO
2004043277 May 2004 WO
2004089233 Oct 2004 WO
2004107957 Dec 2004 WO
2005018472 Mar 2005 WO
2005044121 May 2005 WO
2007014279 Feb 2007 WO
2007108734 Sep 2007 WO
2009023666 Feb 2009 WO
2009058969 May 2009 WO
2011032140 Mar 2011 WO
2012112327 Aug 2012 WO
2013045713 Apr 2013 WO
2015138303 Sep 2015 WO
2017048909 Mar 2017 WO
Non-Patent Literature Citations (159)
Entry
Ring, D., et al. “Prospective Multicenter Trial of a Plate for Distal Fixation of Distal Radius Fractures,” J. of Hand Surgery, vol. 22a(5), pp. 777-784, Sep. 1997.
Schandelmaier, et al., Distal Femur Fractures and LISS Stabilization, Injury, Int. J. Care Injured, vol. 32, Suppl. 3, 55-63, 2001.
Schmoker, The Locking Reconstruction Plate 2.4-3.2, originally published in Swiss Dent 17, 1996.
Schuhli Technique Guide, published by Synthes, 1995.
Second Supplement to Apr. 9, 2008 Expert Report of David Seligson, M.D., dated Sep. 3, 2008.
Second Supplement to Apr. 9, 2008 Expert Report of J. Lawrence Marsh (with Exhibit 1), dated Sep. 3, 2008.
Smith & Nephew Amended Answer and Counterclaims of Defendant, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 7, 2007.
Smith & Nephew's Amended Answer in the Pennsylvania Action (without Exhibits A-S ) in the Pennsylvania Action, dated Aug. 7, 2007.
Smith & Nephew's Amended Answer in the Pennsylvania Action (without Exhibits A-S ) in the Pennsylvania Action, dated Aug. 7, 2007 (Dkt. 78) (Ex. 71).
Smith & Nephew's Memorandum in Support of its Motion for Partial Summary Judgment of Invalidity of Claims 10-12 of the '486 patent, dated Sep. 10, 2008.
Smith & Nephew's Memorandum in Support of its Motion for Summary Judgment of Invalidly of U.S. Pat. No. 7,128,744; dated Sep. 10, 2008; 22 pages.
Smith & Nephew's Memorandum in Support of Motion for Leave to file Amended Answer in the Pennsylvania Action, dated Aug. 7, 2007 (Dkt. 77) (Ex. 70).
Smith & Nephew's Opening Claim Construction Brief (without exhibits) for the Pennsylvania Action, dated Mar. 16, 2007 (Dkt. 53) (Ex. 6).
Smith & Nephew's Opposition to Synthes' Motion for Reconsideration of Claim Construction for the '486 Patent in the Pennsylvania Action, dated Mar. 4, 2008 (Dkt. 108) (Ex. 11).
Smith & Nephew's Responses and Objections to Plaintiffs Fourth Set of Interrogatories Nos. 15-16, dated May 21, 2008 (Ex. 55).
Smith & Nephew's Responsive Claim Construction Brief (without exhibits) for the Pennsylvania Action, dated Apr. 20, 2007 (Dkt. 60) (Ex. 8).
Smith & Nephew's Third Supplemental Response to Interrogatories Nos. 4, 5, 6, 8 and 9; Second Supplemental Responses to Interrogatories Nos. 1,2, 3, 10, 11 and 12; and First Supplemental Responses to Interrogatories Nos. 13, 15 and 17 (with Smith & Nephew Exhibit 1 thereto), dated Aug. 11, 2008 (Ex. 14).
Smith & Nephew's Third Supplemental Response to Interrogatories Nos. 4, 5, 6, 8 and 9; Second Supplemental Responses to Interrogatories Nos. 1,2, 3,10,11 and 12; and First Supplemental Responses to Interrogatories Nos. 13,15 and 17 (with Smith & Nephew Exhibit 1 thereto), datedAug. 1, 2008 (Ex. 14).
Smith & Nephew, Inc. v. Rea, Federal Circuit Opinion dated Jul. 9, 2013, 18 pages.
Smith & Newphew Statement of Undisputed Facts in Support of its Motion for Summary Judgment of Invalidity of U.S. Pat. No. 7,128,744; dated Sep. 29, 2008; 8 pages.
