The present disclosure is generally related to acoustic transducer mounts and more particularly is related to a variable angle transducer interface block.
Acoustic transducers pass a sound wave into a material. The material can be gas, liquid or air, or some combination thereof. The sound waves are typically longitudinal, shear, or surface waves, and the acoustic waves reflect, refract or transmit at impedance boundaries. These boundaries usually occur when there are material changes along the path of the wave, such as a vessel wall containing a liquid material. When an acoustic wave propagates perpendicularly to an impedance boundary, then the wave may only reflect or transmit through the boundary. However, the environment gets much more complex when a wave contacts an impedance boundary at an angle. This complexity provides a wide variety of information back to a user. For example, the wave may refract, convert to a shear wave, convert to a surface wave, transmit at a new angle, or reflect.
When a return acoustic signal is analyzed, a user needs to ensure the wave traveled as expected in a material. This requires that the signal is inserted into the material at a fixed angle. Currently, acoustic waves are inserted into a material using fixed angle wedges. If a wedge angle is not correct for a desired analysis, then a user has limited options to insert the signal into the material.
Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.
Embodiments of the present disclosure provide an apparatus, a system, and methods for variable angle transducer interface block. Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. The variable angle transducer interface block apparatus has an interface block having a mounting receiver. The interface block is positioned proximate to a material wall. A curved mounting structure is movably connected to the mounting receiver. A transducer is mounted on the curved mounting structure, wherein an angle of an acoustic signal transmitted by the transducer into the material wall is adjustable by movement of the curved mounting structure relative to the mounting receiver.
The present disclosure can also be viewed as providing methods of adjusting a propagation angle of an acoustic signal through a material. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: providing a transducer mounted on a curved mounting structure, the curved mounting structure movably connected to a mounting receiver of an interface block; positioning the interface block proximate to a material wall; transmitting, with the transducer, an initial acoustic signal through the interface block and the material wall, the initial acoustic signal having an initial propagation angle and an initial material propagation angle; determining the initial material propagation angle; rotating the transducer and the curved mounting structure within the mounting receiver; and transmitting, with the transducer, a subsequent acoustic signal through the interface block and the material wall, the subsequent acoustic signal having a subsequent material propagation angle different from the initial material propagation angle.
Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.
Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
To improve upon the conventional devices used within the industry, the subject disclosure is directed to a variable angle transducer interface block which allows a transducer to have an easily variable angle relative to a material. While fixed angle wedges can be used for transmitting the acoustic signal in static positions at a given time, they have many shortcomings when the angle of transmission of the acoustic signal needs to be adjusted. For example, it is common for the desired angle of transmission to be varied depending on the material thickness, acoustic velocity in the material, impedance barrier, and similar criteria, such as temperature or density, where adjusting the angle of the transducer could be due to changes in temperature, which can change the density. The variable angle transducer interface block described herein is a device that allows a user to send an acoustic signal into a material at a variety of angles, which allows for detailed investigation of particles flowing through a material.
The mated shapes of the curved mounting structure 40 and the mounting receiver 22 may include any type of shapes, such as true hemispherical, semi-hemispherical such as more or less than a hemisphere, curved, arched, or similar, including half pipe or half cylinder. In one example, the curved mounting structure 40 may have a volume and shape greater than a hemisphere but less than a whole sphere. The transducer 50 is then mounted to the exterior of the curved mounting structure 40, such that when the curved mounting structure 40 is angularly moved relative to the interface block 20, the angular orientation of the transducer 50 is adjusted. Additionally, the curved mounting structure 40 and the mounting receiver 22 may be manufactured from various materials, which may be adjusted for each application, such as to accommodate an expected temperature range or the measured material properties.
The interface block 20 and the curved mounting structure 40 may be made from any materials having suitable acoustic impedances for transmission of the acoustic signal into the material wall 30. This may include a single material for the interface block 20 and the curved mounting structure 40, a different material for each component, a combination of materials making up the interface block 20 or the curved mounting structure 40, and the like. For example, the material forming the interface block 20 can be formed from metals or non-metal materials, like glass, plastic, and the like. Similar, it is noted that the material wall 30 may be formed from any metal or non-metal material, and the material within the container having the wall 30 can include any substance, including fluids, liquids, gasses, solids, etc. When the material is a petroleum product, the detected material therein may include a sludge, paraffins, or sand gels.
The interface block 20 may have a first acoustic impedance, and the curved mounting structure 40 may have a second acoustic impedance. In one example, the interface block 20 and the curved mounting structure 40 may have the same acoustic impedance characteristics, i.e., may be made from the same material or from different materials having the same acoustic characteristics. In another example, the first and second acoustic impedances may be different from one another; for instance, the interface block 20 may have a higher impedance than the curved mounting structure 40, or vice-versa. In another example, the first and second acoustic impedances may differ from the acoustic impedance characteristics of the material wall.
