This invention relates to a variable angle locking implant.
Variable angle locking implants for repairing bone fractures have been described, for example, in U.S. patent application Ser. No. 12/484,527, filed Jun. 15, 2009, published as U.S. Publication No. 2009/0312803, hereby incorporated herein by reference in its entirety. In particular, U.S. Publication No. 2009/0312803 describes an implant having fastener receiving holes with fins that permit a fastener to be positioned off-axis within the hole.
Implants such as bone plates have been provided with threaded holes (that may receive either locking screws or non-locking screws), non-threaded holes (for non-locking screws), partially threaded slots to allow either non-locking or locking screws to be used together, and combinations of the above.
The variable angle locking implant provides a stable connection between a bone and a bone plate using a fastener that permits different angles to be obtained between the bone plate and the fastener, while the fastener also locks into the bone plate. This allows the surgeon to reach denser areas of bone or capture random bone fragments that are in irregular positions, for example, in cases of severe fractures with highly fragmented bones. The fastener and plate system advantageously allows the surgeon to choose the angle at which the screw is inserted through, and rigidly affixed in, an opening of the plate.
The variable angle locking implant allows a surgeon to direct the fastener toward bone fragments that are not necessarily located along the axis of the opening in the plate. It also provides flexibility in the placement of the plate in relation to the bone fracture. Allowing surgeons to choose the angle at which the fastener is inserted into the plate leads to better tailoring of the system to the specific nature of the bone fracture to be treated, and allows surgeons to adjust their strategy as necessary after the surgical site has been accessed, but prior to insertion of the fastener into bone material.
According to one aspect, a variable angle locking implant includes a bone plate having a lower surface, an upper surface, and at least one opening extending from the lower surface to the upper surface along an axis. The opening has an inner surface with a plurality of fins oriented along a plane. The axis is non-perpendicular to a tangent of a projection of the lower surface across the opening, the tangent defined at the intersection between the axis and the projected lower surface, and/or the plane is non-parallel to the tangent.
Implementations of this aspect may include one or more of the following features.
For example, the lower surface includes a bone conforming arcuate surface. The lower surface is adapted to contact a distal femur, a proximal femur, a distal tibia, a proximal tibia, a proximal humerus, a distal humerus, a clavicle, a fibula, an ulna, a radius, a distal radius, a rib, pelvis, a vertebra, bones of the foot, or bones of the hand, shaft fractures on long bones, or any of the aforementioned adjacent bones in the case of a joint fusion plate.
The fins are positioned within the opening. The axis is perpendicular to the tangent and the plane is non-parallel to the tangent. Alternatively, the axis is non-perpendicular to the tangent and the plane is non-parallel to the tangent, for example, the plane is perpendicular to the axis.
The fins are integrally connected to, and protruding from, the inner surface. The opening has a radius between the inner surface and the top of the fins, and each fin tapers in thickness from the inner surface towards its terminal end. The opening has a jagged circumference formed by protruding fins at the lower surface. The protruding fins form a concave portion of the inner surface. The protruding fins have bases that meet the inner surface along the plane. The fins have a tapered shape or a straight shape. The fins are provided in more than one layer. The fins are trapezoidally-shaped, rounded, oval, rectangular, curved, rhomboid, diamond-shaped, or triangular. The edges of the fins taper inwardly, outwardly, or are about parallel with one another. There are at least 3, but no more than 10, fins integrally connected to, and protruding from, the inner surface. The fins are provided as a series of concavely indented, inwardly protruding fins that are adapted to secure a threaded head of a fastener in place at varying angles.
The bone plate includes one or more of the following openings: a threaded opening; a non-threaded opening; an opening adapted to receive locking or non-locking fasteners; an opening with fins; a provisional fixation opening; a combination slot; or any combination thereof.
The implant includes at least one fastener. The fastener is at least partially threaded and has a head portion and a shaft portion. The opening is adapted to receive the fastener without being tapped by the fastener. The plurality of fins are deflectable relative to the head portion of the fastener when the fastener is inserted into the opening such that the fastener can be inserted and retained at any one of a plurality of angles relative to the opening. The fins are deflectable so that the fins are interposed between the threads of the fastener. The inner surface includes threads located above or below the fins.
According to another aspect, a method for securing a bone plate to a bone includes placing a lower surface of the bone plate against the bone; inserting a fastener into an opening in the bone plate, the opening having an axis that is non-perpendicular to a tangent of a projection of the lower surface across the opening, the tangent defined at the intersection between the axis and the projected lower surface; selecting a trajectory of the fastener into the bone, the trajectory being up to about 15 degrees off the hole axis; and inserting the fastener into the bone.
Implementations of this aspect may include one or more of the following features.
For example, either a locking screw or a non-locking screw is inserted in the opening. The fastener is removed and re-inserted into the opening of the bone plate at any one of a plurality of angles. Inserting the fastener into the bone includes drawing a bone fragment into alignment with an intact bone segment.
The details of one or more implementations of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Referring to
The fastener 90 shows a new trajectory achieved by increasing the range of angles as compared to the screw 90a. For example, the central axis 96 of fastener 90 has an approximate 15 degree offset from the central axis 52 and approximately 30 degree offset from perpendicular to the lower surface 42 of the bone plate 40. The alternative placement of a screw 90a in a hole having an axis 52 perpendicular to the lower surface 42 of the plate 40 and a plane 59 that is parallel to the bottom lower surface 42 illustrates approximately a 15 degree offset from the central axis 52 and a corresponding approximately 15 degree offset from perpendicular to the lower surface 42 of the bone plate 40, thus illustrating the greater range of the insertion angle of the fastener 90.
The locking implant 2 also includes a provisional pin opening 102 as well as a combination slot 104.
Referring also to
The concave portions 60 are smooth and non-threaded, and as illustrated, the entire inner surface 54 of the finned opening 50 can be devoid of threads. The lack of threads helps ease the manufacturing of the plate 40, and allows the plate 40 to be manufactured as thinly as desired. The bases 58 can extend from the inner surface 54 at or near an upper circumference 62 of the inner surface, at a middle region of the inner surface, or at or near a lower circumference of the inner surface. With the fins 56 located adjacent a lower circumference at the lower, bone contacting surface 42 of plate 40, the lower circumference appears jagged due to the presence of the fins, while the upper circumference 62 is smooth.