Smith and Nephew's Opposition to Synthes Motion for Summary Judgment of No Invalidity Based on K982222(including Opposition Memorandum, Statement of Undisputed Facts, K. Doyle Declaration with Exhibits A-F and R. King's Declaration with Exhibits A-D), dated Sep. 29, 2008( Dkt. 154) (Ex. 63).
Stay Order in Pennsylvania Action, dated Jul. 13, 2009.
Stay Order in Pennsylvania Action, dated Jul. 13, 2009 (Dkt. 184) (Ex. 2).
Stryker, “VariAx Distal Radius: Locking Plate System”, wwvv.osteosynthesis.stryker.com, 2006, 12 pages.
Summary of Safety and Effectiveness Information [510(k) Summary], K982222, Jul. 29, 1998.
Supplement to Apr. 9, 2008 Expert Report of J. Lawrence Marsh in the Pennsylvania Action (with Exhibit 1), dated May 14, 2008 (Ex. 46).
Supplement to Apr. 9, 2008 Expert Report of John F. Witherspoon (without exhibits), dated May 14, 2008 (Ex. 74).
Supplemental Expert Report of Clifford FI. Turen, M.D., May 2009 (with Exhibit 1), dated Aug. 8, 2008(Ex.60).
Supplemental Expert Report of Clifford H. Turen, M.D., May 2009 (with Exhibit 1), dated Aug. 8, 2008(Ex.60).
Surgical Instruments Catalog, Collin & Co., 1935 (original in French, translation to English of pp. 392-397 attached with certification).
Sutter, F., et al., “Titanplasma-beschichtetes Hohlschrauben-und Rekonstructions-platten- System (THRP) zur Oberbriickung van Kieferdefekten,” Chirurg No. 55, pp. 741-748, 1984 [SNI-0006164-171], and translation thereof [SNI-0006152-163] (Ex. 33).
Synthes 1997 Catalog, published by Synthes, Mar. 1997; part 1, 200 pgs.
Synthes 1997 Catalog, published by Synthes, Mar. 1997; part 2, 261 pgs.
Synthes Opposition to Smith & Nephew's Motion for Summary Judgment of Invalidity of Claims 10-12 of the '486 Patent, dated Sep. 29, 2008 (Dkt. 159) (Ex. 67).
Synthes Titanium Modular Hand System, 1996.
Synthes' 1996 Titanium Modular Hand System brochure (the “Hand System Brochure”) [SNI-0290287-294] (Ex. 47).
Synthes' Opening Claim Construction Brief (without supporting declaration and attached exhibits but including Appendix A & B) for the Pennsylvania Action, dated Mar. 16, 2007 (Dkt. 54) (Ex. 5).
Synthes' Opposition to Smith & Nephew's Motion for Summary Judgment of Invalidity of the '744 patent; dated Sep. 29, 2008; 22 pages.
Synthes' Reply to Smith & Nephew's Opposition to Synthes Motion for Reconsideration of Claim Construction for the '486 patent in the Pennsylvania Action, dated Mar. 14, 2008.
Synthes' Response to Motion for Leave to Amend Answer, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 9, 2007.
Synthes' Response to Smith & Nephew's Statement of Facts in Support of Smith & Nephew's Motion for Summary Judgment of Invalidity of the '744 patent; dated Sep. 29, 2008; 19 pages.
Synthes' Responsive Claim Construction Brief (without exhibits) for the Pennsylvania Action, dated Apr. 20, 2007.
Synthes' Summary Judgment Motion of No Invalidity Based on K982222 Summary including supporting memorandum, and declarations of A. Silversti and B. Liu (with supporting exhibits), dated Sep. 10, 2008.
Synthes' Supporting Memorandum for Reconsideration of Claim Construction (without supporting Declaration) in the Pennsylvania Action, dated Feb. 19, 2008 (Dkt. 104) (Ex. 10).
Synthes' Supporting Memorandum for Reconsideration of Claim Construction (without supporting Declaration) in the Pennsylvania Action, dated Feb. 19, 2008.
Technique Guide, Less Invasive Stabilization (LISS), Oct. 2003.
Technique Guide: 2.4 mm Variable Angle LCP Distal Radius System. Synthes, 2008, 43 pages.
The 1998 Schuhli Guide.
The Distal Radius Plate Instrument and Implant Set Technique Guide, (Synthes) (“1998 Radius Plate Guide”) [SNI-0259855-872] (Ex. 24).
