Disclosed is a mat or molded pre-form for use in an exhaust gas treatment device, such as catalytic converters and diesel particulate traps that are used in automotive exhaust systems. The mat may be used as a mounting mat to mount a fragile monolith within a housing of an exhaust gas treatment device or as thermal insulation in an end cone of the exhaust gas treatment device. A selected portion of the mat or end cone pre-form has an area of basis weight that is greater than other areas of the mat or pre-form.
Exhaust gas treatment devices are used on automobiles to reduce atmospheric pollution from engine emissions. Examples of widely used exhaust gas treatment devices include catalytic converters and diesel particulate traps.
A catalytic converter for treating exhaust gases of an automotive engine includes a housing, a fragile catalyst support structure for holding the catalyst that is used to effect the oxidation of carbon monoxide and hydrocarbons and the reduction of oxides of nitrogen, and a mounting mat disposed between the outer surface of the fragile catalyst support structure and the inner surface of the housing to resiliently hold the fragile catalyst support structure within the housing.
A diesel particulate trap for controlling pollution generated by diesel engines generally includes a housing, a fragile particulate filter or trap for collecting particulate from the diesel engine emissions, and a mounting mat that is disposed between the outer surface of the filter or trap and the inner surface of the housing to resiliently hold the fragile filter or trap structure within the housing.
The fragile catalyst support structure generally comprises a monolithic structure manufactured from a frangible material of metal or a brittle, ceramic material such as aluminum oxide, silicon dioxide, magnesium oxide, zirconia, cordierite, silicon carbide and the like. These materials provide a skeleton type of structure with a plurality of gas flow channels. These monolithic structures can be so fragile that even small shock loads or stresses are often sufficient to crack or crush them. In order to protect the fragile structure from thermal and mechanical shock and other stresses noted above, as well as to provide thermal insulation and a gas seal, a mounting mat is positioned within the gap between the fragile structure and the housing.
Exhaust gas treatment devices typically comprise an end cone region between the fragile catalyst support structure or fragile particulate filter or trap and the exhaust pipe. According to certain embodiments, the end cone for an exhaust gas treatment device comprises an outer metallic cone; an inner metallic cone; and cone insulation disposed between said outer and inner metallic end cones. The end cone for an exhaust gas treatment device may comprise an outer metallic cone and a self-supporting cone insulation disposed adjacent the inner surface of said outer metallic end cone.
Mounting mats are often subject to local differences in gap bulk density and thermal gap expansion; that is, the gap bulk density and thermal gap expansion are not constant throughout the mounting mat. These local differences can contribute to undesirable support mat erosion upon exposure to hot exhaust gases.
Provided is a mat for use as a mounting mat or end cone insulation in an exhaust gas treatment device, said mat comprising a sheet of inorganic fibers, wherein said sheet comprises opposite first and second major surfaces, a length, a width and an uncompressed thickness, and wherein said sheet comprises a first portion having a first uncompressed basis weight and a second portion having a second uncompressed basis weight that is greater than the first basis weight.
Also provided is an exhaust gas treatment device comprising a housing; a fragile structure located within the housing; and a mounting mat disposed in a gap between said housing and said fragile structure, said mat comprising a sheet of inorganic fibers comprising opposite first and second major surfaces, a length, a width and an uncompressed thickness, and wherein said sheet comprises a first portion having a first uncompressed basis weight and a second portion having a second uncompressed basis weight that is greater than the first basis weight.
Additionally provided is an exhaust gas treatment device comprising a housing; a fragile structure located within the housing; and a mounting mat disposed in a gap between said housing and said fragile structure; a double walled end cone housing; and a mat or molded three dimensional insulation pre-form disposed between the walls of the double walled end cone housing, said mat or pre-form comprising inorganic fibers and a first portion having a first uncompressed basis weight and a second portion having a second uncompressed basis weight that is greater than the first basis weight.
Further provided is an end cone for an exhaust gas treatment device comprising an outer metallic cone; an inner metallic cone; and a mat or molded three dimensional insulation pre-form disposed between said outer and inner metallic end cones, said mat or pre-form comprising inorganic fibers and a first portion having a first uncompressed basis weight and a second portion having a second uncompressed basis weight that is greater than the first basis weight.
Further provided is a method of making a device for treating exhaust gases comprising wrapping a mat comprising a sheet of inorganic fibers comprising opposite first and second major surfaces, a length, a width and an uncompressed thickness, and wherein said sheet comprises a first portion having a first uncompressed basis weight and a second portion having a second uncompressed basis weight that is greater than the first basis weight around at least a portion of a fragile structure adapted for treating exhaust gases; and disposing the fragile structure and the mounting mat within a housing with the mounting mat being disposed between the fragile structure and the housing.
Further provided is a method for making an end cone for an exhaust gas treatment device, the method comprising disposing a mat or molded three dimensional insulation pre-form between the outer and inner metallic end cones, said mat or pre-form comprising inorganic fibers and a first portion having a first uncompressed basis weight and a second portion having a second uncompressed basis weight that is greater than the first basis weight.
