Variable beam geometry laser-based powder bed fusion

Information

  • Patent Grant
  • 11224943
  • Patent Number
    11,224,943
  • Date Filed
    Wednesday, March 7, 2018
    6 years ago
  • Date Issued
    Tuesday, January 18, 2022
    3 years ago
Abstract
Systems and methods of adapting the geometrical shape of a laser beam in laser-based powder-bed fusion (PBF) are provided. An apparatus for laser-based powder-bed fusion includes a depositor that deposits a plurality of layers of a powder material. The apparatus further includes a laser beam source that generates a laser beam having a variable beam geometry. A laser application component applies the laser beam in one of a plurality of beam geometries to fuse the powder material to construct a build piece.
Description
BACKGROUND
Field

The present disclosure relates generally to additive manufacturing, and more particularly, to variable beam geometry laser-based powder bed fusion.


Background

Powder-bed fusion (PBF) systems can produce metal structures (referred to as build pieces) with geometrically complex shapes, including some shapes that are difficult or impossible to create with conventional manufacturing processes. PBF systems include additive manufacturing (AM) techniques to create build pieces layer-by-layer. Each layer or slice can be formed by a process of depositing a layer of metal powder and then fusing (e.g., melting and cooling) areas of the metal powder layer that coincide with the cross-section of the build piece in the layer. The process may be repeated to form the next slice of the build piece, and so on until the build piece is complete. Because each layer is deposited on top of the previous layer, PBF may be likened to forming a structure slice-by-slice from the ground up.


Laser-based PBF may be useful for manufacturing complex geometries and with reduced cost of customization. Unfortunately, manufacturing using laser-based PBF systems can be a slow process compared to what may be needed for high-capacity production. Application of high-power laser systems in current PBF systems may lead to vaporization of materials during the printing process, thereby increasing manufacturing costs.


SUMMARY

Several aspects of a variable beam geometry laser-based PBF and systems and methods for manufacturing therewith will be described more fully hereinafter.


In an aspect of the present disclosure, an apparatus for laser-based powder-bed fusion is presented. The apparatus includes a depositor that deposits a plurality of layers of a powder material. The apparatus also includes a laser beam source that generates a laser beam having a variable beam geometry. The apparatus further includes a laser application component (e.g., a deflector) that applies the laser beam in one of a plurality of beam geometries to fuse the powder material.


In another aspect of the present disclosure, a method of laser-based powder-bed fusion is presented. The method includes adapting a laser beam geometry to form an adapted laser beam comprising a line or a two dimensional shape. The method further includes applying the adapted laser beam to at least a portion of a powder material to scan at least a portion of the defined build piece.


Other aspects will become readily apparent to those skilled in the art from the following detailed description, wherein is shown and described only several exemplary embodiments by way of illustration. As will be realized by those skilled in the art, concepts described herein are capable of other and different embodiments, and several details are capable of modification in various other respects, all without departing from the present disclosure. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the concepts described herein will now be presented in the detailed description by way of example, and not by way of limitation, in the accompanying drawings, wherein:



FIGS. 1A-D illustrate respective side views of an exemplary PBF system during different stages of operation.



FIGS. 2A and 2B are diagrams illustrating an exemplary beam shaping component operated to change the geometry of a laser beam in accordance with aspects of the present disclosure.



FIG. 3 is a diagram illustrating an exemplary L-PBF system for scanning a build piece in accordance with aspects of the present disclosure.



FIG. 4 illustrates an exemplary adaptation of a laser beam during a scan in accordance with aspects of the present disclosure.



FIG. 5 is a diagram illustrating exemplary energy flux level configurations of a laser beam adapted for 2-D scanning in accordance with aspects of the present disclosure.



FIG. 6 is a flowchart of an exemplary method of configuring a laser beam to scan a build piece in a L-PBF apparatus.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended to provide a description of various exemplary embodiments of the concepts disclosed herein and is not intended to represent the only embodiments in which the disclosure may be practiced. The term “exemplary” used in this disclosure means “serving as an example, instance, or illustration,” and should not necessarily be construed as preferred or advantageous over other embodiments presented in this disclosure. The detailed description includes specific details for the purpose of providing a thorough and complete disclosure that fully conveys the scope of the concepts to those skilled in the art. However, the disclosure may be practiced without these specific details. In some instances, well-known structures and components may be shown in block diagram form, or omitted entirely, in order to avoid obscuring the various concepts presented throughout this disclosure.