“Cone Drive History and Double Enveloping Technology”, http://conedrive.com/history/html., accessed Apr. 20, 2006, 9 pages.
“Less Invasive Stabilization System (LISS) Technique Guide,” Synthes (USA) Copyright 2000 (attached as Exhibit K to Amended Answer).
“Multiple Offerings of Plates, Screws and Pegs”, Small Bone Innovations, Inc., Dec. 2009, 2 pages.
“The New Comprehensive Stryker R VariAx TM Distal Radius Locking Plate System”, Copyright 2009, 20 pages.
“VariAx TM Distal Radius Locking Plate System”, Stryker R, Copyright 2009, 12 pages.
35 U.S.C. .sctn.282 Notice in the Pennsylvania Action, dated Oct. 10, 2008.
4.5 mm Cannulated Screw Technique Guide, published 1995 (Synthes) [SNI-0259703-714] (Ex. 21).
510(k) Disclosure K961413, Aug. 7, 1996 (Synthes) (“K961413”) [SNI-0259751] (Ex. 35).
510(k) Disclosure K961421, Jun. 26, 1996 (Synthes) (“K961421”) [SNI-0258396] (Ex. 36).
510(k) Disclosure K962616, Sep. 3, 1996 (Synthes) (“K962616”) [SNI-0258397] (Ex. 37).
510(k) Disclosure K963798, Nov. 27, 1996 (Synthes) (“K963798”) [SNI-0258398] (Ex. 38).
510(k) Disclosure K982732, Oct. 8, 1998 (Synthes) (“K982732”) [SNI-0259741-744] (Ex. 39).
510(k) Summary For Synthes (USA)'s 2.4 mm Universal Locking Plate System (K961421 ), dated Jun. 26, 1996 (attached as Exhibit S to Amended Answer).
510(k) Summary for Synthes (USA)'s Anatomical Locking Plate System (K961413), dated Aug. 7, 1996 (attached as Exhibit Q to Amended Answer).
510(k) Summary for Synthes (USA)'s Distal Femur Plate (DFP) System (K982222), dated Jul. 29, 1998 (attached as Exhibit O to Amended Answer).
ACE Symmetry (Trademark) Titanium Upper Extremity Plates, Ace Medical Company, 6 pages (Date not available).
ACE Symmetry (Trademark), “Curves in All the Right Places”, Titanium Upper Extremity Plates, Ace Medical Company, 1996, 6 pages.
ACE Symmetry Trademark Titanium Upper Extremity Plates, ACE Medical Company, 1996, 2 pages.
ACE SymmetryTM, “Curves in All the Right Places”, 1996, 3 pages.
Amended Complaint for Patent Infringement, Civil Action No. 03-0084 (E.D. Pa ), filed Nov. 13, 2006.
Answer to Amended Complaint and Counterclaims, Civil Action No. 03-0084 (E .. D. Pa), filed Dec. 5, 2006.
AO/ASIF Instruments and Implants, A Technical Manual, Springer-Verlag, 1994 [SNI0287857-859] (the “AO-ASIF Manual”) (Ex. 44).
Bolhofner, et al., The Results of Open Reduction and Internal Fixation of Distal Femur Fractures Using a Biologic (Indirect) Reduction Technique; Journal of Orthopedic Trauma, vol. 10, No. 6, pp. 372-377, Liooincort-Raven Publishers, Copyright 1996.
Bone Fixation Method, U.S. Appl. No. 09/848,251, filed May 4, 2001.
Bone Plating System, U.S. Appl. No. 09/660,287, filed Sep. 12, 2000.
Brief in Support of Defendants' Motion for Leave to Amend Answer to Assert Allegations of Inequitable Conduct, Civil Action No. 03-0084 (E..D. Pa ), dated Aug. 7, 2007.
Claim Construction Order in Pennsylvania Action, dated Feb. 4, 2008.
Collins Instruments de Chirurgie, published 1935, as illustrated at http://www.litos.com/pages/winkelstabilitaet_e.html (Sep. 26, 2007) (“Collin Catalog”) [SNI-0258552-556] (Ex. 20).
Court Order denying Synthes' Motion for Reconsideration of Claim Construction for the '486 Patent in the Pennsylvania Action, dated Jun. 30, 2008.