Disclosed is a mat or molded (such as, for example, vacuum formed) pre-form for use in an exhaust gas treatment device, such as catalytic converters and diesel particulate traps that are used in automotive exhaust systems. The mat or pre-form may be used as a mounting mat to mount a fragile monolith within a housing of an exhaust gas treatment device or as thermal insulation in the end cone regions of the exhaust gas treatment device. A portion of the mat or pre-form has a greater basis weight than other portions of the mat or pre-form. The variation in basis weight of the mat or pre-form is believed to impart resistance to hot gas erosion during the normal operation of the exhaust gas treatment device.
According to certain embodiments, the mat comprises at least one non-intumescent sheet of inorganic fibers. The sheet comprises a length, width and uncompressed thickness. The sheet comprises a first section having a first uncompressed basis weight and at least one second section having a second uncompressed basis weight that is different than the first basis weight.
A device for treating exhaust gases is also provided. The device includes an outer metallic housing, at least one fragile structure that is mounted within the housing by a mounting mat that is disposed between the inner surface of the housing and the outer surface of the fragile structure. The mounting mat used to mount the fragile structure comprises a sheet of inorganic fibers and has a first section having a first uncompressed basis weight and a second section having a second uncompressed basis weight that is different than the first basis weight.
The term “fragile structure” is intended to mean and include structures such as metal or ceramic monoliths or the like which may be fragile or frangible in nature, and would benefit from a mounting mat such as is described herein. These structures generally include one or more porous tubular or honeycomb-like structures mounted by a thermally resistant material within a housing. Each structure includes anywhere from about 200 to about 900 or more channels or cells per square inch, depending upon the type of exhaust treating device. A diesel particulate trap differs from a catalyst structure in that each channel or cell within the particulate trap is closed at one end or the other. Particulate is collected from exhaust gases in the porous structure until regenerated by a high temperature burnout process. Non-automotive applications for the mounting mat may include catalytic converters for chemical industry emission (exhaust) stacks.
According to other embodiments, provided is an end cone for an exhaust gas treatment device. The end cones are of a double walled structure having an inner end cone housing and an outer end cone housing. A mat or vacuum formed insulation pre-form is disposed in the gap or space between the inner and outer end cone housings. The mat or vacuum formed pre-form has a first section having a first uncompressed basis weight and a second section having a second uncompressed basis weight that is different than the first basis weight.
According to other embodiments, the exhaust gas treatment device includes an outer metallic housing, at least one fragile structure that is mounted within the housing by a mounting mat that is disposed between the inner surface of the housing and the outer surface of the fragile structure, and end cones located at the inlet and outlet regions of the device. The end cone regions are of a double walled structure having an inner end cone housing and an outer end cone housing. A mat or vacuum formed insulation pre-form is disposed in the gap or space between the inner and outer end cone housings. The mat or vacuum formed pre-form has a first section having a first uncompressed basis weight and a second section having a second uncompressed basis weight that is different than the first basis weight.
Base layer 12 of mounting mat 10 also has opposite lateral areas 18 and 20. At least one of the lateral areas 18, 20 of base layer 12 of mounting mat 10 has a basis weight that is greater than the basis weight of the remainder of the base layer 12. According to certain illustrative embodiments, either of lateral areas 18 or 20 of base layer 12 may have a basis weight that is greater than the remainder of the base layer 12. According to other illustrative embodiments, both lateral areas 18 and 20 have a basis weight that is greater than the basis weight of area 22 of the mounting mat 10 which extends between lateral mat areas 18 and 20. The basis weight of lateral areas 18 and 20 may be the same or different.
The variable basis weights may be achieved by joining a distinct piece of material 24 to one or both of the lateral surface areas 18 and/or 20 on one or both of opposite facing first 14 and second major surfaces of the base layer 12. Alternatively, the variable basis weights may be achieved by joining a distinct piece of material 24 to lateral surface area 18 on one of the first 14 and second 16 major surfaces of the base layer 12 and a distinct piece of material 24 to lateral surface area 20 on the opposite facing major surface.
Referring now to
One or more pieces 24 of distinct material may be joined to the surface or surfaces of the base layer 12 to build up the basis weight in a desired area of the mat. Moreover, distinct pieces of material 24 can be attached to the base layer 12 or to other distinct pieces of material 24. By attachment of subsequent distinct pieces of material 24 to previously attached pieces of material 24, a support mat 10 of complex uncompressed thicknesses may be created. The distinct pieces of material 24 may be attached to the base layer 12 or to other distinct pieces of material 24 by means such as pressing, hot pressing, needling, gluing, stapling, stitching, threading or combinations thereof. As used herein “pressing” is distinct from the compression that the material is subject to in its installed state.
