1. Field of the Invention
The invention relates to an attenuator, and more particularly to a variable attenuator.
2. Description of the Related Art
In the family of electronic components, the variable attenuator is one of the common and basic components in electrical circuits and systems. The existence of a variable attenuator makes the fabrication of electrical circuits and the debugging of systems more flexible and convenient. Currently, the variable attenuator is being widely used in circuits and systems with operating frequencies below a few hundred megahertz (MHz).
However, there are several problems with the existing variable attenuator: first, the variation of attenuation is implemented by switching a main signal circuit, and a strong reflection signal (a burst pulse) may occur on the main signal circuit and damage a power tube of a previous stage during the switching process; moreover, the attenuator cannot be completely separated from the main signal circuit, and thus variation of attenuation is not easily implemented.
In view of the above-described problem, it is one objective of the invention to provide a variable attenuator capable of addressing the above-mentioned problems.
To achieve the above objectives, in accordance with one embodiment of the invention, provided is a variable attenuator, comprising at least one-stage attenuator circuit, comprising a signal input end, a signal output end, a common grounded end, a first serial resistor, a first parallel resistor, a first parallel switch, and a first serial switch, wherein the first serial resistor is disposed between the signal input and the signal output end, the signal input, the signal output end, and the first serial resistor form a main signal circuit, the first parallel resistor is connected between the main signal circuit and the common grounded end, the first parallel switch is parallel connected to the first serial resistor, and the first serial switch is serially connected to the first parallel resistor.
In a class of this embodiment, the first serial resistor, the first parallel resistor, the first serial switch, the first parallel switch, the signal input end, and the signal output end or the common grounded end are disposed on different substrates or insulators operating as switches.
In a class of this embodiment, the first parallel switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the first serial switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the at least one-stage attenuator circuit is a π-type attenuator circuit, the π-type attenuator circuit comprises a second parallel resistor and a second serial switch serially connected to each other, the first parallel resistor is connected between the signal input end and the common grounded end, and the second parallel resistor is connected between the signal output end and the common grounded end.
In a class of this embodiment, the at least one-stage attenuator circuit is an at least two-stage cascaded π-type attenuator circuit, a signal output end of a previous stage of the at least two-stage cascaded π-type attenuator circuit operates as a signal input end of a next stage of the at least two-stage cascaded π-type attenuator circuit, and a second parallel resistor connected between the signal output end and the common grounded end of the previous stage of the at least two-stage cascaded π-type attenuator circuit operates as a first parallel resistor between a signal input end and a common grounded end of the next stage of the at least two-stage cascaded π-type attenuator circuit.
In a class of this embodiment, the first serial resistor, the first parallel resistor, the second parallel resistor, the first serial switch, the second serial switch, the first parallel switch, the signal input end, and the signal output end or the common grounded end are disposed on different substrates or insulators operating as switches.
In a class of this embodiment, the first parallel switch, the first serial switch, or the second serial switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the π-type attenuator circuit is equivalent to a distributed resistor.
In a class of this embodiment, the at least one-stage attenuator circuit is a T-type attenuator circuit, the T-type attenuator circuit comprises a second serial resistor serially connected to the first serial resistor, and a second parallel switch parallel connected to the second serial resistor, one end of the first serial resistor is connected to the signal input end, one end of the second serial resistor is connected to the signal output end, the first parallel switch is parallel connected to the first serial resistor, and a connecting point between one end of the first parallel resistor and the main signal circuit is disposed between the first serial resistor and the second serial resistor.
In a class of this embodiment, the first serial resistor, the first parallel resistor, the second serial resistor, the first serial switch, the first parallel switch, the second parallel switch, the signal input end, and the signal output end or the common grounded end are disposed on different substrates or insulators operating as switches.
In a class of this embodiment, the T-type attenuator circuit is equivalent to a distributed resistor.
In a class of this embodiment, the first parallel switch, the second parallel switch, or the first serial switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the at least one-stage attenuator circuit is a T-type attenuator circuit, the T-type attenuator circuit comprises a second serial resistor serially connected to the first serial resistor, one end of the first serial resistor is connected to the signal input end, one end of the second serial resistor is connected to the signal output end, the first parallel switch is parallel connected between the end of the first serial resistor and that of the second serial resistor, and a connecting point between one end of the first parallel resistor and the main signal circuit is disposed between the first serial resistor and the second serial resistor.