While
The acoustic wave created from the transducer 50 and transmitted into the mounting structure 40 travels in a known direction, in that, the direction of the signal can be calculated and understood. Specifically, in the apparatus 10, the materials which form the interface block 20, the mounting structure 40 and the couplants 60, if used, all have acoustic properties which are known. With these material properties known, the acoustic wave propagation angle 72 into the interface block 20 can be calculated and verified experimentally, such that the apparatus 10 can be used to easily adjust the wave propagation angle 74 into the material 30 to optimize the angle needed for analysis of material 30. It is noted that the surface wall of the material 30 may have various shapes, including flat, curved, or otherwise, and the apparatus 10 may be adjusted to fit to the particular shape of the material 30 surface.
With reference to
With regards to the interface block 20, it is noted that it may be attached to the material wall 30 with a couplant. The interface block may be circular, or it may have another shape. In one example, the interface block 20 may only extend less than 360 degrees to form a portion of a truncated pyramid or truncated cone (e.g. available angles may be reduced). The signal angle may be determined leaving interface block 20, as shown in
The movement of the mounting structure 40 relative to the interface block 20 may be manual, automated, or semi-automated. For example, a servo motor or similar device may be used to adjust the angle remotely. In one example, the angle can be interactively controlled by signal processing unit which may include an AI processing component with learning capabilities. The transducer 50 and mounting structure 40 can move in pitch and yaw directions, or in the case of mounting structures 40 which are not spherical, it is possible to have movement in a roll direction. For instance, for non-circular transducers, the roll axis may be used by spinning the transducer 50 at a given angle. If automation is used to adjust the wave angle, the movement may be driven by various objectives, such as, for example, search patterns, feedback loops, closed loops or Artificial Intelligence (AI) driven movements, flaw locations, and/or the extent of flaws in the material 30. Additionally, the movement of the transducer 50 may be controlled at predetermined angles, which are marked in various ways, such as by notches or textual markings on the interface block 20 and/or the mounting structure 40. For instance, the notches or textual markings may indicate desired measurement angles commonly in use, or at regular intervals, for example at 10°, 15°, 20°, and so on.
It may be possible to study processes in real-time which lead to measured changes in the liquid properties and have some localization characteristic that can be traced. Many of the processes may have structural components that develop over time of various shapes and sizes they occur in many industries, for example, within the chemical, food, oil and gas, medical, water management, and other industries. In one example, with flow locations, it may be possible to scan large areas of a wall by simply changing the angle of the signal that is being sent, which may be used to determine even small flaws in the wall without moving the transmitter location. It may also be possible to scan in small locations, such as between a receiver and transmitter placed in the fixed locations.
It is noted that while one transducer is disclosed relative to
The apparatus 10 may be used with a variety of techniques and be used in a variety of applications, all of which are considered within the scope of the present disclosure. With fine tuning of desired angles within a material wall, it is possible to record final angle for a fixed transducer angle emplacement and then determine the correct angle for refraction within a vessel. It is also noted that the desired acoustic signal angle may be fine-tuned or varied due to the temperature, since an impedance barrier value changes due to the density on both side of the barrier, and the densities are changing non-linearly so the angle of reflection may change. The apparatus 10 can also be used to characterize material flaws within a structure, such as a vessel used for holding fluids, such as a petroleum holding tank. To find the material flaws, the apparatus 10 determines extent of the flaws by scanning multiple input angles. Correct variations in refraction/reflection angles may be needed due to environmental variability. These correction variations may be manual, manual with feedback loop, automated search, automated feedback loop, AI driven feedback loop, and/or fine tuning of propagation angle to support signal boost. It is also possible to adjust the number of reflections in a vessel for changes in material and accuracy. For example, it is possible to increase and/or decrease the number of bounces used in an acoustic flowmeter. Increase bounces may provide greater accuracy, whereas decrease bounces may provide a greater signal at the receiver.
A motor 90, which may be a servo motor, piezo-electric motor, or any other suitable type of component to control and induce motion, may be in communication with the apparatus 10. In one example, the motor 90 may be in communication with the curved mounting structure 40, as shown in
In one example, a processor 94 may be in communication with the motor 90 across an electrical connection 96. The processor 94 may be any suitable processor having any suitable architecture and operating characteristics, including microcontrollers, microprocessors, embedded processors, multi-core processors, processor arrays, remote and cloud processors, and the like. The processor 94 may include any typical and necessary components for operation, such as a power supply, computer-readable memory, user interface software or hardware, network communications hardware, and the like. The processor 94 may be configured to control the movement of the transducer 50 by operating the motor 90 to adjust the position of the curved mounting structure 40. Computer software may allow a user to operate the motor 90 through a user interface. In one example, the processor 94 may be configured to adjust the angle of the acoustic signal according to a feedback loop, flaw location parameters, and flaw extent parameters.