As the fins 56 extend toward central axis 52, they taper to form tapered sides 64. The fins 56 end at rounded tips 66, although tips 66 can be pointed, square, rectangular, or any other appropriate configuration. For example, as described in U.S. Patent Application Publication No. 2009/0312803, which is incorporated herein by reference in its entirety, the fins 56 can have straight edges or sides and straight ends such that the fins are partially rectangular-shaped with slit-shaped openings between the fins. Alternatively, the fins can be more triangular in shape having sides that taper inwardly and end edges that are flat and small. Other example fin shapes include trapezoidal, square, round, circular, triangular (with a pointed tip).
The dimensions of fins 56 are typically dependent at least in part upon the pitch and threads of the fastener 90. For example, a larger plate 40 for use with a larger fastener 90 (for example, for use on a femur bone) will likely be thicker and will have larger and thicker fins 56 than a smaller plate 40 (for example, for use on a smaller bone). In specific implementations, the fins 56 are particularly thin so that they can be moved up or down and deformed under pressure. In some implementations, the fins 56 may be pressed toward the edges of the finned opening 50. A non-limiting exemplary range of thicknesses for the fins 56 is from about 0.15 mm to about 5 mm, although larger and smaller sizes are possible. The fins 56 are intended to fit between threads 98 on the thread form of fastener 90, as shown in
Providing a non-threaded inner surface 54 also allows the fastener 90 to be inserted into the finned opening 50 at any desired insertion angle, that is the angle defined between a longitudinal axis 96 (
The fastener 90 has a head 94 and a shaft 92. The shaft 92 may be threaded or non-threaded. The head 94 of the fastener 90 has at least one set of threads 98 and a bore 18 for receiving a driver in order to drive the fastener 90 through the plate 40 and into bone. The threads 98 are typically any standard-type thread.
Referring to
The non-perpendicular orientation of the central axis 52a, 52b, 52d and/or the non-parallel orientation of the plane 59b-d increases the useful range of possible insertion angles as compared to a bone plate 40 having the central axis 52 perpendicular to the lower surface 42 and the plane 59 parallel to the lower surface 42. For example, referring to
The screw 90 (
Referring to
The finned opening 50 can include about five to eight fins 56, as illustrated, two or three fins 56, or ten or twenty or more fins 56, depending upon the plate 40 for which the finned opening 50 is intended for use. The finned holes can optionally include threads 112 (
The primary purpose of fins 56 is to grasp one or more threads 98 of the fastener 90 in order to secure the fastener 90 in place in the bone plate 40 at any desired insertion angle. Fasteners 90 received in different finned openings 50 can be inserted at the same or different insertion angles. As a fastener 90 is inserted, its threads 98 start to engage the fins 56, as shown in
The finned openings 50 can be provided on all types of bone plates 40 and can be combined with other types of openings. As illustrated in
The threads 98 on fastener 90 can be any type of standard or non-standard thread. For example, the threads 98 can be a continuous ridge or a non-continuous ridge. The threads 98 can form a portion of a revolution, one complete revolution, multiple revolutions, a single lead, or multiple leads, or any other threads known in the art. Additionally or alternatively, the head 94 of fastener 90 can include any other surface that will engage with and seat within the fins 56 of the finned opening 50. For example, the head 94 can have a series of dimples, ridges, bumps, textured areas, or any other surface that can secure fastener 90.
The fastener 90 may be any typical fastener, made out of any appropriate material. The fastener 90 typically has a bore 18 for receiving a driver in order to drive the fastener 90 through the plate 40 and into bone. The bore 18 may be any size and shape, for example, it may have a hexagonal configuration to receive a corresponding hexagonal driver, a Phillips screw head, a flat-head, a star configuration, Torx, or any other appropriate configuration that can cooperate with a driver to drive the fastener 90 into the plate 40.
The shaft 92 may be fully threaded, partially threaded, or a helical blade, and/or may include one or more tacks, deployable talons, expandable elements, or any feature that allows shaft 92 to engage bone. It is also possible that shaft 92 is not threaded, so that fastener 90 takes the form of a peg or a pin. This alternative implementation may be preferred in certain procedures where, for instance, the main goal is to prevent tilting of a bone segment or in procedures where there is no concern of fastener 90 pulling out from the bone and hence no need for shaft 92 to be threaded or otherwise configured to engage bone. The end of shaft 92 may be a self-tapping or self-drilling tip.
The bone plate 40 may be adapted to contact one or more of a distal femur, a proximal femur, a distal tibia, a proximal tibia, a proximal humerus, a distal humerus, a clavicle, a fibula, an ulna, a radius, a distal radius, a rib, pelvis, a vertebra, bones of the foot, or bones of the hand, shaft fractures on long bones, or any of the aforementioned adjacent bones in the case of a joint fusion plate. The bone plate 40 may be curved, contoured, straight, or flat. The lower, bone contacting surface 42 can have an arcuate shape that conforms to the bone. For example, referring to
The bone plate 40 can be made from metal, a resorbable or non-resorbable plastic, ceramic, or composite materials. Suitable materials may include, for example, titanium, stainless steel, cobalt chrome, polyetheretherketone (PEEK), polyethylene, ultra high molecular weight polyethylene (UHMWPE), resorbable polylactic acid (PLA), polyglycolic acid (PGA), combinations or alloys of such materials or any other appropriate material that has sufficient strength to be secured to and hold bone, while also having sufficient biocompatibility to be implanted into a body.
Turning now to the methods of implantation, the surgeon accesses the surgical site of interest, which can be an internal site at which a bone fracture is located that requires stabilization to ensure proper healing. The fracture may be reduced with conventional forceps and guides (which are known to those in the art), and a bone plate 40 of appropriate size and shape is placed over the fracture site. In some instances, the bone plate 40 may be temporarily secured to the bone 4 using provisional fixation pins. The provisional fixation pins may be used through either the provisional pin openings 102, or any other opening in the plate 40. Provisional fixation provides for temporarily securing the bone plate 40 to the bone 4 before placing fixation screws through the bone plate 40, so that one can be certain the bone plate 40 is properly positioned before placing bone screws for permanent fixation of the bone plate 40 to the bone 4. Moreover, with provisional fixation, x-rays can be taken of the bone plate/construct without excess instruments in the field of view.