In a class of this embodiment, the first serial resistor, the first parallel resistor, the second serial resistor, the first serial switch, the first parallel switch, the second parallel switch, the signal input end, and the signal output end or the common grounded end are disposed on different substrates or insulators operating as switches.
In a class of this embodiment, the T-type attenuator circuit is equivalent to a distributed resistor.
In a class of this embodiment, the first parallel switch, the second parallel switch, or the first serial switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the first serial switch is disposed between the first parallel resistor and the common grounded end, or between the first parallel resistor and the main signal circuit.
In a class of this embodiment, it further comprises at least one correcting circuit comprising a third parallel resistor and a circuit switch.
In a class of this embodiment, one end of the circuit switch is connected to the signal input end, the signal output end, or a cascade on the main signal circuit, the other end of the circuit switch is connected to one end of the third parallel resistor, and the other end of the third parallel resistor is disposed on a microstrip terminal, or connected to the ground directly or via a capacitor or an inductor.
In a class of this embodiment, the at least one-stage attenuator circuit is disposed on a substrate, or an insulator operating as a switch, and the first serial resistor, the first parallel resistor, the first serial switch, and the first parallel switch are disposed on the same layer or different layers of the substrate.
In a class of this embodiment, the variable attenuator is disposed in a coaxial connector.
In a class of this embodiment, the first serial resistor is a chip resistor, a thick film resistor, a thin film resistor, an embedded resistor, a printed resistor, or a combination thereof.
In a class of this embodiment, the first parallel resistor is a chip resistor, a thick film resistor, a thin film resistor, an embedded resistor, a printed resistor, or a combination thereof.
In accordance with another embodiment of the invention, provided is a variable attenuator, comprising at least one-stage bridge-type attenuator circuit, comprising a signal input end, a signal output end, a common grounded end, a serial resistor, a pair of bridge-arm resistors, a node, a parallel resistor, a parallel switch, and a serial switch, wherein the serial resistor is disposed between the signal input and the signal output end, the signal input, the signal output end, and the serial resistor form a main signal circuit, one end of each of the bridge-arm resistors is connected to the serial resistor, the other end of each of the bridge-arm resistors is connected to the node, the parallel resistor is disposed between the node and the common grounded end, the parallel switch is parallel connected to the serial resistor, and the serial switch is serially connected to the parallel resistor.
In a class of this embodiment, the serial switch is disposed between the parallel resistor and the common grounded end.
In a class of this embodiment, the serial switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the parallel switch is implemented by a conductive sheet, or a signal microstrip line disposed on a substrate.
In a class of this embodiment, the at least one-stage bridge-type attenuator circuit is disposed on a substrate, or an insulator operating as a switch, and the serial resistor, the parallel resistor, the serial switch, and the parallel switch are disposed on the same layer or different layers of the substrate.
In a class of this embodiment, the serial resistor is a chip resistor, a thick film resistor, a thin film resistor, an embedded resistor, a printed resistor, or a combination thereof.
In a class of this embodiment, the parallel resistor is a chip resistor, a thick film resistor, a thin film resistor, an embedded resistor, a printed resistor, or a combination thereof.
Advantages of the invention comprise: firstly, the invention employs the parallel switch parallel connected to the serial resistor, and the serial switch serially connected to the parallel resistor, as the parallel switch is switched on to eliminate attenuation on a certain stage, the serial switch is switched off, whereby preventing the parallel resistor from affecting the main signal circuit and ensuring stable attenuation with higher precision and a wider frequency range; moreover, switching of the main signal circuit is not required, which ensures that a signal is always transmitted on the main signal circuit and no reflection signal (burst pulse) is generated on the main signal circuit, and thus a circuit on a previous stage will not be damaged.
Detailed description will be given below in junction with accompanying drawings.
In the invention, parallel switches are parallel connected to serial resistors in different stages of an attenuator circuit, and serial switches are serially connected to any one end of each parallel resistor, as the parallel switches are switched on to eliminate attenuation of a certain stage, the serial switch is switched off whereby preventing the parallel switch from affecting a main signal circuit.