Turning to
Turning to
Turning to
An illustrative form of a device for treating exhaust gases is a catalytic converter designated by numeral 30 in
Catalytic converter 30 comprises an outer metallic housing 32. The housing 32 includes a generally conical shaped inlet 34 at one end and an outlet 36 at the opposite end. The inlet cone 34 and outlet cone 36 are suitably formed at their outer ends whereby they may be secured to conduits in the exhaust system of an internal combustion engine. The housing 32 of the catalytic converter 30 includes a portion 38 extending between inlet cone 34 and outlet cone 36 for holding the a fragile catalyst support element.
Exhaust gas treatment device 30 includes a fragile structure, such as a frangible ceramic monolith 40, which is supported and restrained within housing 32 by a mounting mat 10. Monolith 40 includes a plurality of gas pervious passages that extend axially from its inlet end surface at one end to its outlet end surface at its opposite end. Monolith 40 may be constructed of any suitable refractory metal or ceramic material in any known manner and configuration. Monoliths are typically oval or round in cross-sectional configuration, but other shapes are possible.
The monolith 40 is spaced from inner surfaces of the housing 32 by a distance or a gap, which will vary according to the type and design of the device utilized, for example, a catalytic converter, a diesel catalyst structure, or a diesel particulate trap. This gap is filled with a mounting mat 10 to provide resilient support to the ceramic monolith 40. The resilient mounting mat 10 provides both thermal insulation to the external environment and mechanical support to the fragile structure, thereby protecting the fragile structure from mechanical shock across a wide range of exhaust gas treatment device operating temperatures. The mounting mat 10 may be of any of the illustrative constructions shown in
Now referring to
Referring to
Referring to
Any heat resistant inorganic fibers may be utilized in the mounting mat or pre-form so long as the fibers can withstand the mounting mat or pre-form forming process, can withstand the operating temperatures of the exhaust gas treatment devices, and provide the desired minimum holding pressure performance for holding fragile structure within the exhaust gas treatment device housing at the operating temperatures of the exhaust gas treatment device, or insulating function of end cone insulation. Without limitation, suitable inorganic fibers that may be used to prepare the mounting mat and exhaust gas treatment device include high alumina polycrystalline fibers, refractory ceramic fibers such as alumino-silicate fibers, alumina-magnesia-silica fibers, kaolin fibers, alkaline earth silicate fibers such as calcia-magnesia-silica fibers and magnesia-silica fibers, S-glass fibers, S2-glass fibers, E-glass fibers, quartz fibers, silica fibers and combinations thereof.
According to certain embodiments, the heat resistant inorganic fibers that are used to prepare the mounting mat comprise ceramic fibers. Without limitation, suitable ceramic fibers include alumina fibers, alumina-silica fibers, alumina-zirconia-silica fibers, zirconia-silica fibers, zirconia fibers and similar fibers. A useful alumina-silica ceramic fiber is commercially available from Unifrax I LLC (Niagara Falls, N.Y.) under the registered trademark FIBERFRAX. The FIBERFRAX ceramic fibers comprise the fiberization product of about 45 to about 75 weight percent alumina and about 25 to about 55 weight percent silica. The FIBERFRAX fibers exhibit operating temperatures of up to about 1540° C. and a melting point up to about 1870° C. The FIBERFRAX fibers easily formed into high temperature resistant sheets and papers.
The alumina/silica fiber may comprise from about 40 weight percent to about 60 weight percent Al2O3 and about 60 weight percent to about 40 weight percent SiO2. The fiber may comprise about 50 weight percent Al2O3 and about 50 weight percent SiO2. The alumina/silica/magnesia glass fiber typically comprises from about 64 weight percent to about 66 weight percent SiO2, from about 24 weight percent to about 25 weight percent Al2O3, and from about 9 weight percent to about 10 weight percent MgO. The E-glass fiber typically comprises from about 52 weight percent to about 56 weight percent SiO2, from about 16 weight percent to about 25 weight percent CaO, from about 12 weight percent to about 16 weight percent Al2O3, from about 5 weight percent to about 10 weight percent B2O3, up to about 5 weight percent MgO, up to about 2 weight percent of sodium oxide and potassium oxide and trace amounts of iron oxide and fluorides, with a typical composition of 55 weight percent SiO2, 15 weigh percent Al2O3, 7 weight percent B2O3, 3 weight percent MgO, 19 weight percent CaO and traces of the above mentioned materials.
Without limitation, suitable examples of biosoluble alkaline earth silicate fibers that can be used to prepare a mounting mat for an exhaust gas treatment device include those fibers disclosed in U.S. Pat. Nos. 6,953,757, 6,030,910, 6,025,288, 5,874,375, 5,585,312, 5,332,699, 5,714,421, 7,259,118, 7,153,796, 6,861,381, 5,955,389, 5,928,075, 5,821,183, and 5,811,360, which are incorporated herein by reference.