Once the plate 40 is secured at a desired location in relation to the fracture (typically using one or more provisional fixation pins, although any other appropriate method may be used), the surgeon then identifies an insertion angle at which the fastener 90 is to be inserted through a selected opening 50 and driven into bone material 4. If the bone plate 40 includes more than one opening 50, the surgeon also selects the specific opening 50 to be used. After selecting the desired insertion angle and the opening 50, the surgeon inserts the shaft 92 of the fastener 90 through the opening 50 until the tip contacts bone material 4. In some cases, a hole may need to be drilled or tapped into the bone 4 along the insertion angle to facilitate the initial tapping or insertion of the fastener 90. The surgeon then uses an appropriate driving tool in the bore 18 of the head 94 to manipulate the fastener 90 into place.
Because the fastener 90 can be inserted at angles up to about 60 degrees from perpendicular to the lower surface of the plate, the fastener 90 can be used to grab and/or secure bone fragments that are out of line with the traditional angle at which a locking screw would normally be inserted. The surgeon may need to toggle or maneuver the fastener 90 in order to secure and draw in displaced bone fragments.
Once the bone fragment is secured, the fastener 90 is ready to be secured to the plate 40. As the fastener 90 is driven further into bone 4, it is also drawn further into the plate 40. As the threads 98 of the fastener head 94 begin to contact the fins 56, the fins 56 engage within the threads 98 to hold the fastener 90 in place at the desired insertion angle. The action of engagement between the fins 56 and the threads 98 rigidly affixes the fastener 90 to the bone plate 40 at the desired insertion angle.
The surgeon may then use traditional locking and/or non-locking screws in other openings on the plate 40. This can help further secure the bone plate 40 to the bone fracture if needed.
Once all the fasteners and/or screws are placed, the surgeon may place covers over the unused openings, particularly if there are any unused openings that cross the fracture, to strengthen the plate 40. Additionally or alternatively, the surgeon may use bone graft material, bone cement, bone void filler, and any other material to help heal the bone.
In practice, a first screw is initially inserted through a bone plate 40 and into a bone 4 on one side of a fracture and then a second screw is inserted through the bone plate 40 on the opposite side of the fracture. In particular, after the first screw is in place, an axial compression screw is inserted through a hole in the bone plate 40 on a side of the fracture opposite the side of the first screw. The compression screw may be inserted through the hole and into the bone 4 such that as the compression screw is fully inserted, the bone plate 40 is drawn over to a desired position. By moving the bone plate 40, the tissue is pulled together to reduce the fracture. Once the compression screw has been used to move the bone plate 40 into the desired position, the compression screw may be removed from the bone 4 and bone plate 40 and a locking screw may be inserted through the opening 50 in the bone plate 40 and in the bone 4 in the space formerly occupied by the compression screw. The locking screw can then be tightened to lock the plate 40 into position. The replacement of the compression screw with the locking screw is not required, but a locking screw may provide more stability and rigid fixation than leaving the compression screw in place. In some modes of operation, a locking screw is placed directly in a locking hole without first inserting a compression screw in the hole.
A number of implementations of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other implementations are within the scope of the following claims. For example, locking screws, non-locking screws, or other fasteners may be used. One or more openings having a non-perpendicular orientation of the central axis 52 and/or the non-parallel orientation of the plane 59 can be employed to receive a fastener in implants other than plates, such as in an acetabular cup or glenoid base component, to increase the useful range of possible insertion angles of the fastener. According to another implementation, the head of the screw 94 can include the fins 56 and the opening 50 can be threaded, with the opening having a non-perpendicular orientation of its central axis 52 and/or the plane 59 defined by the fins 56 having a non-parallel orientation.