In the invention, the attenuator circuit can be any typical attenuator circuit, such as a π-type attenuator circuit, a T-type attenuator circuit, a bridge-type attenuator circuit, and so on.
In the invention, a serial resistor refers to a resistor connected between a signal input end and a signal output end of the variable attenuator and forming a main signal circuit.
In the invention, a parallel refers to a resistor having an end connected to the main signal circuit directly or via other components, and another end connected to a common grounded end of the variable attenuator.
The parallel resistor and the serial resistor are chip resistors, thick film resistors, thin film resistors, embedded resistors, printed resistors, or combinations thereof.
As shown in
As the first parallel switch 104 is switched on and the first serial switch 105a and the second serial switch 105b are switched off, attenuation of the variable attenuator is 0 dB, and thus variation of attenuation of the variable attenuator is implemented. At this time, the first parallel resistor 102 and the second parallel 103 can be regarded as being hang on the main signal circuit. However, since the first parallel resistor 102 and the second parallel 103 are in a high-resistance state for a RF circuit, their effect on the main signal circuit is neglectable.
As shown in
In this embodiment, a substrate 11 is a RF PCB board. In other embodiment, the substrate 11 can be a ceramic substrate with better heat dissipation and heat tolerance performance. For convenient adjusting and layout, and easy transmission of RF signals, in this embodiment, substrate 11 is a four-layer PCB board. In other embodiment, other number of layers, such as one, two or more may be used. A first layer of the substrate 11 is a surface layer, and a signal input end 108, a signal output end 109, a signal microstrip line 111, both terminals 106a and 106b of the first serial resistor 101, an terminal 107a of the first parallel resistor 102, an terminal 107b of the second parallel resistor 103, and the common grounded end 110 are disposed on the surface layer. Two intermediate layers are metal grounded layers, and are connected to the common grounded end 110 on the surface layer and the bottom layer via a grounded through hole 112. The signal input end 108 is connected to the terminal 106a via the signal microstrip line 111, the terminal 106a is connected to the terminal 106a on the bottom layer via a signal through hole 113, the signal output end 109 is connected to the terminal 106b via the signal microstrip line 111, the terminal 106b is connected to the terminal 106b on the bottom layer via the signal through hole 113, the ends 107a and 107b are respectively connected to the ends 107a and 107b on the bottom layer via the signal through hole 113, and the signal through hole 113 is not connected to the metal grounded layers. The first serial resistor 101, the first parallel resistor 102, and the second parallel resistor 103 are disposed on the bottom layer.
As shown in
A first serial resistor 101 is disposed on a bottom layer of a substrate 11. Both ends of the first serial resistor 101 are connected to ends 106a and 106b on the bottom layer. A first parallel resistor 102 and a second parallel resistor 103 are disposed on the bottom layer of the substrate 11. One end of the first parallel resistor 102 is connected to the terminal 106a, and the other end thereof is connected to the terminal 107a. One end of the second parallel resistor 103 is connected to the terminal 106b, and the other end thereof is connected to the terminal 107b.
To prevent solder tin or welding oil penetrating a signal through hole 113 or a grounded through hole 112 from affecting terminals on the surface layer during automatic welding, solder mask is used to cover the signal through hole 113 or the grounded through hole 112.
As shown in
The insulator 12 is a single-layered PCB board. In other embodiments, the insulator 12 is made of plastics, ceramics and so on. Three conductive sheets 114, 115a and 115b are disposed on the insulator 12. The conductive sheet 114 operates as a switch of the first serial resistor 101, the conductive sheet 115a operates as a switch of the first parallel resistor 102, and the conductive sheet 115b operates as a switch of the second parallel resistor 103. A transition hole 116 operates to move the PCB board.
As shown in
As shown in
When moving the PCB board 12 so that the conductive sheet 114 detaches from the terminal 106a of the first serial resistor 101, namely the first parallel switch 104 parallel connected to the first serial resistor 101 is switched off, the conductive sheet 115a connects the terminal 107a to the common grounded end 110, namely the first serial switch 105a serially connected to the first parallel resistor 102 is switched on, and the conductive sheet 115b connects the terminal 107b to the common grounded end 110, namely the second serial switch 105b serially connected to the second parallel resistor 103 is switched on. At this time, attenuation of the variable attenuator is equal to a predetermined value, and thus variation of the attenuation is realized, and the process is reversible.