Step 102 includes providing a transducer mounted on a curved mounting structure, the curved mounting structure movably connected to a mounting receiver of an interface block. In one example, the mounting receiver may be shaped as a hemispherical cavity within a top end of the interface block. The shape of the curved mounting structure may correspond to the hemispherical cavity shape of the mounting receiver such that the curved mounting structure and the mounting receiver are engageable to fit together. In another example, the mounting receiver may be shaped as a hemicylindrical cavity within the top end of the interface block. The shape of the curved mounting structure may correspond to the hemicylindrical cavity shape of the mounting receiver. Depending on the shape of the mounting receiver and the curved mounting structure, the transducer and the curved mounting structure may be rotatable along any of a pitch axis, a yaw axis, and a roll axis.
In one example, the curved mounting structure may include a flat top surface. The surface area of the flat top surface may be larger than or equal to the surface area of the transducer, i.e., the mounted side of the transducer may fit completely onto the flat top surface of the curved mounting structure. This may allow the curved mounting structure an uninhibited range of rotation without the transducer contacting the sides of the interface block. In another example, the receiver of the mounting structure may be sized smaller than the curved mounting structure, such that only a radial portion of the curved mounting structure can contact the curved interior surface of the receiver. This may allow the transducer to have a wider range of motion, due to a wider spatial clearance between the receiver and the transducer.
Step 104 includes positioning the interface block proximate to a material wall. In one example, the interface block may be positioned in direct contact with the material wall. In another example, the interface block and the material wall may be placed in contact with a couplant material to ensure acoustic transfer.
Step 106 includes transmitting, with the transducer, an initial acoustic signal through the interface block and the material wall, the initial acoustic signal having an initial propagation angle and an initial material propagation angle.
Step 108 includes determining the initial material propagation angle. The initial material propagation angle may be determined by calculating the initial propagation angle of the initial acoustic signal through the interface block, based on the position and orientation of the transducer on the curved mounting structure, and correlating it with differences in the acoustic impedances of the curved mounting structure, the interface block, the material wall, and any couplants if used. In one example, the angular propagation of the acoustic signal may be based on additional factors such as the relative temperatures of the components, the frequency or wavelength of the initial acoustic signal, and other material properties.
Step 110 includes rotating the transducer and the curved mounting structure within the mounting receiver. In one example, the transducer and the curved mounting structure may be rotated manually. In another example, a motor may be in communication with the transducer and/or the curved mounting structure to rotate the transducer and the curved mounting structure. The motor may be operated by physical controls, such as buttons, switches, dials, and the like, or by digital controls. In one example, the digital controls may be operated by a processor in communication with the motor. The processor may be configured to control the movement of the transducer by operating the motor to adjust the position of the curved mounting structure. Computer software may allow a user to operate the motor through a user interface. In one example, the processor may be configured to adjust the angle of the acoustic signal according to a feedback loop, flaw location parameters, and flaw extent parameters.
Step 112 includes transmitting, with the transducer, a subsequent acoustic signal through the interface block and the material wall, the subsequent acoustic signal having a subsequent material propagation angle different from the initial material propagation angle. The subsequent propagation angle may be determined using the same procedure described in Step 108. The subsequent acoustic signal may propagate at an angle different from the initial acoustic signal through the material wall, which may in turn cause the subsequent acoustic signal to interact with a different aspect of the material wall.
In one example, the process may be repeated through one or more iterative processes to determine a desired propagation angle for a fixed transducer angle emplacement, to determine an optimal angle for acoustic refraction within the material wall, or to discover other angles having desired properties. In another example, the process may be repeated to discover and characterize material flaws in the material wall. For instance, the initial and subsequent acoustic signals may be received by an acoustic sensor, which may record the intensity and other wave characteristics of the acoustic signals. The acoustic sensor may be in electrical communication with a processor configured to analyze the received acoustic signals. Data recorded by the acoustic sensor and processor may be analyzed to determine the location, type, size, and extent of flaws in the material. In another example, the initial and subsequent acoustic signals may be received and analyzed to determine variations in refraction or reflection angles at the material wall interface caused by environmental conditions. In still another example, the initial and subsequent acoustic signals may be received and analyzed to measure and optimize the number of bounces in the material.
While the disclosure herein has described the subject invention with acoustic waves, it may be possible, in certain circumstances, to use other types of waves in place of acoustic waves. For instance, it may be possible in some situations to use any non-intrusive and non-destructive wave form, such as radiological, optical, magnetic, or others.
It should be emphasized that the above-described embodiments of the present disclosure, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claims.