According to certain embodiments, the biosoluble alkaline earth silicate fibers may comprise the fiberization product of a mixture of oxides of magnesium and silica. These fibers are commonly referred to as magnesium-silicate fibers. The magnesium-silicate fibers generally comprise the fiberization product of about 60 to about 90 weight percent silica, from greater than 0 to about 35 weight percent magnesia and 5 weight percent or less impurities. According to certain embodiments, the alkaline earth silicate fibers comprise the fiberization product of about 65 to about 86 weight percent silica, about 14 to about 35 weight percent magnesia and 5 weight percent or less impurities. According to other embodiments, the alkaline earth silicate fibers comprise the fiberization product of about 70 to about 86 weight percent silica, about 14 to about 30 weight percent magnesia, and 5 weight percent or less impurities. A suitable magnesium-silicate fiber is commercially available from Unifrax I LLC (Niagara Falls, N.Y.) under the registered trademark ISOFRAX. Commercially available ISOFRAX fibers generally comprise the fiberization product of about 70 to about 80 weight percent silica, about 18 to about 27 weight percent magnesia and 4 weight percent or less impurities.
According to certain embodiments, the biosoluble alkaline earth silicate fibers may comprise the fiberization product of a mixture of oxides of calcium, magnesium and silica. These fibers are commonly referred to as calcia-magnesia-silica fibers. According to certain embodiments, the calcia-magnesia-silicate fibers comprise the fiberization product of about 45 to about 90 weight percent silica, from greater than 0 to about 45 weight percent calcia, from greater than 0 to about 35 weight percent magnesia, and 10 weight percent or less impurities. Useful calcia-magnesia-silicate fibers are commercially available from Unifrax I LLC (Niagara Falls, N.Y.) under the registered trademark INSULFRAX. INSULFRAX fibers generally comprise the fiberization product of about 61 to about 67 weight percent silica, from about 27 to about 33 weight percent calcia, and from about 2 to about 7 weight percent magnesia. Other suitable calcia-magnesia-silicate fibers are commercially available from Thermal Ceramics (Augusta, Ga.) under the trade designations SUPERWOOL 607, SUPERWOOL 607 MAX and SUPERWOOL HT. SUPERWOOL 607 fibers comprise about 60 to about 70 weight percent silica, from about 25 to about 35 weight percent calcia, and from about 4 to about 7 weight percent magnesia, and trace amounts of alumina. SUPERWOOL 607 MAX fibers comprise about 60 to about 70 weight percent silica, from about 16 to about 22 weight percent calcia, and from about 12 to about 19 weight percent magnesia, and trace amounts of alumina. SUPERWOOL HT fiber comprise about 74 weight percent silica, about 24 weight percent calcia and trace amounts of magnesia, alumina and iron oxide.
Suitable silica fibers use in the production of a mounting mat for an exhaust gas treatment device include those leached glass fibers available from BelChem Fiber Materials GmbH, Germany, under the trademark BELCOTEX, from Hitco Carbon Composites, Inc. of Gardena Calif., under the registered trademark REFRASIL, and from Polotsk-Steklovolokno, Republic of Belarus, under the designation PS-23(R).
The BELCOTEX fibers are standard type, staple fiber pre-yarns. These fibers have an average fineness of about 550 tex and are generally made from silicic acid modified by alumina. The BELCOTEX fibers are amorphous and generally contain about 94.5 silica, about 4.5 percent alumina, less than 0.5 percent sodium oxide, and less than 0.5 percent of other components. These fibers have an average fiber diameter of about 9 microns and a melting point in the range of 1500° to 1550° C. These fibers are heat resistant to temperatures of up to 1100° C., and are typically shot free.
The REFRASIL fibers, like the BELCOTEX fibers, are amorphous leached glass fibers high in silica content for providing thermal insulation for applications in the 1000° to 1100° C. temperature range. These fibers are between about 6 and about 13 microns in diameter, and have a melting point of about 1700° C. The fibers, after leaching, typically have a silica content of about 95 percent by weight. Alumina may be present in an amount of about 4 percent by weight with other components being present in an amount of 1 percent or less.
The PS-23 (R) fibers from Polotsk-Steklovolokno are amorphous glass fibers high in silica content and are suitable for thermal insulation for applications requiring resistance to at least about 1000° C. These fibers have a fiber length in the range of about 5 to about 20 mm and a fiber diameter of about 9 microns. These fibers, like the REFRASIL fibers, have a melting point of about 1700° C.
The intumescent material that may be incorporated into the mounting mat or pre-form includes, without limitation, unexpanded vermiculite, ion-exchanged vermiculite, vermiculite, expandable graphite, hydrobiotite, water-swelling tetrasilicic flourine mica, alkaline metal silicates, or mixtures thereof, which means that the mounting mat or pre-form may include a mixture of more than on type of intumescent material. The intumescent material may comprise a mixture of unexpanded vermiculite and expandable graphite in a relative amount of about 9:1 to about 1:2 vermiculite:graphite, as described in U.S. Pat. No. 5,384,188.