As shown in
As shown in
An attenuation circuit is disposed on a substrate 21, and an insulator operating as a switch. In this embodiment, the substrate 21 is a ceramic substrate that features good RF performance and heat tolerance performance and makes it possible to dispose a film resistor (a thin film resistor or a thick film resistor) thereon. In other embodiments, other types of substrates can be used.
A first serial resistor 211 and a common grounded end 214 are disposed on the substrate 21, and both ends of the first serial resistor 211 are respectively connected to a signal input end 212 and a signal output end 213. A thickness of the first serial resistor 211 is slightly less than that of a signal microstrip line. In another embodiment, the first serial resistor 211 is disposed on a bottom layer of the substrate 21.
As shown in
In order to improve precision of the variable attenuator and to reduce affect of the first parallel resistor 217 and the second parallel resistor 218 on the main signal circuit, the first parallel resistor 217, the second parallel resistor 218 and a pair of conductive sheet 215 and 216 are disposed on the same insulator 22. The insulator 22 is a double-layered ceramic substrate having better heat dissipation performance than a PCB board. In other embodiment, the insulator 22 is made of plastic rubber, a PCB board and so on.
The first parallel resistor 217 and the second parallel resistor 218 are disposed on a surface layer of the ceramic substrate, the conductive sheet 215 operating as a first serial switch is connected to one end of the first parallel resistor 217, the conductive sheet 216 operating as a second serial switch is connected to one end of the second parallel resistor 218. The other end of the first parallel resistor 217 and that of the second parallel resistor 218 are connected to the common grounded end 219.
As shown in
As shown in
As shown in
As shown in
An attenuation circuit is disposed on a substrate 23, and an insulator operating as a switch. In this embodiment, the substrate 23 is a ceramic substrate that features good RF performance and makes it possible to dispose a film resistor (a thin film resistor or a thick film resistor) thereon. In other embodiments, other types of substrates can be used.
A signal input end 223, a signal output end 224, and a common grounded end 225 are disposed on the substrate 23.
As shown in
The first parallel resistor 230, the second parallel resistor 231 and a pair of conductive sheet 226 and 227 are disposed on the same insulator 24. The insulator 24 is a double-layered ceramic substrate or PCB board. In other embodiment, the insulator 24 is made of plastic rubber.
The first parallel resistor 230, the second parallel resistor 231, and the first serial resistor 229 are disposed on a surface layer of the insulator 24, one end of the first parallel resistor 230 is connected to the conductive sheet 226, one end of the second parallel resistor 231 is connected to the conductive sheet 227, the other end of the first parallel resistor 230 and that of the second parallel resistor 231 are connected to the common grounded end 232, and both ends of the first serial resistor 229 are respectively connected to the conductive sheets 226 and 227.
As shown in
As shown in
As shown in
The variable attenuator of a first embodiment of the invention has better heat dissipation performance and worse RF and attenuation performance than that of a second embodiment. Positions of resistors and materials of the substrate can be selected as required. Moreover, to facilitate better heat dissipation, heat conduct glue is added in the vicinity of the signal input end and the signal output end, or between the main signal circuit and the common grounded end, whereby facilitating heat dissipation and having no significant effect on RF performance of the attenuator.
A multi-stage π-type attenuator circuit can be obtained if multiple above-mentioned π-type attenuator circuits are serially connected, and a step amplitude of each stage can be freely set.
Switches on each stage of the multi-stage π-type attenuator circuit can be independent from each other, and disposed on at least one insulator (such as a PCB board). Preferably, switches parallel connected to serial resistors and those serially connected to parallel resistors are disposed on the same insulator.
Since variable attenuators are widely used for adjusting power of a system, attenuation of 0 dB greatly affects the system, a fixed attenuator is added to a front end or a rear end, or between different stages of the variable attenuator.
In another embodiment, the first parallel resistor, the second parallel resistor, the first serial switch, the second serial switch, and the first parallel switch are disposed on the insulator, and the first serial resistor is disposed on the substrate, the principle is the same as the first embodiment, and will not be described hereinafter.