This application claims benefit of U.S. Provisional Application Ser. No. 63/120,602 filed Dec. 2, 2020 and titled “Variable Angle Transducer Interface Block”, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2449054 | Chantlin | Sep 1948 | A |
3019650 | Worswick | Feb 1962 | A |
3703829 | Dougherty | Nov 1972 | A |
3837218 | Flambard et al. | Sep 1974 | A |
3971962 | Green | Jul 1976 | A |
4065958 | Krylova et al. | Jan 1978 | A |
4118983 | Braznikov | Oct 1978 | A |
4121468 | Glover et al. | Oct 1978 | A |
4182177 | Prough | Jan 1980 | A |
4280126 | White | Jul 1981 | A |
4320659 | Lynnworth et al. | Mar 1982 | A |
4326173 | Newman | Apr 1982 | A |
4501146 | Greenhalgh | Feb 1985 | A |
4580448 | Skrgatic | Apr 1986 | A |
4596266 | Kinghom et al. | Jun 1986 | A |
4599892 | Doshi | Jul 1986 | A |
4676098 | Erlenkämper et al. | Jun 1987 | A |
4852416 | Boone | Aug 1989 | A |
4934191 | Kroening et al. | Jun 1990 | A |
4954997 | Dieulesaint et al. | Sep 1990 | A |
4977780 | Machida | Dec 1990 | A |
5015995 | Holroyd | May 1991 | A |
5038611 | Weldon et al. | Aug 1991 | A |
5040415 | Barkhoudarian | Aug 1991 | A |
5148700 | King | Sep 1992 | A |
5195058 | Simon | Mar 1993 | A |
5295120 | McShane | Mar 1994 | A |
5325727 | Miller et al. | Jul 1994 | A |
5415033 | Maresca, Jr. et al. | May 1995 | A |
5438868 | Holden et al. | Aug 1995 | A |
5453944 | Baumoel | Sep 1995 | A |
5460046 | Maltby et al. | Oct 1995 | A |
5469749 | Shimada et al. | Nov 1995 | A |
5604314 | Grahn | Feb 1997 | A |
5770806 | Hiismaki | Jun 1998 | A |
5821427 | Byrd | Oct 1998 | A |
5836192 | Getman et al. | Nov 1998 | A |
6035903 | Few et al. | Mar 2000 | A |
6151956 | Takahashi et al. | Nov 2000 | A |
6157894 | Hess et al. | Dec 2000 | A |
6192751 | Stein et al. | Feb 2001 | B1 |
6330831 | Lynnworth et al. | Dec 2001 | B1 |
6354147 | Gysling et al. | Mar 2002 | B1 |
6368281 | Solomon | Apr 2002 | B1 |
6443006 | Degrave | Sep 2002 | B1 |
6470744 | Usui et al. | Oct 2002 | B1 |
6481287 | Ashworth et al. | Nov 2002 | B1 |
6513385 | Han | Feb 2003 | B1 |
6575043 | Huang et al. | Jun 2003 | B1 |
6578424 | Ziola | Jun 2003 | B1 |
6631639 | Dam et al. | Oct 2003 | B1 |
6672163 | Han et al. | Jan 2004 | B2 |
6691582 | Nawa et al. | Feb 2004 | B1 |
6836734 | Rojas et al. | Dec 2004 | B2 |
6925868 | Young et al. | Aug 2005 | B2 |
6938488 | Diaz et al. | Sep 2005 | B2 |
7085391 | Yamaya | Aug 2006 | B1 |
7114375 | Panetta et al. | Oct 2006 | B2 |
7246522 | Diaz et al. | Jul 2007 | B1 |
7299136 | DiFoggio et al. | Nov 2007 | B2 |
7330797 | Bailey et al. | Feb 2008 | B2 |
7359803 | Gysling et al. | Apr 2008 | B2 |
7363174 | Kishiro et al. | Apr 2008 | B2 |
7430924 | Gysling et al. | Oct 2008 | B2 |
7437946 | Gysling | Oct 2008 | B2 |
7624650 | Gysling et al. | Dec 2009 | B2 |
7624651 | Fernald et al. | Dec 2009 | B2 |
7656747 | Mandal et al. | Feb 2010 | B2 |
7694570 | Dam et al. | Apr 2010 | B1 |
7757560 | Hofmann | Jul 2010 | B2 |
7962293 | Gysling | Jun 2011 | B2 |
7966882 | Greenwood | Jun 2011 | B2 |
8249829 | Vass et al. | Aug 2012 | B2 |
8346491 | Loose et al. | Jan 2013 | B2 |
8482295 | Sadri et al. | Jul 2013 | B2 |
8683882 | Jackson | Apr 2014 | B2 |
8820182 | Nikolay Nikolov et al. | Sep 2014 | B2 |
8850882 | Qu et al. | Oct 2014 | B2 |
8915145 | Van Orsdol | Dec 2014 | B1 |
9057677 | Field | Jun 2015 | B2 |
9383476 | Trehan et al. | Jul 2016 | B2 |
9557208 | Kuroda et al. | Jan 2017 | B2 |
9772311 | Liljenberg et al. | Sep 2017 | B2 |
9816848 | Raykhman et al. | Nov 2017 | B2 |
9891085 | Muhammad et al. | Feb 2018 | B2 |
10122051 | Kuhne et al. | Nov 2018 | B2 |
10458871 | Norli | Oct 2019 | B2 |
10794871 | Blackshire | Oct 2020 | B1 |
11020793 | De Monte et al. | Jun 2021 | B2 |
11047721 | Schöb et al. | Jun 2021 | B2 |
11274952 | Bober et al. | Mar 2022 | B2 |
11293791 | Firouzi et al. | Apr 2022 | B2 |