Declaration of Charles E. Van Horn, Esq., in Support of Synthes Opposition to Smith & Nephew's Motion for Summary Judgement of Invalidity of the '744 patent (w/o Exhibits 1-6) dated Sep. 29, 2008; 12 pages.
Declaration of Clifford H. Turen, M.D. in Support of Synthes' Opposition to Smith & Nephew's Motion for Partial Summary Judgment of Invalidity of Method Claims 10-12 of U.S. Pat. No. 6,623,486 (with Exhibits 1-4 ), dated Sep. 29, 2008.
Declaration of Dr. Seligson in Support of Smith & Nephew's Motion for Partial Summary 175 Judgment of Invalidity of Claims 10-12 of U.S. Pat. No. 6,623,486 dated Sep. 9, 2008 (with Exhibit 1, pp. 16-66 dated Sep. 10, 2008).
Declaration of J. Lawrence Marsh, M.D. dated Jun. 3, 2010.
Declaration of J. Lawrence Marsh, M.D. dated Jun. 25, 2010.
Declaration of J. Lawrence Marsh, M.D. dated Nov. 22, 2010.
Declaration of J. Russell Parsons, Ph D. in Support of Synthes Opposition to Smith & Nephew's Motion for Partial Summary Judgment of Invalidity of Method Claims 10-12 of U.S. Pat. No. 6,623,486 (with Exhibits 1-4), dated Sep. 29, 2008 (Dkt. 160) (Ex. 68).
Declaration of J. Russell Parsons, Ph.D. in Support of Synthes Opposition to Smith & Nephew's Motion for Summary Judgement of Invalidity of the '744 patent (w/o Exhibits 1-4) dated Sep. 29, 2008; 15 pages.
Declaration of Robert A. King in Support of their Motion for Partial Summary Judgment of Invalidity of Claims 10-12 of U.S. Pat. No. 6,623,486 (without exhibits), dated Sep. 10, 2008.
Defendant's Motion for Leave to Amend Answer to Assert Allegations of Inequitable Conduct, Civil Action No. 03-0084 (E.D. Pa.), dated Aug. 7, 2007.
Docket sheet for the California Action—3:07-cv-00309-L-AJB (Ex. 1) Filed Feb. 14, 2007.
Docket sheet for the Pennsylvania Action—2:03-cv-0084 (CDJ) (Ex. 4) filed Jan. 7, 2003.
Dr. Marsh's Jul. 26, 2008 Deposition transcript in the Pennsylvania Action (Ex. 52).
Dr. Parsons Aug. 7, 2008 deposition transcript in the Pennsylvania Action (Ex. 58).
Dr. Turen's Aug. 15, 2008 deposition transcript in the Pennsylvania Action (Ex. 61).
English translation of International Patent Application No. PCT/CH03/00577: International Search Report dated Apr. 28, 2004, 4 pages.
European Patent Application No. 12006606.3: Extended European Search Report dated Jan. 21, 2013, 7 pages.
European Patent Application No. 12006606: Extended European Search Report dated Jan. 21, 2013, 8 pages.
European Patent Application No. 12006615: Extended European Search Report dated Jan. 21, 2013, 7 pages.
European Patent Application No. 12006617: Extended European Search Report dated Jan. 21, 2013, 8 pages.
Expert Report of John F. Witherspoon (w/o Exhibits A-C) in the Pennsylvania Action, dated Apr. 9, 2008; 36 pages.
Gautier, E., et al., “Porosity and Remodelling of Plated Bone After Internal Fixation: Result of Stress Shielding of Vascular Damage?”, Biomaterials and Biomechanics 1983, Elsevier Science Publishers B.V. 1984 (“Gautier”).
Haas, N.P., et al., “LISS-Less Invasive Stabilization System—A New Internal Fixator for Distal Femur Fractures,” OP J., vol. 13(3), pp. 340-344, Georg Thieme Verlag, Dec. 1997 (in English).
Information Disclosure Statement in U.S. Appl. No. 09/660,287, dated Nov. 13, 2000 (attached as Exhibit G to Amended Answer).
Initial Disclosures of Defendant, Civil Action No. 03-0084 (E.D. Pa), dated Jan. 12, 2007.
Initial Expert Report of J. Lawrence Marsh, M.D., Apr. 9, 2008 (with Exhibits 1-2 and Appendices A-L), dated Apr. 9, 2008 (Ex. 41).