This application is a continuation application of co-pending U.S. patent application Ser. No. 13/524,506, filed Jun. 15, 2012, entitled “Variable Angle Locking Implant”, which application claims priority to and the full benefit of U.S. Provisional Application Ser. No. 61/497,180 filed Jun. 15, 2011, and titled “Variable Angle Locking Implant,” the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
300146 | Sinnett | Jun 1884 | A |
351751 | Douglas | Nov 1886 | A |
382670 | Trovillion | May 1888 | A |
544606 | Balsley | Aug 1895 | A |
545331 | Balsley | Aug 1895 | A |
565808 | Staples | Aug 1896 | A |
575631 | Brooks | Jan 1897 | A |
583158 | Upham | May 1897 | A |
637990 | Hoepner | Nov 1899 | A |
651949 | Lillie | Jun 1900 | A |
689722 | Hoover | Dec 1901 | A |
766270 | Lapham | Aug 1904 | A |
775427 | Lusted, Sr. | Nov 1904 | A |
902040 | Wyckoff | Oct 1908 | A |
1025008 | Miner | Apr 1912 | A |
1105105 | Sherman | Jul 1914 | A |
1275810 | White | Aug 1918 | A |
1575149 | Craig et al. | Mar 1926 | A |
1755588 | Bronk | Apr 1930 | A |
1925385 | Humes et al. | Sep 1933 | A |
2010913 | Bruce et al. | Aug 1935 | A |
2133859 | Hawley | Oct 1938 | A |
2152977 | John | Apr 1939 | A |
2501978 | Heins | Mar 1950 | A |
2524167 | Frank | Oct 1950 | A |
2560912 | George | Jul 1951 | A |
2667194 | Fischer et al. | Jan 1954 | A |
2756791 | Benjamin | Jul 1956 | A |
3056441 | Helms | Oct 1962 | A |
3279510 | Dreyer et al. | Oct 1966 | A |
3347293 | Clark | Oct 1967 | A |
3409058 | La | Nov 1968 | A |
3547114 | Haboush | Dec 1970 | A |
3552389 | Allgower et al. | Jan 1971 | A |
3630261 | Gley | Dec 1971 | A |
3662797 | Healis | May 1972 | A |
3668972 | Allgower et al. | Jun 1972 | A |
3716050 | Johnston | Feb 1973 | A |
3739825 | Knox | Jun 1973 | A |
3741205 | Markolf et al. | Jun 1973 | A |
3744488 | Cox | Jul 1973 | A |
3779240 | Kondo | Dec 1973 | A |
3782432 | Allen | Jan 1974 | A |
3866607 | Forsythe et al. | Feb 1975 | A |
3906550 | Rostoker et al. | Sep 1975 | A |
3935762 | Tudisco | Feb 1976 | A |
RE28841 | Allgower et al. | Jun 1976 | E |
4059102 | Devas | Nov 1977 | A |
4060114 | Matsushima | Nov 1977 | A |
4096896 | Engel | Jun 1978 | A |
4219015 | Steinemann | Aug 1980 | A |
4246811 | Bondhus et al. | Jan 1981 | A |
4263904 | Judet | Apr 1981 | A |
4338926 | Kummer et al. | Jul 1982 | A |
4364382 | Mennen | Dec 1982 | A |
4388921 | Sutter et al. | Jun 1983 | A |
4408601 | Wenk | Oct 1983 | A |
RE31628 | Allgower et al. | Jul 1984 | E |
4484570 | Sutter et al. | Nov 1984 | A |
4493317 | Klaue | Jan 1985 | A |
4513744 | Klaue | Apr 1985 | A |
4535658 | Molinari | Aug 1985 | A |
4564007 | Coombs et al. | Jan 1986 | A |
4565193 | Streli | Jan 1986 | A |
4573458 | Lower | Mar 1986 | A |
4683878 | Carter | Aug 1987 | A |
4704929 | Osada | Nov 1987 | A |
4791918 | Von | Dec 1988 | A |
4797948 | Milliorn et al. | Jan 1989 | A |
4838252 | Klaue | Jun 1989 | A |
4927421 | Goble et al. | May 1990 | A |
4978349 | Frigg | Dec 1990 | A |
4988350 | Herzberg | Jan 1991 | A |
5002544 | Klaue et al. | Mar 1991 | A |
5006120 | Carter | Apr 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5053036 | Perren et al. | Oct 1991 | A |
5085660 | Lin | Feb 1992 | A |
5129901 | Decoste | Jul 1992 | A |
5151103 | Tepic et al. | Sep 1992 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5192281 | de la Caffiniere | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5198308 | Shelly et al. | Mar 1993 | A |
5237893 | Ryder et al. | Aug 1993 | A |
5259398 | Vrespa | Nov 1993 | A |
5269784 | Mast | Dec 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5304180 | Slocum | Apr 1994 | A |
5312410 | Miller et al. | May 1994 | A |
5324290 | Zdeblick et al. | Jun 1994 | A |
5324291 | Ries et al. | Jun 1994 | A |
5356410 | Pennig | Oct 1994 | A |
5360452 | Engelhardt et al. | Nov 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5364399 | Lowery et al. | Nov 1994 | A |
5395374 | Miller et al. | Mar 1995 | A |
5415658 | Kilpela et al. | May 1995 | A |
5423820 | Miller et al. | Jun 1995 | A |
5423826 | Coates et al. | Jun 1995 | A |
5429641 | Golfried | Jul 1995 | A |
5431659 | Ross et al. | Jul 1995 | A |
5470333 | Ray | Nov 1995 | A |
5474553 | Baumgart | Dec 1995 | A |
5487743 | Laurain et al. | Jan 1996 | A |
5514138 | McCarthy | May 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5522902 | Yuan et al. | Jun 1996 | A |
5527310 | Cole et al. | Jun 1996 | A |
5531143 | Habermehl et al. | Jul 1996 | A |
5531746 | Errico et al. | Jul 1996 | A |
5531748 | de la Caffiniere | Jul 1996 | A |
5534932 | Van et al. | Jul 1996 | A |
5536127 | Pennig | Jul 1996 | A |
5569253 | Farris et al. | Oct 1996 | A |
5578034 | Estes | Nov 1996 | A |
5591168 | Judel et al. | Jan 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5607426 | Ralph et al. | Mar 1997 | A |
5607428 | Lin | Mar 1997 | A |
5643265 | Errico et al. | Jul 1997 | A |