11536696 | Bivolarsky et al. | Dec 2022 | B2 |
20020170753 | Clare | Nov 2002 | A1 |
20020173230 | Mayes | Nov 2002 | A1 |
20040035208 | Diaz et al. | Feb 2004 | A1 |
20040079150 | Breed et al. | Apr 2004 | A1 |
20040173021 | Lizon et al. | Sep 2004 | A1 |
20040226615 | Morikawa et al. | Nov 2004 | A1 |
20050055136 | Hofmann et al. | Mar 2005 | A1 |
20050128873 | LaBry | Jun 2005 | A1 |
20050178198 | Freger et al. | Aug 2005 | A1 |
20050247070 | Arshansky et al. | Nov 2005 | A1 |
20060196224 | Esslinger | Sep 2006 | A1 |
20070001028 | Gysling | Jan 2007 | A1 |
20070068248 | Freger et al. | Mar 2007 | A1 |
20070068253 | Carodiskey | Mar 2007 | A1 |
20070157737 | Gysling et al. | Jul 2007 | A1 |
20070205907 | Schenk, Jr. | Sep 2007 | A1 |
20080092623 | Lynch et al. | Apr 2008 | A1 |
20080101158 | Hosseini et al. | May 2008 | A1 |
20090143681 | Jurvelin et al. | Jun 2009 | A1 |
20100111133 | Yuhas et al. | May 2010 | A1 |
20100199779 | Liu et al. | Aug 2010 | A1 |
20100218599 | Young et al. | Sep 2010 | A1 |
20100242593 | Lagergren et al. | Sep 2010 | A1 |
20110029262 | Barkhouse | Feb 2011 | A1 |
20110072904 | Lam et al. | Mar 2011 | A1 |
20110120218 | Aldridge | May 2011 | A1 |
20110239769 | Schmitt et al. | Oct 2011 | A1 |
20110271769 | Kippersund et al. | Nov 2011 | A1 |
20110284288 | Sawyer et al. | Nov 2011 | A1 |
20120024067 | Oberdoerfer | Feb 2012 | A1 |
20120055239 | Sinha | Mar 2012 | A1 |
20120173169 | Skelding | Jul 2012 | A1 |
20120222471 | Raykhman et al. | Sep 2012 | A1 |
20120259560 | Woltring et al. | Oct 2012 | A1 |
20120262472 | Garr et al. | Oct 2012 | A1 |
20120265454 | Rudd et al. | Oct 2012 | A1 |
20120281096 | Gellaboina et al. | Nov 2012 | A1 |
20130002443 | Breed et al. | Jan 2013 | A1 |
20130068027 | Sullivan et al. | Mar 2013 | A1 |
20130080081 | Dugger et al. | Mar 2013 | A1 |
20130090575 | Rupp et al. | Apr 2013 | A1 |
20130120155 | Hagg | May 2013 | A1 |
20130128035 | Johns et al. | May 2013 | A1 |
20130213714 | Fuida | Aug 2013 | A1 |
20140020478 | Ao et al. | Jan 2014 | A1 |
20140027455 | Castellano et al. | Jan 2014 | A1 |
20140076415 | Dunki-Jacobs et al. | Mar 2014 | A1 |
20140107435 | Sharf | Apr 2014 | A1 |
20140223992 | Harper et al. | Aug 2014 | A1 |
20140301902 | Fernald et al. | Oct 2014 | A1 |
20140375169 | Na | Dec 2014 | A1 |
20150075278 | Dockendorff et al. | Mar 2015 | A1 |
20150198471 | Furlong et al. | Jul 2015 | A1 |
20150212045 | Raykhman et al. | Jul 2015 | A1 |
20150247751 | Kutlik et al. | Sep 2015 | A1 |
20150260003 | McHugh et al. | Sep 2015 | A1 |
20150276463 | Milne et al. | Oct 2015 | A1 |
20150369647 | Kumar et al. | Dec 2015 | A1 |
20160025545 | Saltzgiver et al. | Jan 2016 | A1 |
20160041024 | Reimer et al. | Feb 2016 | A1 |
20160108730 | Fanini et al. | Apr 2016 | A1 |
20160146653 | Skelding | May 2016 | A1 |
20160169839 | Gottlieb et al. | Jun 2016 | A1 |
20160216141 | Leaders et al. | Jul 2016 | A1 |
20160265954 | Bachmann et al. | Sep 2016 | A1 |
20160320226 | Schaefer et al. | Nov 2016 | A1 |
20170002954 | Brown et al. | Jan 2017 | A1 |
20170010144 | Lenner et al. | Jan 2017 | A1 |
20170010145 | Lenner et al. | Jan 2017 | A1 |
20170010146 | Kassubek et al. | Jan 2017 | A1 |
20170059389 | Moore et al. | Mar 2017 | A1 |
20170082650 | Hies et al. | Mar 2017 | A1 |
20170087526 | Luharuka | Mar 2017 | A1 |
20170102095 | Kunita et al. | Apr 2017 | A1 |
20170097322 | Giese et al. | Jun 2017 | A1 |
20170199295 | Mandal | Jul 2017 | A1 |
20170202595 | Shelton, IV | Jul 2017 | A1 |
20170239741 | Furuta | Aug 2017 | A1 |
20170268915 | Gestner et al. | Sep 2017 | A1 |
20170309989 | Waelde et al. | Oct 2017 | A1 |
20180035603 | Kremmer et al. | Feb 2018 | A1 |
20180044159 | Crouse et al. | Feb 2018 | A1 |
20180080809 | Tokarev et al. | Mar 2018 | A1 |
20180113663 | Jain | Apr 2018 | A1 |