While this disclosure is generally directed to laser-based PBF (L-PBF) systems, it will be appreciated that such L-PBF systems may encompass a wide variety of AM techniques. Thus, the L-PBF process may include, among others, the following printing techniques: Direct metal laser sintering (DMLS), Selective laser melting (SLM) and Selective laser sintering (SLS). Still other PBF processes to which the principles of this disclosure are pertinent include those that are currently contemplated or under commercial development. While the specific details of each such process are omitted to avoid unduly obscuring key concepts of the disclosure, it will be appreciated that the claims are intended to encompass such techniques and related structures.


L-PBF systems can produce metal and polymer structures (referred to as build pieces) with geometrically complex shapes, including some shapes that are difficult or impossible to create using conventional manufacturing processes. L-PBF systems create build pieces layer-by-layer, i.e., slice-by-slice. Each slice may be formed by a process of depositing a layer of metal powder and fusing (e.g., melting and cooling) areas of the metal powder layer that coincide with the cross-section of the build piece in the slice. The process may be repeated to form the next slice of the build piece, and so on, until all the layers are deposited and the build piece is complete.


Aspects of the present disclosure are directed to laser spot geometries for laser-based PBF (L-PBF) systems which may increase build rate and provide additional control and flexibility of the manufacturing process. A laser spot is the area of a surface illuminated by a laser. Rather than use a laser beam configured as terminating in a tiny, almost point-like spot with a small radius that remains constant over time, a laser beam may instead be configured to use variable beam or spot geometries. For example, the beam geometry—that is, the area of the surface of the print material illuminated by the laser—may be a line, a square, a rectangle, a triangle, an asymmetrical shape, or any other two-dimensional shape. The identified beam geometry can then be applied to the surface of the print material using two-dimensional scanning. In so doing, the laser beam may be applied in a PBF print operation such that a larger contiguous area of the powder-bed may be processed at any given time. In an embodiment, the beam geometry can be dynamically altered during a 3-D print operation. Thus, for example, the L-PBF 3-D printer may fuse larger areas using a correspondingly large beam geometry, and subsequently or periodically, the 3-D printer may alter the beam geometry to a small line or an ordinary point-like shape to scan corner portions of the object and/or to fuse details of the build piece on a smaller scale.


In accordance with aspects of the present disclosure, the laser beam geometry may be adapted based on the geometry of the object (build piece) to be produced. The laser beam geometry may be adapted at the beginning of a scan, on a slice-by slice basis, at a designated time within a slice, or dynamically on the fly. Further, the laser beam geometry may also be varied continuously as the laser scans across the powder-bed, whose variance is in accordance with the contemplated structure of the object as identified in a computer aided design (CAD) profile, for example.


Employing the variable beam geometry may beneficially increase the throughput of the L-PBF process. Additionally, adapting the beam geometry as described herein may allow for application of laser power over a larger area to the powder bed, meaning that energy flux can be kept small to reduce vaporization of materials. Furthermore, given the two-dimensional nature of the adapted laser spot geometry, the energy profile of the spot geometry may be adjusted according to the scan vector (direction of scanning), to provide heating and cooling rate control. Controlling the cooling rate during the solidification process may allow reduction of thermal stresses and alterations of microstructure in the resultant component to achieve desired material properties.



FIGS. 1A-D illustrate respective side views of an exemplary laser-based PBF (L-PBF) system 100 during different stages of operation. As noted above, the particular embodiment illustrated in FIGS. 1A-D is one of many suitable examples of a L-PBF system employing principles of this disclosure. It should also be noted that elements of FIGS. 1A-D and the other figures in this disclosure are not necessarily drawn to scale, but may be drawn larger or smaller for the purpose of better illustration of concepts described herein. L-PBF system 100 may include a depositor 101 that may deposit each layer of powder material, a laser beam source 103 that may generate a laser beam, a beam shaping component 104 that may shape the laser beam according to a selected beam geometry, a deflector 105 that may apply the laser beam in the form of the selected beam geometry to fuse the powder material, and a build plate 107 that may support one or more build pieces, such as a build piece 109.