5647873 | Errico et al. | Jul 1997 | A |
5665088 | Gil et al. | Sep 1997 | A |
5665089 | Dall et al. | Sep 1997 | A |
5676667 | Hausman | Oct 1997 | A |
5702399 | Kilpela et al. | Dec 1997 | A |
5709686 | Talos et al. | Jan 1998 | A |
5713900 | Benzel et al. | Feb 1998 | A |
5725588 | Errico et al. | Mar 1998 | A |
5733287 | Tepic et al. | Mar 1998 | A |
5735853 | Olerud | Apr 1998 | A |
5741258 | Klaue et al. | Apr 1998 | A |
5749872 | Kyle et al. | May 1998 | A |
5769850 | Chin | Jun 1998 | A |
5772662 | Chapman et al. | Jun 1998 | A |
5776196 | Matsuzaki et al. | Jul 1998 | A |
5788697 | Kilpela et al. | Aug 1998 | A |
5797912 | Runciman et al. | Aug 1998 | A |
5810823 | Klaue et al. | Sep 1998 | A |
5824247 | Tunc | Oct 1998 | A |
5876402 | Errico et al. | Mar 1999 | A |
5888204 | Ralph et al. | Mar 1999 | A |
5893856 | Jacob et al. | Apr 1999 | A |
5902305 | Beger et al. | May 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5904684 | Rooks | May 1999 | A |
5925047 | Errico et al. | Jul 1999 | A |
5935130 | Kilpela et al. | Aug 1999 | A |
5935133 | Wagner et al. | Aug 1999 | A |
5938664 | Winquist et al. | Aug 1999 | A |
5954722 | Bono | Sep 1999 | A |
5960681 | Anderson et al. | Oct 1999 | A |
5961524 | Crombie | Oct 1999 | A |
5964769 | Wagner et al. | Oct 1999 | A |
5968046 | Castleman | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5976141 | Haag et al. | Nov 1999 | A |
6016727 | Morgan | Jan 2000 | A |
6019762 | Cole | Feb 2000 | A |
6022352 | Vandewalle | Feb 2000 | A |
6053921 | Wagner et al. | Apr 2000 | A |
6096040 | Esser | Aug 2000 | A |
6102951 | Sutter et al. | Aug 2000 | A |
6129730 | Bono et al. | Oct 2000 | A |
6176861 | Bernstein et al. | Jan 2001 | B1 |
6183475 | Lester et al. | Feb 2001 | B1 |
6193721 | Michelson | Feb 2001 | B1 |
6206881 | Frigg et al. | Mar 2001 | B1 |
6214049 | Gayer et al. | Apr 2001 | B1 |
6228085 | Theken et al. | May 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
RE37249 | Leibinger et al. | Jun 2001 | E |
6258092 | Dall | Jul 2001 | B1 |
6273889 | Richelsoph | Aug 2001 | B1 |
6302001 | Karle | Oct 2001 | B1 |
6302883 | Bono | Oct 2001 | B1 |
6306136 | Baccelli | Oct 2001 | B1 |
6306140 | Siddiqui | Oct 2001 | B1 |
6309393 | Tepic et al. | Oct 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6342055 | Eisermann et al. | Jan 2002 | B1 |
6355041 | Martin | Mar 2002 | B1 |
6355043 | Adam | Mar 2002 | B1 |
6358250 | Orbay | Mar 2002 | B1 |
6361537 | Anderson | Mar 2002 | B1 |
6364885 | Kilpela et al. | Apr 2002 | B1 |
6370091 | Kuroda | Apr 2002 | B1 |
6379359 | Dahners | Apr 2002 | B1 |
6386808 | Fujii et al. | May 2002 | B2 |
6391030 | Wagner et al. | May 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6428542 | Michelson | Aug 2002 | B1 |
6436100 | Berger | Aug 2002 | B1 |
6440135 | Orbay et al. | Aug 2002 | B2 |
6454769 | Wagner et al. | Sep 2002 | B2 |
6454770 | Klaue | Sep 2002 | B1 |
6468278 | Muckter | Oct 2002 | B1 |
6475218 | Gournay et al. | Nov 2002 | B2 |
6506191 | Joos | Jan 2003 | B1 |
6520965 | Chervitz et al. | Feb 2003 | B2 |
6524238 | Velikaris et al. | Feb 2003 | B2 |
6527776 | Michelson | Mar 2003 | B1 |
6558387 | Errico et al. | May 2003 | B2 |
6575975 | Brace et al. | Jun 2003 | B2 |
6595993 | Donno et al. | Jul 2003 | B2 |
6595994 | Kilpela et al. | Jul 2003 | B2 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6623486 | Weaver et al. | Sep 2003 | B1 |
6669700 | Farris et al. | Dec 2003 | B1 |
6669701 | Steiner et al. | Dec 2003 | B2 |
6682531 | Winquist et al. | Jan 2004 | B2 |
6682533 | Dinsdale et al. | Jan 2004 | B1 |
6684741 | Blackston | Feb 2004 | B2 |
6689133 | Morrison et al. | Feb 2004 | B2 |
6692498 | Niiranen et al. | Feb 2004 | B1 |
6692581 | Tong et al. | Feb 2004 | B2 |
6719759 | Wagner et al. | Apr 2004 | B2 |
6730091 | Pfefferle et al. | May 2004 | B1 |
6755829 | Bono et al. | Jun 2004 | B1 |
6767351 | Orbay et al. | Jul 2004 | B2 |
6780186 | Errico et al. | Aug 2004 | B2 |
6821278 | Frigg et al. | Nov 2004 | B2 |
6866665 | Orbay | Mar 2005 | B2 |
6893443 | Frigg et al. | May 2005 | B2 |
6893444 | Orbay | May 2005 | B2 |
6916320 | Michelson | Jul 2005 | B2 |
6945975 | Dalton | Sep 2005 | B2 |
6955677 | Dahners | Oct 2005 | B2 |
6960213 | Chervitz et al. | Nov 2005 | B2 |
6969390 | Michelson | Nov 2005 | B2 |
6973860 | Nish | Dec 2005 | B2 |
6974461 | Wolter | Dec 2005 | B1 |
6979334 | Dalton | Dec 2005 | B2 |
7073415 | Casutt et al. | Jul 2006 | B2 |
7074221 | Michelson | Jul 2006 | B2 |
7128744 | Weaver et al. | Oct 2006 | B2 |
7172593 | Trieu et al. | Feb 2007 | B2 |
7179260 | Gerlach et al. | Feb 2007 | B2 |
7230039 | Trieu et al. | Jun 2007 | B2 |
7250053 | Orbay | Jul 2007 | B2 |
7250054 | Allen et al. | Jul 2007 | B2 |
7255701 | Allen et al. | Aug 2007 | B2 |
7282053 | Orbay | Oct 2007 | B2 |