20180149505 | Ploss et al. | May 2018 | A1 |
20180266874 | Montoya et al. | Sep 2018 | A1 |
20180299317 | Truong et al. | Oct 2018 | A1 |
20180306628 | Parrott et al. | Oct 2018 | A1 |
20180348169 | Lee | Dec 2018 | A1 |
20190011304 | Cunningham et al. | Jan 2019 | A1 |
20190063984 | Bowley | Feb 2019 | A1 |
20190078927 | Takayama et al. | Mar 2019 | A1 |
20190137310 | Xiao | May 2019 | A1 |
20190154480 | Schöb et al. | May 2019 | A1 |
20190195629 | Vaissiere | Jun 2019 | A1 |
20190195830 | Tamura et al. | Jun 2019 | A1 |
20190272496 | Moeller | Sep 2019 | A1 |
20190368908 | Aughton et al. | Dec 2019 | A1 |
20200018628 | Head et al. | Jan 2020 | A1 |
20200182736 | Kim et al. | Jun 2020 | A1 |
20200195449 | Obaidi | Jun 2020 | A1 |
20200378283 | Zhang et al. | Dec 2020 | A1 |
20200378812 | Heim | Dec 2020 | A1 |
20200378818 | Heim et al. | Dec 2020 | A1 |
20210382014 | Xu | Dec 2021 | A1 |
20220034850 | Zhang et al. | Feb 2022 | A1 |
20220178879 | Bivolarsky et al. | Jun 2022 | A1 |
20220178881 | Bivolarsky et al. | Jun 2022 | A1 |
Number | Date | Country |
---|---|---|
204944617 | Jan 2016 | CN |
105333925 | Feb 2016 | CN |
105548370 | May 2016 | CN |
105548370 | May 2016 | CN |
10 2010 029 254 | Dec 2011 | DE |
2450701 | May 2012 | EP |
2962096 | Aug 2019 | EP |
2192717 | Jan 1990 | GB |
2000314651 | Nov 2000 | JP |
2013140029 | Jul 2013 | JP |
200174618 | Mar 2000 | KR |
200174618 | Mar 2000 | KR |
WO 8704793 | Aug 1987 | WO |
WO-8809895 | Dec 1988 | WO |
WO9010849 | Sep 1990 | WO |
WO 2007149605 | Dec 2007 | WO |
WO2008079202 | Jul 2008 | WO |
WO 2014167471 | Oct 2014 | WO |
WO 2020136945 | Jul 2020 | WO |
Entry |
---|
Amjad, Umar et al, “Advanced signal processing technique for damage detection in steel tubes” Proceedings of SPIE, Health Monitoring of Structural and Biological Systems, 2016, 980511 (Apr. 1, 2016);14 pgs. |
Amjad, Umar et al. “Change in time-of-flight of longitudinal (axisymmetric) wave modes due to lamination in steel pipes” Proceedings of SPIE vol. 8695, Health Monitoring of Structural and Biological Systems 2013, 869515 (Apr. 17, 2013); 10 pgs. |
Amjad, Umar et al., “Effects of transducers on guided wave based structural health monitoring” Proceedings of SPIE, vol. 10600, Health Monitoring of Structural and Biological Systems XII, 106000F (Apr. 23, 2018),10 pgs. |
Amjad, U. et al., “Generalized representations and universal aspects of Lamb wave dispersion relations” Proceedings of SPIE, vol. 7650, Health Monitoring of Structural and Biological Systems 2010, 76502F (Apr. 8, 2010), 9 pgs. |
Amjad, Umar et al., “Detection and quantification of pipe damage from change in time of flight and phase” Ultrasoncis vol. 62 (2015) pp. 223-236, Jun. 11, 2015, 14 pgs. |
Amjad, Umar et al., “Detection and quantification of diameter reduction due to corrosion in reinforcing steel bars” Structural Health Monitoring 2015, vol. 14(5) 532-543, 12 pgs. |
Amjad, Umar et al., “Detection and quantification of delamination in laminated plates from the phase of appropriate guided wave modes” Optical Engineering 55(1), Jan. 2016, 11 pgs. |
API: American Petroleum Institute Preliminary Program, Oct. 16-17, 2019, 5 pages. |
Gurkov, Andrey “Gigantic Druzhba oil pipeline paralyzed for weeks” May 7, 2019, 3 pages, https://www.dw.com/en/gigantic-druzhba-oil-pipeline-paralyzed-for-weeks/a-48638989. |
Hassanzadeh et al., “Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks”, Petroleum Science, vol. 15, Jul. 2018, pp. 634-643. |
Kak et al., “Principles of Computerized Tomographic Imaging”, IEEE, 1988, Chapter 2, 48 pgs. |
Luck, Marissa “Deer Park fire a ‘blemish’ for the petrochemical industry's image” Houston Chronicle, Mar. 26, 2019, 3 pages https://www.houstonchronicle.com/business/energy/article/Deer-Park-fire-a-blemish-for-the-image-of-13717661.php. |