For an attenuator with large attenuation (such as 0-60 dB), attenuation is constant as a radio frequency is below 4 GHz, and decreases the radio frequency exceeds 4 GHz. To solve this problem, a correcting circuit is added to the circuit in
A correcting circuit is added to one end or both ends of the at least one-stage attenuator (the three-stage attenuator in this embodiment). The correcting circuit comprises a third parallel resistor Rx and a circuit switch Kx. One end of the third parallel resistor Rx is connected to the circuit switch Kx, and the other end thereof is connected to a microstrip terminal or to the ground. The microstrip terminal is equivalent to a capacitor or an inductor. The other end of the circuit switch Kx is connected to the signal input end or the signal output end, or between cascades of each stage on the main signal circuit, and operates along with the serial switch connected to the attenuator circuit.
In another embodiment, the correcting circuit comprises a third parallel resistor Rx, a circuit switch Kx, and a capacitor (or an inductor). One end of the correcting circuit is connected to the signal input end or the signal output end, or between cascades of each stage on the main signal circuit via the circuit switch Kx. The other end thereof is connected to the ground via the capacitor (or the inductor). The third parallel resistor Rx is connected between the circuit switch Kx and the capacitor (or the inductor), and operates along with the serial switch connected to the attenuator circuit. For example, the correcting circuit is disposed on an insulator (such as a PCB board) with one end thereof connected to a microstrip terminal (such as a microstrip line on the PCB board), and moves along with the insulator. In another embodiment, the other end thereof is connected to another circuit or the ground. As the parallel switch of the attenuator circuit is switched off, the circuit switch Kx is connected to the main signal circuit, and the microstrip terminal connected to the correcting circuit is not connected to any other circuits. At this time the microstrip terminal is equivalent to a RF capacitor or inductor.
The correcting circuit is capable of improving frequency performance and attenuation of the attenuator whereby increasing overall attenuation thereof. The correcting circuit is connected to both ends of an attenuator on a certain stage of the variable attenuator.
As shown in the equivalent circuit diagram in
As shown in
As shown in
As shown in
As shown in
The insulator 42 is a single-layered PCB board. In other embodiments, the insulator 42 is made of plastics, metal, ceramics and so on. Three conductive sheets 412, 413 and 414 are disposed on the insulator 42. The conductive sheet 413 operates as a first parallel switch of the first serial resistor 401(a), the conductive sheet 412 operates as a second parallel switch of the second serial resistor 401(b), and the conductive sheet 414 operates as a first serial switch of the first parallel resistor 402. A transition hole 415 operates to move the PCB board. A width of each of the conductive sheets 412 and 413 is the same as that of a signal microstrip line, and the conductive sheets 412 and 413 should be long enough to shorten the first serial resistor and the second serial resistor, respectively.
As shown in
A part indicated by a dashed line illustrates a PCB board in
When moving the PCB board so that the conductive sheet 413 detaches from the terminal 406(a) and the conductive sheet 412 detaches from the terminal 406(b), namely switches connected to the first serial resistor 401(a) and the second serial resistor 401(b) are switched off. At this time, the conductive sheet 414 is contacted with the terminal 405, namely the serial switch connected to the first parallel resistor 402 is switched on, attenuation of the variable attenuator is equal to a predetermined value, and thus variation of the attenuation is realized, and the process is reversible.
A multi-stage T-type attenuator circuit can be obtained if multiple above-mentioned T-type attenuator circuits are serially connected, switches on each stage of the multi-stage T-type attenuator circuit can be independent from each other, and disposed on at least one insulator (such as a PCB board). The principle is the same as the second embodiment.
In another embodiment, the first parallel resistor, the first serial switch, the first parallel switch, and the second parallel switch are disposed on the insulator, and the first serial resistor and the second serial resistor are disposed on the substrate. The principle is the same as the first embodiment, and will not be described hereinafter.
As shown in
A multi-stage T-type attenuator circuit can be obtained if multiple above-mentioned T-type attenuator circuits are serially connected, and a step amplitude of each stage can be freely set. Switches on different stages are independent from each other, or disposed on at least one insulator (PCB board).
In another embodiment, the first parallel resistor, the first serial switch, and the first parallel switch are disposed on the insulator, and the first serial resistor and the second serial resistor are disposed on the substrate. The principle is the same as the first embodiment, and will not be described hereinafter.