7294130 | Orbay | Nov 2007 | B2 |
7341589 | Weaver et al. | Mar 2008 | B2 |
7419714 | Magerl et al. | Sep 2008 | B1 |
7637928 | Fernandez | Dec 2009 | B2 |
7695472 | Young | Apr 2010 | B2 |
7722653 | Young et al. | May 2010 | B2 |
7766948 | Leung | Aug 2010 | B1 |
8105367 | Austin et al. | Jan 2012 | B2 |
8992581 | Austin et al. | Mar 2015 | B2 |
20010037112 | Brace et al. | Nov 2001 | A1 |
20010047174 | Donno et al. | Nov 2001 | A1 |
20020013587 | Winquist et al. | Jan 2002 | A1 |
20020045901 | Wagner et al. | Apr 2002 | A1 |
20020058940 | Frigg et al. | May 2002 | A1 |
20020058943 | Kilpela et al. | May 2002 | A1 |
20020115742 | Trieu et al. | Aug 2002 | A1 |
20020143338 | Orbay et al. | Oct 2002 | A1 |
20020161370 | Frigg et al. | Oct 2002 | A1 |
20030040749 | Grabowski et al. | Feb 2003 | A1 |
20030057590 | Loh Er et al. | Mar 2003 | A1 |
20030060827 | Coughln | Mar 2003 | A1 |
20030105462 | Haider | Jun 2003 | A1 |
20030183335 | Winniczek et al. | Oct 2003 | A1 |
20040010257 | Cachia et al. | Jan 2004 | A1 |
20040030342 | Trieu et al. | Feb 2004 | A1 |
20040044345 | DeMoss et al. | Mar 2004 | A1 |
20040059334 | Weaver et al. | Mar 2004 | A1 |
20040059335 | Weaver et al. | Mar 2004 | A1 |
20040073218 | Dahners | Apr 2004 | A1 |
20040087954 | Allen et al. | May 2004 | A1 |
20040097942 | Allen et al. | May 2004 | A1 |
20040138666 | Molz et al. | Jul 2004 | A1 |
20040181228 | Wagner et al. | Sep 2004 | A1 |
20040186477 | Winquist et al. | Sep 2004 | A1 |
20040199169 | Koons et al. | Oct 2004 | A1 |
20040213645 | Kovac | Oct 2004 | A1 |
20040215195 | Shipp et al. | Oct 2004 | A1 |
20040220570 | Frigg | Nov 2004 | A1 |
20040236332 | Frigg | Nov 2004 | A1 |
20040260306 | Fallin et al. | Dec 2004 | A1 |
20050010220 | Casutt et al. | Jan 2005 | A1 |
20050010226 | Grady et al. | Jan 2005 | A1 |
20050027298 | Michelson | Feb 2005 | A1 |
20050043736 | Mathieu et al. | Feb 2005 | A1 |
20050049593 | Duong et al. | Mar 2005 | A1 |
20050049594 | Wack et al. | Mar 2005 | A1 |
20050070904 | Gerlach et al. | Mar 2005 | A1 |
20050080421 | Weaver et al. | Apr 2005 | A1 |
20050107796 | Gerlach et al. | May 2005 | A1 |
20050137597 | Butler et al. | Jun 2005 | A1 |
20050149026 | Buller et al. | Jul 2005 | A1 |
20050165400 | Fernandez | Jul 2005 | A1 |
20050192580 | Dalton | Sep 2005 | A1 |
20050222570 | Jackson | Oct 2005 | A1 |
20050234457 | James et al. | Oct 2005 | A1 |
20050261688 | Grady et al. | Nov 2005 | A1 |
20050277937 | Leung et al. | Dec 2005 | A1 |
20050283154 | Orbay et al. | Dec 2005 | A1 |
20060004361 | Hayeck et al. | Jan 2006 | A1 |
20060009770 | Speirs et al. | Jan 2006 | A1 |
20060009771 | Orbay et al. | Jan 2006 | A1 |
20060095040 | Schlienger et al. | May 2006 | A1 |
20060116678 | Impellizzeri | Jun 2006 | A1 |
20060122602 | Konieczynski et al. | Jun 2006 | A1 |
20060129148 | Simmons et al. | Jun 2006 | A1 |
20060129151 | Allen et al. | Jun 2006 | A1 |
20060149265 | James et al. | Jul 2006 | A1 |
20060165400 | Spencer | Jul 2006 | A1 |
20060167464 | Allen et al. | Jul 2006 | A1 |
20060200147 | Ensign et al. | Sep 2006 | A1 |
20060235400 | Schneider | Oct 2006 | A1 |
20060235410 | Ralph et al. | Oct 2006 | A1 |
20060259039 | Pitkanen et al. | Nov 2006 | A1 |
20070010817 | de Coninck | Jan 2007 | A1 |
20070043366 | Pfefferle et al. | Feb 2007 | A1 |
20070093836 | Derouet | Apr 2007 | A1 |
20070161995 | Trautwein et al. | Jul 2007 | A1 |
20070162016 | Matityahu | Jul 2007 | A1 |
20070162020 | Gerlach et al. | Jul 2007 | A1 |
20070185488 | Pohjonen et al. | Aug 2007 | A1 |
20070213828 | Trieu et al. | Sep 2007 | A1 |
20070233106 | Horan et al. | Oct 2007 | A1 |
20070260244 | Wolter | Nov 2007 | A1 |
20070270691 | Bailey et al. | Nov 2007 | A1 |
20070270832 | Moore | Nov 2007 | A1 |
20070270833 | Bonutti et al. | Nov 2007 | A1 |
20070276383 | Rayhack | Nov 2007 | A1 |
20080021474 | Bonutti et al. | Jan 2008 | A1 |
20080039845 | Bonutti et al. | Feb 2008 | A1 |
20080086129 | Lindemann et al. | Apr 2008 | A1 |
20080140130 | Chan et al. | Jun 2008 | A1 |
20080154367 | Justis et al. | Jun 2008 | A1 |
20080154368 | Justis et al. | Jun 2008 | A1 |
20080154373 | Protopsaltis et al. | Jun 2008 | A1 |
20080167717 | Trieu et al. | Jul 2008 | A9 |
20080200955 | Tepic | Aug 2008 | A1 |
20080208259 | Gilbert | Aug 2008 | A1 |
20080234677 | Dahners et al. | Sep 2008 | A1 |
20080234748 | Wallenstein et al. | Sep 2008 | A1 |
20080234751 | McClintock | Sep 2008 | A1 |
20080300637 | Austin | Dec 2008 | A1 |
20090024161 | Bonutti et al. | Jan 2009 | A1 |
20090076553 | Wolter | Mar 2009 | A1 |
20090088807 | Castaneda et al. | Apr 2009 | A1 |
20090143824 | Austin et al. | Jun 2009 | A1 |
20090149888 | Abdelgany | Jun 2009 | A1 |
20090192549 | Sanders et al. | Jul 2009 | A1 |