Pandey, “Ultrasonic attenuation in condensed matter”, Dissertation for V.B.S. Purvanchal University, 2009, Chapter 1, 36 pgs. |
Pluta et al., “Stress Dependent Dispersion Relations of Acoustic Waves Travelling on a Chain of Point Masses Connected by Anharmonic Linear and Torsional Springs” International Congress on Ultrasonics AIP Conf. Proc. 1433, 471-474 (2012); 5 pgs. |
Shelke, et al., “Mode-Selective Excitation and Detection of Ultrasonic Guided Waves for Delamination Detection in Laminated Aluminum Plates” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, No. 3, Mar. 2011, 11 pgs. |
“TOPS Terminal Operating Practices Symposium” Program Agenda, Apr. 11, 2018, 1 page. |
Zadler, et al., “Resonant Ultrasound Spectroscopy: theory and application”, Geophysical Journal International, vol. 156, Issue 1, Jan. 2004, pp. 154-169. |
Examination Report No. 1 issued in Australian Application No. 2020283140 dated Jan. 4, 2022, 6 pgs. |
International Search Report and Written Opinion issued in PCT/US20/35404, dated Aug. 24, 2020, 11 pages. |
Examination Report No. 1 issued in Australian Patent Application No. 2020302919, dated Feb. 15, 2022, 4 pgs. |
International Search Report and Written Opinion issued in PCT/US20/39966, dated Sep. 18, 2020, 13 pages. |
International Preliminary Report on Patentability issued in PCT/US20/35404 dated Nov. 16, 2021, 8 pgs. |
International Preliminary Report on Patentability issued in PCT/US20/39966 dated Dec. 28, 2021, 10 pgs. |
Notice of Allowance issued in Application U.S. Appl. No. 16/888,469, dated Dec. 23, 2020, 16 pgs. |
Notice of Allowance issued in Application U.S. Appl. No. 17/148,122 dated Jun. 16, 2021, 8 pgs. |
Notice of Allowance issued in Application U.S. Appl. No. 16/914,092 dated Oct. 28, 2021, 14 pgs. |
Office Action issued in Canadian Patent Application No. 3,140,008, dated Feb. 14, 2022, 4 pgs. |
Office Action issued in Application U.S. Appl. No. 16/888,469, dated Aug. 5, 2020, 8 pages. |
Office Action issued in Application U.S. Appl. No. 16/888,469, dated Sep. 8, 2020, 20 pages. |
Office Action issued in Application U.S. Appl. No. 16/914,092, dated Nov. 10, 2020, 22 pgs. |
Office Action issued in Application U.S. Appl. No. 16/914,092, dated Mar. 1, 2021, 25 pgs. |
Office Action issued in Application U.S. Appl. No. 16/914,092, dated Jun. 24, 2021, 24 pgs. |
Office Action issued in Application U.S. Appl. No. 17/148,122, dated Mar. 2, 2021, 26 pgs. |
U.S. Appl. No. 17/543,152, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,461, filed Dec. 5, 2021, Bivolarsky et al. |
International Search Report and Written Opinion issued in PCT/US21/61962 dated Feb. 16, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61924 dated Feb. 16, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/62010 dated Feb. 16, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61970 dated Feb. 18, 2022, 17 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61925 dated Feb. 18, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61646 dated Feb. 25, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/65664 dated Mar. 11, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/62001 dated Mar. 9, 2022, 9 pgs. |
International Search Report and Written Opinion issued in PCT/US21/61926 dated Mar. 8, 2022, 9 pgs. |
Notice of Acceptance issued in Australian Application No. 2020302919 dated Mar. 2, 2022, 4 pgs. |
Notice of Acceptance issued in Australian Application No. 2020283140 dated Mar. 30, 2022, 4 pgs. |
Notice of Allowance issued in Canadian Application No. 3,140,008 dated May 5, 2022, 1 pg. |
Office Action issued in Australian Patent Application No. 2020283140, dated Mar. 18, 2022, 5 pgs. |
Office Action issued in Application U.S. Appl. No. 17/543,200, dated Mar. 9, 2022, 8 pages. |
Office Action issued in Application U.S. Appl. No. 17/542,461, dated Mar. 10, 2022, 18 pages. |