The L-PBF system 100 may also include a build floor 111 positioned within a powder bed receptacle. The walls of the powder bed receptacle 112 may generally define the boundaries of the powder bed receptacle, which is defined between the walls 112 from the side and a portion of the build floor 112 below. The build floor 111 may progressively lower build plate 107 such that depositor 101 may deposit a next layer of powder material. The L-PBF system 100 may additionally include a chamber 113 that may enclose the other components of L-PBF system 100 (e.g., laser beam source 103, beam shaping component 104 and deflector 105), thereby protecting such other components, enabling atmospheric and temperature regulation and mitigating contamination risks. Further, the L-PBF system 100 may include a temperature sensor 122 to monitor the atmospheric temperature, the temperature of the powder material 117 and/or components of the L-PBF system 100. Depositor 101 may include a hopper 115 that contains a powder 117, such as a metal powder, for example. The depositor 101 may also include a leveler 119 that may level the top of each layer of deposited powder (see e.g., powder layer 125 of FIG. 1C) by displacing deposited powder 117 above a predefined layer height (e.g., corresponding to powder layer thickness 123 of FIG. 1B).


Referring specifically to FIG. 1A, this figure shows L-PBF system 100 after a slice of build piece 109 has been fused, but before the next layer of powder 117 has been deposited. In fact, FIG. 1A illustrates a time at which L-PBF system 100 has already deposited and fused slices in multiple layers, e.g., 150 layers, to form the current state of build piece 109, e.g., formed of 150 slices. The multiple layers already deposited have created a powder bed 121, which includes powder that was deposited but not fused.



FIG. 1B shows L-PBF system 100 at a stage in which build floor 111 may lower by a powder layer thickness 123. The lowering of build floor 111 causes build piece 109 and powder bed 121 to drop by powder layer thickness 123, so that the top of the build piece and powder bed are lower than the top of powder bed receptacle wall 112 by an amount equal to the powder layer thickness. In this way, for example, a space with a consistent thickness equal to powder layer thickness 123 can be created over the tops of build piece 109 and powder bed 121.



FIG. 1C shows L-PBF system 100 at a stage in which depositor 101 is positioned to deposit powder 117 in a space created over the top surfaces of build piece 109 and powder bed 121 and bounded by powder bed receptacle walls 112. In this example, depositor 101 progressively moves over the defined space while releasing powder 117 from hopper 115. Leveler 119 can level the released powder to form a powder layer 125 that has a thickness of substantially equal to the powder layer thickness 123 (see FIG. 1B). Thus, the powder 117 in L-PBF system 100 may be supported by a powder material support structure, which may include, for example, a build plate 107, a build floor 111, a build piece 109, walls 112, and the like. It should be noted that the illustrated thickness of powder layer 125 (e.g., powder layer thickness 123 of FIG. 1B) may be greater than an actual thickness used for the example involving 150 previously-deposited layers discussed above with reference to FIG. 1A.



FIG. 1D illustrates the L-PBF system 100 generating a next slice in build piece 109 following the deposition of powder layer 125 (FIG. 1C). Referring to FIG. 1D, the laser beam source 103 may generate a laser beam. The beam shaping component 104 may be used to vary the geometric shape of the laser beam to be in the form of a line, a square, a rectangle, or other two-dimensional shape. In some aspects, the beam shaping component 104 may shape the laser beam through phase plates and free spacing propagation. The beam shaping component 104 may include multiple diffracting, reflecting and refracting apparatus, such as diffractive beam splitters, diffractive diffusers, phase plates, lenses, mirrors or other optical elements. Changes in the size and geometry of the laser beam 127 may, for example, be achieved by motorized displacement of the optical elements of beam shaping component 104 as discussed further below with reference to FIGS. 2A-B. In some aspects, the geometry of the beam shape may be set according to the build piece 109. The geometry of the beam shape may be modified on a slice-by slice basis based on the geometry of the build piece to reduce scan time for a particular layer. In some aspects, the geometry of the beam shape may also be modified mid-layer or even continuously throughout the scanning of the build piece 109.