International Patent Application No. PCT/US2008/072894: International Search Report dated Mar. 19, 2009, 18 pages.
International Search Report for International Application No. PCT/CH03/00577 dated Apr. 28, 2004, English language translation of the German language version.
International Search Report for International Application No. PCT/CH03/00577. dated Apr. 28, 2004, English Tanguage translation of the German language version.
Joint submission setting forth agreed claim construction in the Pennsylvania Action, dated Jul. 31, 2007 (Dkt. 76) (Ex. 9).
Kassab, et al., “Patients Treated for Nonunions with Plate and Screw Fixation and Adjunctive Locking Nuts,” Clinical Orthopaedics and Related Research, 1998, 347, 86-92.
Kolodziej, P., et al. “Biomechanical Evaluation of the Schuhli Nut,” Clinical Orthopaedics and Related Research, No. 34 7, pp. 79-85, Lippencott-Raven Publishers, Feb. 1988 (“Kolodziej”) [SNI-0256042-048] (Ex. 28).
Koval, k., et al., “Distal Femoral Fixation: A Biomechanical Comparison of the Standard Condylar Buttress Plate, a Locked Buttress Plate, and the 95-Degree Blade Plate,” J. of Orthopaedic Trauma, val. 11(7), pp. 521-524, Lippencott-Raven Publishers, Oct. 1997.
Krettek et al., “LISS less Invasive Stabilization System,” AO International Dialogue, vol. 12, Issue I, Jun. 1999.
Krettek et al.; “Distale Femurfrakturen”; Swiss Surg.; 1998; 4; p. 263-278 with English abstract.
Krettek, C., LISS: Less Invasive Stabilization System, AO Dialogue, vol. 12(1), Jun. 1999 (“Krettek”).
Less Invasive Stabilization System LISS Surgical Technique Proximal Tibia, (Draft), 2000, 11 pgs.
Luthi, U., et al., “Kontackflache zwischen Osteosyntheseplatte und Knochen,” Aktuel. Traumatol. 10:131-136, 1980 (“Luthi”) [SNI-0258572-577] (Ex. 31).
Manual of Internal Fixation, Techniques Recommended by the AO-ASIG Group, Springer-Verlag, 1991, 200-251.
Marsh Exhibit 1 dated Jun. 25, 2010.
Marsh Exhibit 1 dated Nov. 22, 2010.
Marsh Exhibit 1, Affidavit of Christopher Butler dated Aug. 24, 2010.
Marsh Exhibit 1, Curriculum Vitae, Dec. 2006, pp. 1-34.
Marsh Exhibit A dated Jun. 25, 2010.
Marsh Exhibit A, Initial Expert Report of J. Lawrence Marsh, MD, Civil Action No. 03-0084, dated Apr. 9, 2008 , pp. 1-181.
Marsh Exhibit A, Releasable 510(k) Search, Aug. 7, 2000, http://web.archive.org/web/19970615015534/www.fda.gov/egibin/htmlscript?510k.hts+showcat-OR.
Marsh Exhibit B, Supplement to Apr. 9, 2008 Expert Report of J. Lawrence Marsh, MD, Civil Action No. 03-0084, dated May 14, 2008 , pp. 1-19.
Marsh Exhibit C, Declaration of J. Lawrence Marsh, MD., in support of Smith & Nephew's, Inc's Motion for Partial Summary Judgement of Invalidity of Claims 10-12 of U.S. Pat. No. 6,623,486, dated Sep. 9, 2008, pp. 1-20.
Mr. Van Horn's Jul. 15, 2008 deposition transcript in the Pennsylvania Action (Ex. 78).
Ms. Truman's Jul. 24, 2008 deposition transcript in the Pennsylvania Action (Ex. 81).
Perren, et al., “The Limited Contact Dynamic Compression Plate (LC-DCP),” Arch. Orthopaedic & Trauma Surg., 1990, vol. 109, 304-310.
Perren, S., et al., “Early Temporary Porosis of Bone Induced by Internal Fixation Implants,” Clinical Orthopaedics and Related Research, No. 232, Jul. 1988, 139-151.
Photographs of sample LC-DCP Condylar Buttress Plate (“CBP”) [SYN-PHY-0000001] (Ex. 42).