The mounting mat or pre-form also includes a binder or mixture of more than one type of binder. Suitable binders include organic binders, inorganic binders and mixtures of these two types of binders. The binder used in the mounting mat is typically an organic binder which may be sacrificial in nature. By “sacrificial” is meant that the binder will eventually be burned out of the mounting mat, leaving only the fibers as the final mounting mat. Suitable binders include aqueous and nonaqueous binders, but often the binder utilized is a reactive, thermally setting latex which after cure is a flexible material that can be burned out of the installed mounting mat as indicated above.
According to certain embodiments, the mounting mat or pre-form, includes one or more organic binders. The organic binders may be provided as a solid, a liquid, a solution, a dispersion, a latex, an emulsion, or similar form. The organic binder may comprise a thermoplastic or thermoset binder, which after cure is a flexible material that can be burned out of an installed mounting mat. Examples of suitable organic binders include, but are not limited to, acrylic latex, (meth)acrylic latex, copolymers of styrene and butadiene, vinylpyridine, acrylonitrile, copolymers of acrylonitrile and styrene, vinyl chloride, polyurethane, copolymers of vinyl acetate and ethylene, polyamides, silicones, and the like. Other resins include low temperature, flexible thermosetting resins such as unsaturated polyesters, epoxy resins and polyvinyl esters. Solvents for the binders can include water, or a suitable organic solvent, such as acetone, for the binder utilized.
The organic binder may be included in the mounting mat or pre-form in an amount of greater than 0 to about 20 weight percent, from about 0.5 to about 15 weight percent, from about 1 to about 10 weight percent and from about 2 to about 8 weight percent, based on the total weight of the mounting mat or pre-form.
The mounting mat or pre-form may include polymeric binder fibers instead of, or in addition to, a resinous or liquid binder. These polymeric binder fibers may be used in amounts ranging from greater than 0 to about 20 percent by weight, from about 1 to about 15 weight percent, and from about 2 to about 10 weight percent, based upon 100 percent by weight of the total composition, to aid in binding the heat resistant inorganic fibers together. Suitable examples of binder fibers include polyvinyl alcohol fibers, polyolefin fibers such as polyethylene and polypropylene, acrylic fibers, polyester fibers, ethyl vinyl acetate fibers, nylon fibers and combinations thereof.
The molded end cone insulation may be formed by initially preparing an aqueous slurry containing the inorganic fibers. Organic binders can be included in the aqueous slurry composition in addition to the inorganic fibers. Organic binders tend to improve the integrity, flexibility, and the handling characteristics of molded three-dimensional insulator. Insulation material that is more flexible may be easier to position between the inner and outer end cone housings of a pollution control device. Suitable organic binder materials can include aqueous polymer emulsions, solvent-based polymers, and solvent free polymers. The aqueous polymer emulsions can include organic binder polymers and elastomers in the form of a latex (e.g., natural rubber lattices, styrene-butadiene lattices, butadiene-acrylonitrile lattices, and lattices of acrylate and methacrylate polymers or copolymers). The solvent-based polymeric binder materials can include a polymer such as an acrylic, a polyurethane, a vinyl acetate, a cellulose, or a rubber based organic polymer. The solvent free polymers can include natural rubber, styrene-butadiene rubber, and other elastomers.
The aqueous slurry can include an inorganic colloidal material. The inorganic colloidal material may comprise colloidal silica, colloidal alumina, colloidal zirconia, or combinations thereof. The inorganic colloidal material may be present alone or in combination with one or more organic binders.
Any suitable type of molding technique or mold known in the art can be used to prepare a preform. In some applications, the molded three-dimensional end cone insulation preform can be prepared using a vacuum forming technique. A slurry of fibers, organic binder or inorganic colloidal material (or both), and water is prepared. A permeable forming die is placed in the slurry of fibers, binder, inorganic colloidal material, water and any other desired components. A three-dimensional pre-from is vacuum formed from the slurry on the permeable forming die. The solids in the slurry can deposit on the surface of the forming die when a vacuum is drawn to form a three-dimensional pre-form cone have a substantially uniform thickness and uncompressed basis weight across the cone. The pre-form is removed from the slurry and dried. During or after drying, additive material may be joined to the molded three-dimensional cone insulation pre-form to provide a variable basis weight across the end cone insulation. Alternatively, the permeable forming die can be shaped such that when placed into the slurry, different amounts of solids from the slurry deposit on the permeable forming die in different locations to provide a monolithic three-dimensional insulating pre-form having a variable basis weight across the cone. Alternatively, different portions of the permeable forming die may be left to dwell in the slurry for a longer period of time to permit a greater build up of cone-forming material in the areas of the die as compared to areas of the die that have a shorter dwell time in the slurry of cone-forming material.