As shown in
As shown in
As shown in
As shown in
Thus a typical bridge-type attenuator circuit with designed attenuation is formed. If resistance of the serial resistor 606 is 21 ohm, and that of the parallel resistor 609 is 121 ohm, a variable attenuator having attenuation changing from 0 dB to 3 dB is formed, and the variation process is reversible.
A multi-stage variable attenuator can be obtained if multiple above-mentioned attenuator circuits are serially connected, and a step amplitude of each stage can be freely set. Switches on different stages are independent from each other, and all the switches can be disposed on at least one insulator (PCB board).
It should be noted that as a multi-stage attenuator can be formed by attenuator circuits of the same type, or by different types of attenuator circuits, for example, π-type attenuator circuits and T-type attenuator circuits serially connected to each other, T-type attenuator circuits and π-type attenuator circuits serially connected to each other, and so on.
In this embodiment, the serial switches, the parallel resistors and the parallel switches are disposed on the insulator, and the serial resistors are disposed on the substrate. The principle is the same as the first embodiment, and will not be described hereinafter.
As shown in
As shown in
Film resistors refer to resistors that are made by a thick film process or a thin film process. In principle, before protecting layer is coated, four sides of the film resistor can be electrically connected to each other.
The signal input end 708 is connected to a terminal 703 via a signal microstrip line 713, the terminal 703 is connected to one side (left side) FL of the first serial resistor 712, the other side (right side) FR of the first serial resistor 712 is connected to a terminal 704, the terminal 704 is connected to the signal output end 709 via the signal microstrip line 713. An upper side of the first serial resistor 712 is connected to one end of the first parallel resistor 710, and the other end FT (upper end) of the first parallel resistor 710 is connected to a terminal 701. A bottom side of the first serial resistor 712 is connected to one end of the second parallel resistor 711, and the other end FB (lower end) of the second parallel resistor 711 is connected to a terminal 702. Both ends of the first serial resistor 712 are respectively connected to the signal input end 708 and the signal output end 709. The first serial resistor 712, the first parallel resistor 710, and the second parallel resistor 711 can be integrally formed.
As shown in
As shown in
The PCB board is contacted with the serial resistor 606 and the resistor having a resistance of 50 ohm. A slot 614 and a transition hole 616 are disposed on the PCB board. The serial resistor 606 is shortened by the conductive sheet 613, the parallel resistor 609 is not connected to the main signal circuit, namely signal is directly transmitted from the signal input end to the signal output end. At this time, attenuation of the variable attenuator is 0 dB. As the PCB board 62 is moved to the left so that the conductive sheet 613 detaches from the terminal 602 of the serial resistor 606 and at the same time the conductive sheet 615 is connected to the terminal 611 of the parallel resistor 609. A side of the PCB board on which the conductive sheet is disposed on is contacted with the surface layer of the substrate 61. The PCB board is contacted with the serial resistor 606 and the resistor having a resistance of 50 ohm. A slot 614 and a transition hole 616 are disposed on the PCB board. At this time, the parallel switch connected to the first serial resistor 712 is switched off, and the variable attenuator is a typical film attenuator, and attenuation thereof can be determined according to design requirement. As the PCB board is moved from right to left, both ends 703 and 704 (FL and FR) of the first serial resistor 712 are shortened by the conductive sheet 715, namely the parallel switch connected to the first serial resistor 712 is switched on. At this time, the conductive sheet 714 detaches from the terminal 701, namely the serial switch connected to the first parallel resistor 710 is switched off, the conductive sheet 716 detaches from the terminal 702, namely the serial switch connected to the second parallel resistor 711 is switched off, and attenuation of the variable attenuator is 0 dB. Thus variation of attenuation of the variable attenuator (from a step amplitude to 0 dB) is facilitated.
A multi-stage variable attenuator can be obtained if multiple above-mentioned attenuator circuits are serially connected, and a step amplitude of each stage can be freely set. Switches on different stages are independent from each other, and all the switches can be disposed on at least one insulator (PCB board). The first serial resistor 712, the first parallel resistor 710, and the second parallel resistor 711 are integrally formed into a film resistor. The variable attenuator is equivalent to several π-type attenuators that are serially connected, and finally to a π-type attenuator circuit.