Office Action issued in Application U.S. Appl. No. 17/542,465, dated Mar. 11, 2022, 22 pages. |
Office Action issued in Application U.S. Appl. No. 17/542,872, dated Mar. 17, 2022, 21 pages. |
Office Action issued in Application U.S. Appl. No. 17/566,020, dated Mar. 18, 2022, 20 pages. |
Office Action issued in Application U.S. Appl. No. 17/543,152, dated Apr. 19, 2022, 17 pages. |
Office Action issued in Application U.S. Appl. No. 17/542,814, dated Apr. 25, 2022, 21 pages. |
Vermeersch, “Influence of substrate thickness on thermal impedance of microelectronic structures”, Microelectronics Reliability, 47, 2007, pp. 437-443. |
U.S. Appl. No. 17/540,021, filed Dec. 1, 2021, Heim et al. |
U.S. Appl. No. 17/543,152, filed Dec. 3, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,814, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,461, filed Dec. 5, 2021, Burcham et al. |
U.S. Appl. No. 17/542,465, filed Dec. 5, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,872, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/543,200, filed Dec. 6, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/542,462, filed Dec. 5, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/566,020, filed Dec. 30, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/746,622, filed May 17, 2021, Bivolarsky et al. |
U.S. Appl. No. 17/746,640, filed May 17, 2021, Bivolarsky et al. |
Office Action issued in U.S. Appl. No. 17/542,462, dated May 27, 2022, 28 pages. |
Office Action issued in U.S. Appl. No. 17/542,461, dated Jun. 27, 2022, 13 pages. |
Office Action issued in U.S. Appl. No. 17/566,020, dated Jul. 12, 2022, 20 pages. |
Office Action issued in U.S. Appl. No. 17/543,200, dated Jul. 20, 2022, 25 pages. |
Office Action issued in U.S. Appl. No. 17/746,622, dated Jul. 22, 2022, 19 pages. |
Office Action issued in U.S. Appl. No. 17/746,640, dated Aug. 18, 2022, 19 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/542,465, dated Jul. 11, 2022, 18 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/542,872, dated Jul. 11, 2022, 13 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/543,152, dated Jul. 29, 2022, 16 pages. |
Office Action issued in U.S. Appl. No. 17/542,814, dated Aug. 26, 2022, 22 pages. |
Office Action issued in U.S. Appl. No. 17/540,021, dated Sep. 15, 2022, 40 pages. |
Office Action issued in U.S. Appl. No. 17/542,462, dated Nov. 14, 2022, 11 pgs. |
Office Action issued in U.S. Appl. No. 17/566,020, dated Nov. 14, 2022, 21 pgs. |
Notice of Allowance issued in U.S. Appl. No. 17/542,461, dated Oct. 12, 2022, 9 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/543,200, dated Nov. 3, 2022, 16 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/746,622, dated Nov. 8, 2022, 16 pages. |
Notice of Allowance issued in U.S. Appl. No. 17/540,021, dated Mar. 6, 2023, 10 pgs. |
Office Action issued in U.S. Appl. No. 17/542,462, dated Mar. 17, 2023, 11 pgs. |
Office Action issued in U.S. Appl. No. 17/566,020, dated Apr. 3, 2023, 20 pgs. |
Office Action issued in U.S. Appl. No. 17/542,814, dated Apr. 6, 2023, 17 pgs. |
Supplementary Partial EP Search Report issued in EP20 813 097,1, dated Jan. 13, 2023, 16 pgs. |
Office Action issued in U.S. Appl. No. 18/109,022, dated Feb. 13, 2023, 18 pgs. |
International Search Report and Written Opinion issued in PCT/US23/12923 dated May 3, 2023, 9 pgs. |
Supplementary European Search Report issued in EP Application No. 20 813 097.1, dated May 24, 2023, 20 pgs. |
Office Action issued in U.S. Appl. No. 18/111,376, dated Jun. 15, 2023, 28 pgs. |
Supplementary Partial European Search Report issued in EP Application No. 20 832 739.5, dated May 25, 2023, 16 pgs. |
Number | Date | Country | |
---|---|---|---|
20220174380 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63120602 | Dec 2020 | US |