While the system has been described in connection with various embodiments, as shown in the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiments for performing the same function without deviating therefrom. Furthermore, the various illustrative embodiments may be combined to produce the desired results. Therefore, the variable basis weight support mat system should not be limited to any single embodiment, but rather, should be construed in accordance with the breadth and scope of the recitation of the appended claims.
The present application claims the benefit of the filing date, under 35 U.S.C. §119(e), from U.S. Provisional Application Ser. No. 61/232,596, filed Aug. 10, 2009, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3012923 | Slayter | Dec 1961 | A |
3224927 | Brown et al. | Dec 1965 | A |
3510394 | Cadotte | May 1970 | A |
3649406 | McNish | Mar 1972 | A |
3674621 | Miyamoto | Jul 1972 | A |
3771967 | Nowak | Nov 1973 | A |
3798006 | Balluff | Mar 1974 | A |
3916057 | Hatch et al. | Oct 1975 | A |
3957573 | Miyamoto et al. | May 1976 | A |
3996145 | Hepburn | Dec 1976 | A |
4007539 | Nishio | Feb 1977 | A |
4011651 | Bradbury et al. | Mar 1977 | A |
4048363 | Langer et al. | Sep 1977 | A |
4093423 | Neumann | Jun 1978 | A |
4101280 | Frietzsche et al. | Jul 1978 | A |
4142864 | Rosynsky et al. | Mar 1979 | A |
4156533 | Close et al. | May 1979 | A |
4204907 | Korklan et al. | May 1980 | A |
4239733 | Foster et al. | Dec 1980 | A |
4269807 | Bailey et al. | May 1981 | A |
4269887 | Sonobe et al. | May 1981 | A |
4271228 | Foster et al. | Jun 1981 | A |
4279864 | Nara et al. | Jul 1981 | A |
4305992 | Langer et al. | Dec 1981 | A |
4328187 | Musall et al. | May 1982 | A |
4332852 | Korklan et al. | Jun 1982 | A |
4335077 | Santiago et al. | Jun 1982 | A |
4353872 | Midorikawa | Oct 1982 | A |
4385135 | Langer et al. | May 1983 | A |
4447345 | Kummermehr et al. | May 1984 | A |
4617176 | Merry | Oct 1986 | A |
4693338 | Clerc | Sep 1987 | A |
4698213 | Shimozi et al. | Oct 1987 | A |
4735757 | Yamamoto et al. | Apr 1988 | A |
4746570 | Suzaki et al. | May 1988 | A |
4752515 | Hosoi et al. | Jun 1988 | A |
4797263 | Oza | Jan 1989 | A |
4823845 | Martin et al. | Apr 1989 | A |
4849382 | Shibata et al. | Jul 1989 | A |
4863700 | Ten Eyck | Sep 1989 | A |
4865818 | Merry et al. | Sep 1989 | A |
4927608 | Wörner et al. | May 1990 | A |
4929429 | Merry | May 1990 | A |
4985212 | Kawakami et al. | Jan 1991 | A |
4999168 | Ten Eyck | Mar 1991 | A |
5002836 | Dinwoodie et al. | Mar 1991 | A |
5008086 | Merry | Apr 1991 | A |
5032441 | Ten Eyck et al. | Jul 1991 | A |
5073432 | Horikawa et al. | Dec 1991 | A |
5079280 | Yang et al. | Jan 1992 | A |
5094073 | Wörner et al. | Mar 1992 | A |
5094074 | Nishizawa et al. | Mar 1992 | A |
5119551 | Abbott | Jun 1992 | A |
5139615 | Conner et al. | Aug 1992 | A |
5145811 | Lintz et al. | Sep 1992 | A |
5151253 | Merry et al. | Sep 1992 | A |
5167765 | Nielsen et al. | Dec 1992 | A |
5242871 | Hashimoto et al. | Sep 1993 | A |
5250269 | Langer | Oct 1993 | A |
5254410 | Langer et al. | Oct 1993 | A |
5258216 | Von Bonin et al. | Nov 1993 | A |
5290522 | Rogers et al. | Mar 1994 | A |
5332609 | Corn | Jul 1994 | A |
5332699 | Olds et al. | Jul 1994 | A |
5340643 | Ou et al. | Aug 1994 | A |
5346868 | Eschner | Sep 1994 | A |
5376341 | Gulati | Dec 1994 | A |
5380580 | Rogers et al. | Jan 1995 | A |
5384188 | Lebold et al. | Jan 1995 | A |