In this embodiment, the first parallel resistor 710, the second parallel resistor 711, the first serial switch, the second serial switch, and the first parallel switch are disposed on the same insulator, and the first serial resistor 712 is disposed on the substrate. The principle is the same as the first embodiment, and will not be described hereinafter.
As shown in
As shown in
Film resistors refer to resistors that are made by a thick film process or a thin film process. In principle, before protecting layer is coated, four sides of the film resistor can be electrically connected to each other.
The signal input end 807 is connected to a terminal 801 via a signal microstrip line 810, the terminal 801 is connected to one side (left side) of the first serial resistor 809, the other side (right side) of the first serial resistor 809 is connected to a terminal 802, the terminal 802 is connected to the signal output end 808 via the signal microstrip line 810. A lower side of the first serial resistor 809 is connected to one end of the first parallel resistor 811, and the other end (lower end) of the first parallel resistor 811 is connected to a terminal 803. Both ends of the first serial resistor 809 are respectively connected to the signal input end 807 and the signal output end 808. The first serial resistor 809 and the first parallel resistor 811 can be integrally formed.
As shown in
As shown in
A multi-stage variable attenuator can be obtained if multiple above-mentioned attenuator circuits are serially connected, and a step amplitude of each stage can be freely set. Switches on different stages are independent from each other, and all the switches can be disposed on at least one insulator (PCB board). The first serial resistor 809 and the first parallel resistor 811 are integrally formed into a film resistor. The variable attenuator is equivalent to several T-type attenuators that are serially connected, and finally to a T-type attenuator circuit.
In this embodiment, the first parallel resistor, the second serial switch and the first parallel switch are disposed on the same insulator, and the first serial resistor is disposed on the substrate. The principle is the same as the first embodiment, and will not be described hereinafter.
The variable attenuator can be encapsulated via a metal housing connected to a coaxial connector, a coaxial connector, or a plastic sauter mean diameter (SMD). The coaxial connector can be a SMA-type or a N-type coaxial connector. The switch may be a toggle switch or a rotary switch.
As shown in
As shown in
As shown in
The invention employs the parallel switch parallel connected to the serial resistor, and the serial switch serially connected to the parallel resistor, as the parallel switch is switched on to eliminate attenuation on a certain stage, the serial switch is switched off, whereby preventing the parallel resistor from affecting the main signal circuit and ensuring stable attenuation with higher precision and a wider frequency range; moreover, switching of the main signal circuit is not required, which ensures that a signal is always transmitted on the main signal circuit and no reflection signal (burst pulse) is generated on the main signal circuit, and thus a circuit on a previous stage will not be damaged.
While particular embodiments of the invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications may be made without departing from the invention in its broader aspects, and therefore, the aim in the appended claims is to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
200410051879.9 | Oct 2004 | CN | national |
200710075714.9 | Aug 2007 | CN | national |
200710124352.8 | Oct 2007 | CN | national |
200710193881.3 | Nov 2007 | CN | national |
200810080717.6 | Feb 2008 | CN | national |
This application is a continuation of International Patent Application No. PCT/CN2008/071940 with an international filing date of Aug. 11, 2008, designating the United States, now pending, and further claims priority benefits to Chinese Patent Application No. 200710075714.9 filed on Aug. 11, 2007, Chinese Patent Application No. 200710124352.8 filed on Oct. 31, 2007, Chinese Patent Application No. 200710193881.3 filed on Nov. 20, 2007 and Chinese Patent Application No. 200810080717.6 filed on Feb. 5, 2008. This application is also a continuation in part of U.S. Ser. No. 11/733,205 filed on Apr. 10, 2007, now pending, which is a continuation of International Patent Application No. PCT/CN2005/000872 with an international filing date of Jun. 17, 2005, which is based on Chinese Patent Application No. 200410051879.9 filed Oct. 13, 2004. The contents of all of the aforementioned applications, including any intervening amendments thereto, are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2008/071940 | Aug 2008 | US |
Child | 12703859 | US | |
Parent | PCT/CN2005/000872 | Jun 2005 | US |
Child | 11733205 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11733205 | Apr 2007 | US |
Child | PCT/CN2008/071940 | US |