20090312803 | Austin et al. | Dec 2009 | A1 |
20100256686 | Fisher et al. | Oct 2010 | A1 |
20100312286 | Dell'Oca | Dec 2010 | A1 |
20110015681 | Elsbury | Jan 2011 | A1 |
20120059425 | Biedermann | Mar 2012 | A1 |
20120083847 | Huebner et al. | Apr 2012 | A1 |
20120136396 | Baker et al. | May 2012 | A1 |
20120143193 | Hulliger | Jun 2012 | A1 |
20120265253 | Conley et al. | Oct 2012 | A1 |
20130165977 | Biedermann et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
754857 | Nov 2002 | AU |
2047521 | Jan 1992 | CA |
2408327 | Mar 2001 | CA |
2536960 | Mar 2005 | CA |
611147 | May 1979 | CH |
1380043 | Nov 2002 | CN |
2602900 | Apr 1979 | DE |
3513600 | Oct 1986 | DE |
3804749 | Mar 1989 | DE |
3832343 | Mar 1990 | DE |
4341980 | Jun 1995 | DE |
4343117 | Jun 1995 | DE |
4438261 | Sep 1995 | DE |
4438264 | Nov 1996 | DE |
19629011 | Jan 1998 | DE |
102005015496A1 | Nov 2006 | DE |
102005042766 | Jan 2007 | DE |
19858889 | Aug 2008 | DE |
0201024 | Nov 1986 | EP |
0207884 | Jan 1987 | EP |
0274713 | Jul 1988 | EP |
0355035 | Feb 1990 | EP |
0468192 | Apr 1992 | EP |
0486762 | May 1995 | EP |
0530585 | Dec 1996 | EP |
0760632 | Mar 1997 | EP |
0799124 | Aug 2001 | EP |
0828459 | Sep 2003 | EP |
1649819 | Apr 2006 | EP |
1813292 | Aug 2007 | EP |
1857073 | Nov 2007 | EP |
2667913 | Apr 1992 | FR |
2698261 | Mar 1995 | FR |
2739151 | Nov 1997 | FR |
2757370 | Jun 1998 | FR |
2963396 | Feb 2012 | FR |
580571 | Sep 1946 | GB |
2521346 | Jun 2015 | GB |
2003509107 | Mar 2003 | JP |
2234878 | Aug 2004 | RU |
1279626 | Dec 1986 | SU |
477687 | Mar 2002 | TW |
WO1989004150 | May 1989 | WO |
WO1990007304 | Jul 1990 | WO |
WO1996009014 | Mar 1996 | WO |
WO1996019336 | Jun 1996 | WO |
WO1996025892 | Aug 1996 | WO |
WO1996029948 | Oct 1996 | WO |
WO1997009000 | Mar 1997 | WO |
WO1998034553 | Aug 1998 | WO |
WO1998034556 | Aug 1998 | WO |
WO1999005968 | Feb 1999 | WO |
WO1999025266 | May 1999 | WO |
WO1999061081 | Dec 1999 | WO |
WO2000018309 | Apr 2000 | WO |
WO2000019264 | Apr 2000 | WO |
WO2000036984 | Jun 2000 | WO |
WO2000053110 | Sep 2000 | WO |
WO2000053111 | Sep 2000 | WO |
WO2000066012 | Nov 2000 | WO |
WO2001019267 | Mar 2001 | WO |
WO2001019268 | Mar 2001 | WO |
WO2001019264 | Aug 2001 | WO |
WO2001078615 | Oct 2001 | WO |
WO2001091660 | Dec 2001 | WO |
WO2002000127 | Jan 2002 | WO |
WO2002058574 | Aug 2002 | WO |
WO2002068009 | Sep 2002 | WO |
WO2002034159 | Nov 2002 | WO |
WO2002096309 | Dec 2002 | WO |
WO2003006210 | Jan 2003 | WO |
WO2003106110 | Dec 2003 | WO |
WO2004032726 | Apr 2004 | WO |
WO2004032751 | May 2004 | WO |
WO2004086990 | Oct 2004 | WO |
WO2004089233 | Oct 2004 | WO |
2004107957 | Dec 2004 | WO |
WO2005018471 | Mar 2005 | WO |
WO2005018472 | Mar 2005 | WO |
WO2005032386 | Apr 2005 | WO |
WO2005034722 | Apr 2005 | WO |
WO2005079685 | Sep 2005 | WO |
WO2005062902 | Dec 2005 | WO |
WO2006007965 | Jan 2006 | WO |
WO2006039636 | Apr 2006 | WO |
WO2006068775 | Jun 2006 | WO |
WO2007014279 | Feb 2007 | WO |
WO2007025520 | Mar 2007 | WO |
WO2007041686 | Apr 2007 | WO |
WO2007014192 | May 2007 | WO |
WO2007092869 | Aug 2007 | WO |
WO2007130840 | Nov 2007 | WO |
WO200802213 | Jan 2008 | WO |
WO2008033742 | Mar 2008 | WO |
WO2008064211 | May 2008 | WO |
WO2008077137 | Jun 2008 | WO |
WO2008079846 | Jul 2008 | WO |
WO2008079864 | Jul 2008 | WO |
WO2008116203 | Dec 2008 | WO |
WO2009029908 | Mar 2009 | WO |
WO2013059090 | Apr 2013 | WO |
Entry |
---|
Decision of Rejection for Japanese Application No. 2014-516034, dated Mar. 27, 2017. |
Office Action for U.S. Appl. No. 14/605,651, dated Oct. 6, 2016. |
Office Action for U.S. Appl. No. 14/535,573, dated Oct. 24, 2016. |
Patent Examination Report No. 2 for Australian Application No. 2012271441, dated Sep. 28, 2016. |
Office Action for Russian Application No. 2013158111/14(090494), dated May 17, 2016, with English-language synopsis. |
Office Action for U.S. Appl. No. 14/671,499, dated Jun. 2, 2016. |
Office Action for U.S. Appl. No. 14/535,573, dated Mar. 31, 2016. |
Office Action for U.S. Appl. No. 14/605,651, dated Mar. 14, 2016. |
Notice of Reasons for Rejection for Japanese Application No. 2014-516034 dated Jun. 6, 2016. |
Office Action for Chinese Application No. 201280039748.1, dated Mar. 17, 2016. |
Office Action for U.S. Appl. No. 14/535,573, dated Oct. 1, 2015. |
Notice of Reasons for Rejection for Japanese Application No. 2013-037623, dated Jan. 26, 2015. |
Notice of Reasons for Rejection for Japanese Application No. 2013-037623, dated Mar. 3, 2014. |
Wolter, D., et al., “Universal Internal Titanium Fixation Device,” Trauma Berufskrankh (1999) 1:307-309, Springer-Verlag 1999, Certified English Translation Thereof. |
Bohmer, G., et al., “Ti Fix® Angularly Stable Condylar Plate,” Trauma Berufskrankh (1999) 1 :351-355, Springer-Verlag 1999, Certified English Translation Thereof. |