5389716 | Graves | Feb 1995 | A |
5419975 | Lintz et al. | May 1995 | A |
5453116 | Fischer et al. | Sep 1995 | A |
5482686 | Lebold et al. | Jan 1996 | A |
5488826 | Paas | Feb 1996 | A |
5502937 | Wilson | Apr 1996 | A |
5523059 | Langer | Jun 1996 | A |
5567536 | Lintz et al. | Oct 1996 | A |
5580532 | Robinson et al. | Dec 1996 | A |
5585312 | Ten Eyck et al. | Dec 1996 | A |
5666726 | Robinson et al. | Sep 1997 | A |
5714421 | Olds et al. | Feb 1998 | A |
5736109 | Howorth et al. | Apr 1998 | A |
5811063 | Robinson et al. | Sep 1998 | A |
5811360 | Jubb | Sep 1998 | A |
5821183 | Jubb | Oct 1998 | A |
5853675 | Howorth | Dec 1998 | A |
5862590 | Sakashita et al. | Jan 1999 | A |
5869010 | Langer | Feb 1999 | A |
5874375 | Zoitos et al. | Feb 1999 | A |
5882608 | Sanocki et al. | Mar 1999 | A |
5928075 | Miya et al. | Jul 1999 | A |
5928975 | Jubb | Jul 1999 | A |
5943771 | Schmitt | Aug 1999 | A |
5955177 | Sanocki et al. | Sep 1999 | A |
5955389 | Jubb | Sep 1999 | A |
6000131 | Schmitt | Dec 1999 | A |
6025288 | Zoitos et al. | Feb 2000 | A |
6030910 | Zoitos et al. | Feb 2000 | A |
6051193 | Langer et al. | Apr 2000 | A |
6101714 | Schmitt | Aug 2000 | A |
6158120 | Foster et al. | Dec 2000 | A |
6162404 | Tojo et al. | Dec 2000 | A |
6183852 | Rorabaugh et al. | Feb 2001 | B1 |
6185820 | Foster | Feb 2001 | B1 |
6231818 | TenEyck | May 2001 | B1 |
6251224 | Dong | Jun 2001 | B1 |
6267843 | Helwig et al. | Jul 2001 | B1 |
6316384 | Bruck et al. | Nov 2001 | B1 |
6317976 | Aranda et al. | Nov 2001 | B1 |
6466932 | Robin et al. | Oct 2002 | B1 |
6491878 | Locker et al. | Dec 2002 | B1 |
6589488 | Eyhorn | Jul 2003 | B1 |
6726884 | Dillon et al. | Apr 2004 | B1 |
6737146 | Schierz et al. | May 2004 | B2 |
6756107 | Schierz et al. | Jun 2004 | B1 |
6855298 | TenEyck | Feb 2005 | B2 |
6861381 | Jubb et al. | Mar 2005 | B1 |
6923942 | Shirk et al. | Aug 2005 | B1 |
6953757 | Zoitos et al. | Oct 2005 | B2 |
7033412 | Kumar et al. | Apr 2006 | B2 |
7153796 | Jubb et al. | Dec 2006 | B2 |
7259118 | Jubb et al. | Aug 2007 | B2 |
7261864 | Watanabe | Aug 2007 | B2 |
7387822 | Dinwoodie | Jun 2008 | B2 |
7550118 | Merry | Jun 2009 | B2 |
7820117 | Peisert et al. | Oct 2010 | B2 |
7887917 | Zoitos et al. | Feb 2011 | B2 |
7971357 | Ten Eyck et al. | Jul 2011 | B2 |
20010036427 | Yamada et al. | Nov 2001 | A1 |
20020025904 | Goto et al. | Feb 2002 | A1 |
20020127154 | Foster et al. | Sep 2002 | A1 |
20030049180 | Fukushima | Mar 2003 | A1 |
20030097752 | Shirk et al. | May 2003 | A1 |
20030185724 | Anji et al. | Oct 2003 | A1 |
20040022699 | Fukushima et al. | Feb 2004 | A1 |
20040052694 | Nishikawa et al. | Mar 2004 | A1 |
20040234436 | Howorth | Nov 2004 | A1 |
20050232827 | Merry | Oct 2005 | A1 |
20050232828 | Merry | Oct 2005 | A1 |
20050272602 | Ninomiya | Dec 2005 | A1 |
20060070554 | Braunreiter et al. | Apr 2006 | A1 |
20060153746 | Merry et al. | Jul 2006 | A1 |
20060154040 | Merry | Jul 2006 | A1 |
20060278323 | Eguchi | Dec 2006 | A1 |
20070065349 | Merry | Mar 2007 | A1 |
20070207069 | Kariya et al. | Sep 2007 | A1 |
20080178566 | Okabe | Jul 2008 | A1 |
20080181831 | Okabe | Jul 2008 | A1 |
20080253939 | Hornback | Oct 2008 | A1 |
20090060800 | Fernandez | Mar 2009 | A1 |
20090060802 | Beauharnois | Mar 2009 | A1 |
20090114907 | Saiki | May 2009 | A1 |
20100207298 | Kunze et al. | Aug 2010 | A1 |
20100209306 | Kunze et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