Deflector 105 may apply the laser beam 127 in the selected geometric shape to fuse the next slice in build piece 109. In various embodiments, the deflector 105 may include one or more gimbals and actuators that can rotate and/or translate the laser beam source 103 and/or beam shaping component 104 to position the laser beam 127. In various embodiments, laser beam source 103, beam shaping component 104 and/or deflector 105 can modulate the laser beam, e.g., turn the laser beam on and off as the deflector scans such that the laser beam is applied only in the appropriate areas of the powder layer. For example, in various embodiments, the laser beam can be modulated by a digital signal processor (DSP).


As shown in FIG. 1D, much of the fusing of powder layer 125 occurs in areas of the powder layer that are on top of the previous slice, i.e., previously-fused powder. An example of such an area is the surface of build piece 109. The fusing of the powder layer in FIG. 1D is occurring over the previously fused layers characterizing the substance of build piece 109.



FIGS. 2A and 2B are diagrams illustrating an exemplary beam shaping component operated at two exemplary points in time to change the geometry of a laser beam in accordance with aspects of the present disclosure. Referring to FIGS. 2A-2B, the beam shaping component 200 may include fixed optical elements 202A, 202B and one or more motorized optical elements 204A, 204B. The optical elements 202A, 202b may have a fixed position such that optical elements 202A, 202B may not be displaced. Motorized optical elements 204A, 204B may each include an optical element (e.g., a lens) with a motor component (not shown) to adjust the position of the optical element of the motorized optical element (e.g., 204A) as a function of time. Although the exemplary beam shaping component 200 includes two motorized optical elements and two fixed optical elements, any number of such optical elements may be used to generate desired beam shape. Also, while for convenience and clarity the optical elements 202A,B and 204A,B are shown as circular symbols, these elements can take on any necessary or suitable physical form. Beam shaping may be achieved through phase plates and free spacing propagation. As such, beam shaping component 200 may include multiple diffracting, reflecting and refracting apparatus, such as diffractive beam splitters, diffractive diffusers, phase plates, lenses and mirrors. Of course, still other mechanisms may be used additionally or alternatively to achieve the desired beam geometry. For purposes of FIGS. 2A-B, the propagating light from the laser sources is represented generally by the lines originating at a laser beam sources 210 at the left, moving through the various optical elements in one or both directions (depending, for example, on whether the light or portions thereof is being reflected), and terminating in a desired pattern on the surface of the printed object (omitted for clarity) at the right of the figure.


As shown in FIG. 2A, a ray from a laser beam source 210 may be applied to the fixed optical element 202A. When a laser beam is applied initially to optical elements 202A, the laser beam may thereafter be alternately reflected and refracted via the fixed optical elements (e.g., 202A, 202B) and the presently stationary motorized optical elements (204A, 204B) to thereby produce a first laser spot 206. In FIG. 2B, the motorized optical elements 204A, 204B may be thereafter repositioned such that the geometric shape of the laser beam produced may be changed to a line 208. The size and geometry of the laser beam may be adjusted by displacement of the motorized optical elements. That is, the motorized or otherwise automated mechanism that may be included in each of the motorized optical elements 204A, 204B may be used to control the propagation space between optical elements such that the resultant beam size and shape may be modified to the desired form.



FIG. 3 is a diagram illustrating an exemplary L-BPF system for scanning a build piece in accordance with aspects of the present disclosure. Referring to FIG. 3, a laser beam source 302 may supply a laser beam to a beam shaping component 304. In this example, beam shaping component 304 may be configured similarly to beam shaping component 200 (FIG. 2A). However, other mechanisms may additionally or alternatively be used to adapt the geometrical shape of the laser beam. The beam shaping component 304 may modify the laser beam supplied by laser beam source 302 to generate a laser spot in the form of a line 306. The modified laser beam source 302 may be directed at deflector 305, which applies the modified laser beam 306 to the powder surface. By way of example only, the modified laser beam 306 may be configured in the form of a line that is 10 mm in length, 0.2 mm in width. The laser beam 306 may be applied to a powder bed 308 supported by a substrate plate 310. The laser beam 306 may scan across an area of the powder bed in a direction perpendicular to line 306 to fuse powder material in the powder bed 308 to form a slice or layer of a build piece according to a design profile, for example. Here, by adapting the geometry of the laser beam 306 to be in form of line rather than a point, the build rate may be increased and the production time may be reduced. For instance, using the exemplary laser beam, moving perpendicular to its length at a speed of 1200 mm/s, the L-BPF process may have a build rate of 2,000 cm3/h at a layer thickness of 0.05 mm.