Kranz, H.-W., et al., “Internal Titanium Fixation of Tibial Pseudarthrosis, Malalignment, and Fractures,” Trauma Berufskrankh (1999) 1 :356-360, Springer-Verlag 1999, Certified English Translation Thereof. |
Fuchs, S., et al., “Clinical Experiences with a New Internal Titanium Fixator for Ventral Spondylodesis of the Cervical Spine,” Trauma Berufskrankh (1999) 1 :382-386, Springer-Verlag 1999, Certified English Translation Thereof. |
Jurgens, C., et al., “Special Indications for the Application of the Fixed Angle Internal Fixation in Femur Fractures,” Trauma Berufskrankh (1999) 1 :387,391, Springer-Verlag 1999, Certified English Translation Thereof. |
Wolter, D., et al., “Titanium Internal Fixator for the Tibia,” Trauma Berufskrankh, 2001-3 (Supp 2): S156-S161, Springer-Verlag 2001, Certified English Translation Thereof. |
Fuchs, S., et al., “Titanium Fixative Plate System with Multidirectional Angular Stability in the Lower Leg and Foot,” Trauma Berufskrankh, 2001-3 (Suppl 4): S447-S453, Springer-Verlag 2001, Certified English Translation Thereof. |
Office Action for U.S. Appl. No. 13/774,721, dated Aug. 22, 2013. |
Australian Office Action in Application No. 2013202741, dated Feb. 3, 2014, 4 pages. |
Examiner's First Report on Australian Application No. 2006272646, dated Mar. 21, 2011, 4 pages. |
Smith & Nephew Brochure entitled ‘Surgical Technique PERI-LOC VLP Variable-Angle Locked Plating System,’ pp. 1-32 (Nov. 2007). |
Smith & Nephew Brochure entitled ‘PERI-LOC VLP Variable-Angle Locked Plating System Distal Tibia Locking Plates,’ 4 pages (Oct. 2007). |
Smith & Nephew Brochure entitled ‘PERI-LOC VLP Variable-Angle Locked Plating System Distal Fibula Locking Plates,’ 04 pages (Oct. 2007). |
Smith & Nephew Brochure entitled ‘PERI-LOC VLP Variable-Angle Locked Plating System Proximal Tibia Locking Plates,’ 04 pages (Oct. 2007). |
Smith & Nephew Brochure entitled ‘PERI⋅LOC VLP Variable-Angle Locked Plating System Proximal Tibia Variable-Angle Locking Plates,’ 04 pages (Nov. 2007). |
Smith & Nephew Brochure entitled ‘PERI-LOC VLP Variable-Angle Locked Plating System Improved Torsional Fatigue Properties with Thin Locked Versus Non-Locked Plate Constructs for Fixation of Simulated Osteoporotic Distal Fibula Fractures,’ 04 pages (Nov. 2007). |
Winkelstabilitat, litos Unidirectional locking screw technology, Jan. 15, 2008, 5 pages http://www.litos.com/paqes/winkelsta bilitaet e.html. |
“SMARTLock Locking Screw Technology,” http://www.stryker.com/microimplants/products/cmf smartlock.phn, Mar. 14, 2004. |
International Search Report for PCT /US2006/028778, dated Apr. 19, 2007. |
“Fracture and Dislocation Compendium,” Orthopaedic Trauma Association Committee for Coding and Classification, Journal of Orthopaedic Trauma, vol. 10, Suppl.,jp, v=ix, 1996. |
English Abstract of JP 2002532185, Published Oct. 2, 2002. |
English Abstract of ZA 200200992, Published Dec. 18, 2002, Applicant: SYNTHES AG. |
NCB® Proximal Humerus Plating System, Surgical Technique, Zimmer, Inc. 2005. |
Zimmer® NCB® Plating System, Zimmer, Inc. 2006. |
NCB® Distal Femoral Plating System, Surgical Technique, Zimmer, Inc. 2005. |
New Trauma Products from AO Development, News—No. 1, 2007. |
Office Action for Japanese Application No. 2008-0524048 dated Oct. 25, 2011, 6 pages. |
Office Action for U.S. Appl. No. 12/069,331 dated Aug. 23, 2011, 12 pages. |
International Preliminary Report on Patentability for International Application No. PCT/US2006/028778, dated Jan. 29, 2008, 9 pages. |
Office Action for U.S. Appl. No. 12/484,527, dated May 18, 2011, 10 pages. |
Office Action for U.S. Appl. No. 12/484,527, dated Jan. 20, 2011, 9 pages. |
“Polyax Wide Angle Freedom Surgical Technique Distal Femoral Locked Playing System,” DePuy International Ltd., http://www /rcsed .ac.u k/fellows/Iva nrensbu rg/ classification/su rgtech/depuy (2005). |
DePuy Orthopaedics, Inc., “Surgical Technique Distal Femoral Locked Plating System,” Polyax Wide Angle Freedom (2005). |
Machine Translation of EP 1649819. |
Final Office Action for U.S. Appl. No. 12/069,331, dated Apr. 9, 2012. |
Office Action for U.S. Appl. No. 11/996, 795, dated Mar. 23, 2012. |
Decision of Rejection for Japanese Application No. 2008-0524048, dated Oct. 30, 2011. |
Office Action for U.S. Appl. No. 11/996,795, dated Nov. 21, 2012. |
Final Office Action for Japanese Application No. 2017-145326, dated Jan. 28, 2019. |
Office Action for Canadian Patent Application No. 2,839,423, dated Dec. 6, 2018. |
Number | Date | Country | |
---|---|---|---|
20180250047 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
61497180 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13524506 | Jun 2012 | US |
Child | 15970682 | US |