3925845 | Feb 1991 | DE |
42 20 988 | Apr 1994 | DE |
196 38 542 | Mar 1997 | DE |
199 57 692 | May 2001 | DE |
0 205 704 | Dec 1986 | EP |
0 279 511 | Aug 1988 | EP |
0 319 299 | Jun 1989 | EP |
0 328 293 | Aug 1989 | EP |
0 366 484 | May 1990 | EP |
0 396 331 | Nov 1990 | EP |
0 398 130 | Nov 1990 | EP |
0 465 203 | Jan 1992 | EP |
0 508 751 | Oct 1992 | EP |
0 551 532 | Jul 1993 | EP |
0 573 834 | Dec 1993 | EP |
0 643 204 | Mar 1995 | EP |
0 765 993 | Apr 1997 | EP |
0 803 643 | Oct 1997 | EP |
1 267 048 | Dec 2002 | EP |
1 403 478 | Mar 2004 | EP |
1 495 807 | Jan 2005 | EP |
1 533 409 | May 2005 | EP |
1 696 110 | Aug 2006 | EP |
1 830 043 | Sep 2007 | EP |
1 905 895 | Apr 2008 | EP |
1 931 862 | Jun 2008 | EP |
1 950 035 | Jul 2008 | EP |
2 058 425 | May 2009 | EP |
1 438 762 | Jun 1976 | GB |
1 438 784 | Jun 1976 | GB |
1 513 808 | Jun 1978 | GB |
2 116 476 | Sep 1983 | GB |
2 125 458 | Mar 1984 | GB |
2 200 129 | Jul 1988 | GB |
2 319 247 | May 1998 | GB |
4-083773 | Mar 1992 | JP |
06-033755 | Feb 1994 | JP |
6-272549 | Sep 1994 | JP |
7-286514 | Oct 1995 | JP |
09-164337 | Jun 1997 | JP |
2002-147231 | May 2002 | JP |
2005-282374 | Oct 2005 | JP |
2006177368 | Jul 2006 | JP |
2007-532825 | Nov 2007 | JP |
2008-201125 | Sep 2008 | JP |
2008-201126 | Sep 2008 | JP |
2009-511819 | Mar 2009 | JP |
WO 9111498 | Aug 1991 | WO |
WO 9323245 | Nov 1993 | WO |
WO 9424425 | Oct 1994 | WO |
WO 9702413 | Jan 1997 | WO |
WO 9732118 | Sep 1997 | WO |
WO 9923370 | May 1999 | WO |
WO 9946028 | Sep 1999 | WO |
WO 0075496 | Apr 2000 | WO |
WO 0165008 | Sep 2001 | WO |
WO 0183956 | Nov 2001 | WO |
WO 0233233 | Apr 2002 | WO |
WO 02053511 | Jul 2002 | WO |
WO 03000414 | Jan 2003 | WO |
WO 03031368 | Apr 2003 | WO |
WO 2005106222 | Nov 2005 | WO |
WO 2006065534 | Jun 2006 | WO |
WO 2007044485 | Apr 2007 | WO |
WO 2007143437 | Dec 2007 | WO |
WO 2008103525 | Aug 2008 | WO |
WO 2008154078 | Dec 2008 | WO |
WO 2008156942 | Dec 2008 | WO |
Entry |
---|
International Search Report, Form PCT/ISA/210 mailed Apr. 28, 2011 for PCT International Patent Application No. PCT/US2010/002197. |
Written Opinion, Form PCT/ISA/237 mailed Apr. 28, 2011 for PCT International Patent Application No. PCT/US2010/002197. |
Gulati, Ten Eyck & Lebold. “Durable Packaging Design for Cordierite Ceramic Catalysts for Motorcycle Application” Society of Automotive Engineers Meeting, Detroit, MI, Mar. 1, 1993. |
Maret, Gulati, Lambert & Zink. Systems Durability of a Ceramic Racetrack Converter. International Fuels and Lubricants Meeting, Toronto, Canada, Oct. 7-10, 1991. |
English language abstract of DE 19858025; Publication Date: Jun. 21, 2000; Applicant: Aslgawo GmbH. |
Tosa Shin'Ichi, et al., “The Development of Converter Canning Technology for Thin Wall Substrate.” Honda R&D Tech. Rev., vol. 12, No. 1, pp. 175-182, Japan (2000). |
Product Brochure—“There's More to it Than You Think. HDK—Pyrogenic Silica”, Wacker Silicones, 6173/10.05/e, Oct. 2005. |
Technical Data Sheet—“HDK N20 Pyrogenic Silica”, Wacker Silicones, Version 1.0, Jun. 12, 2008. |
Japanese Office Action, mailed Jul. 31, 2013, for corresponding Japanese Patent Application No. 2012-524694. |
Supplemental European Search Report and Opinion, mailed Sep. 26, 2013, for corresponding European Patent Application No. 10808443.5. |
Number | Date | Country | |
---|---|---|---|
20110033343 A1 | Feb 2011 | US |
Number | Date | Country | |
---|---|---|---|
61232596 | Aug 2009 | US |