Photographs of Sample Synthes LC-DCP CBP produced as SYN-PHY-0000011.
Photographs of Sample Synthes LC-DCP Tibia Plate produced as SYN-PHY-0000014.
Photographs of Synthes Less Invasive Stabilization System (LISS), screw; (SYN-PHY0000004).
Photographs of Synthes Titanium Distal Femur LISS Plate, 9 holes/236 mm—Right, 42.344 (the sample LISS)(SYN-PHY-0000002).
Photographs of the Bolhofner Distal Femur Plating System (Bolhofner DFPS), Apr. 14, 2008.
Printout from US FDA 510(k) Premarket Notification Database, dated May 22, 2007, listing Synthes Anatomical Locking Plate System, and bearing 510(k) No. K961413 (attached as Exhibit P to Amended Answer).
Printout from USFDA 510(k) Premarket Notification Database, dated May 22, 2007, listing Synthes 2.4 mm Universal Locking Plate System, and bearing 510(k) No. K961421 (attached as Exhibit R to Amended Answer).
Printout from USFDA 510(k) Premarket Notification Database, dated May 23, 2007, listing Synthes Distal Femur Plate (DFP) System, and bearing 510(k) No. K982222 (attached as Exhibit N to Amended Answer.
Printout of http://www.aofoundation.org web site, dated May 23, 2007 (attached as Exhibit L to Amended Answer).
Pure Titanium Implants Catalog, published Dec. 1993 (Synthes) (“PTI”) [SNI0259670-673] (Ex. 23).
Rebuttal Expert Report of Charles E. Van Horn (without Exhibits), dated May 12, 2008 (Ex. 77).
Rebuttal Expert Report of Clifford H. Turen, M.D., (with Exhibit 1 ), dated May 14, 2008 (Ex. 59).
Rebuttal Expert Report of Eric R. Gozna, M.D., P.Eng., (with Exhibit 1), dated May 13, 2008 (Ex. 56).
Rebuttal Expert Report of Mari Truman, P.E., (with Exhibit 2), dated May 14, 2008 (Ex. 79).
Rebuttal Expert Report of Russell Parsons, Ph.D., (with Exhibit 1), dated Jul. 15, 2008.
Reply to Counterclaims, Civil Action No. 03-0084 (E.D. Pa.), filed Jan. 2, 2007.
Ring, D., et al., “A New Plate for Internal Fixation of the Distal Radius,” AO.ASIF Dialogue, vol. IX, issue 1, Jun. 1996 [SNI-0254971-973] (Ex. 53).
The Distal Radius Plate Instrument and Implant Set Technique Guide, (Synthes) (“1999 Radius Plate Guide”) [SNI-0259653-668] (Ex. 25).
The Locking Reconstruction Plate Technique Guide, published by Synthes, 1997.
The Titanium Distal Radius Plate Technique Guide, (the “DRP Guide”) published by Synthes in 1996.
The Titanium Distal Radius Plate Technique Guide, published by Synthes, 1997.
Universelie Rekonstruktionsplatte URP 2.4-3.2 (UniRecon-Registered), Swiss Dent, 17, 1996, pp. 19-25.
Update, Titanium LC-DCP Condylar Buttress Plate, Jun. 15, 1995 (Synthes) (“The LC-DCP update”).
U.S. Appl. No. 15/926,390, Bone Plate With Form-Fitting Variabi F-Angle Locking Hole, filed Mar. 20, 2018.
U.S. Appl. No. 15/940,761, Locking Structures for Affixing Bone Anchors to a Bone Plate, and Related Systems and Methods, Mar. 29, 2018.
Vattolo, M., “The Effect of Grooves in Osteosynthesis Plates on the Restructuring of the Cortical is,” Laboratory for Experimental Surgery, Swiss Research Institute, 1986 (translation).
Vattolo, M., Thesis, “The Effect of Grooves in Osteosynthesis Plates on the Restructuring of the Corticalis,” Laboratory for Experimental Surgery, Swiss Research Institute, 1986 (original in German, translation to English attached with Certification).
Zimmer Advertisement, J. of Orthopaedic Trauma, vol. 12, No. 5, Jun./Jul. 1998.
Related Publications (1)
Number Date Country
20200214749 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62385092 Sep 2016 US
Continuations (1)
Number Date Country
Parent 15260694 Sep 2016 US
Child 16823683 US