In some aspects, the shape of the laser beam may be adapted based on the geometry of a desired part to be built. Referring to FIG. 4, the shape of a laser beam may be adapted such that the resultant laser spot is a line. The length of the laser spot line (e.g., 402A, 402B, and 402C) may be continuously modified (e.g., under the control of beam shaping component 104) based on the geometrical boundaries of the part to be built (e.g., build piece). At a first portion the length of the laser spot line 402A may be at a maximum Lmax. Based on the geometry of the build piece as given by the designated geometrical boundary of the part, the length of the laser spot may be adapted such that the powder outside of the geometrical boundary is not be processed. Accordingly, as shown in FIG. 4, length of the laser beam may be continuously modified (e.g., progressively reduced) to follow the geometrical boundary of the part as the laser beam continues to scan the powder material in a direction perpendicular to its length until a second portion is reached. At the second portion, the laser beam 402B may be a length L1 which is less than Lmax. As the scan continues, the length of the laser beam may be further adapted (e.g., progressively increased) until a third portion of the build piece is reached. At the third portion, the length of laser beam 402C may be increased to length L2. In some aspects, the power (P) of the laser may also be adjusted such that a laser power to length ratio may be maintained such that the overall energy flux remains constant during the scan.



FIG. 5 is a diagram illustrating exemplary energy flux level configurations of a laser beam adapted for 2-D scanning. As discussed above, a laser beam may be transformed to have an essentially one dimensional (1-D) shape (approximated by a line) or a two-dimensional (2-D) shape. The beam shape in 2-D scanning may take on any 2-D shape, including, but not limited to rectangles, triangles, or other polygonal or geometric shapes. Lower energy levels may be applied to portions of the 1-D or 2-D shape. In one example, applying a laser beam with different energy levels for different portions of the 2-D shape may be used to provide preheating of the powder material and/or to provide cooling rate control based on the laser beam's relative direction to the region of peak energy flux.


Referring to FIG. 5, energy flux level configurations are provided for three exemplary rectangular laser beam shapes 502A, 502B, and 502C. Rectangular laser beam 502A is divided into four regions. Each of the regions may be configured to have different sizes with different energy flux levels. By way of example only, a rectangular laser spot may be configured to be 10 mm in length and 5 mm in width with varying energy levels across its width. Of course, the number and size of the regions are merely exemplary and any number and size of regions may be included in a laser beam shape. Similarly, although the beam shapes in the examples of FIG. 5 are rectangles, any multi-dimensional shape may be used. In other embodiments, each portion 504A, 504B, etc. may represent a discretely adapted geometric beam shape applied with a particular power.


In shaping the laser beam, an energy profile may be configured such that the energy levels may be adjusted along the width of the rectangle. In region 504A, the energy flux level may be increased to a level sufficient for melting the powder material (e.g., peak energy flux). Thereafter, in regions 504B, 504C, and 504D, the energy flux level is successively reduced in each region. Accordingly, when applied in a scan, the rectangular beam shape 502A may provide localized preheating of the powder material. That is, as rectangular beam shape 502A scans powder material in a powder bed, proceeding horizontally in a direction from left to right, the 2-D scan may progressively heat the powder in an area of a powder bed first applying 504D with the lowest energy flux level. As each successive region is applied to the same area of powder material, the energy flux level (e.g., laser beam intensity) may be increased and in turn, the temperature of the powder material may be increased. By configuring the energy profile for the laser beam to preheat the powder material before heating the powders to melting, thermal fluctuation and resultant thermal stresses may be reduced.


In rectangular laser beam shape 502B, four regions having different energy flux levels are shown. As the laser beam shape 502B scans powder material in a region of the powder bed, the energy flux level applied to the powder may be progressively reduced. For instance, region 506D may be applied to the region of the powder bed 510 to melt the powder material in the area. As the laser beam continues in the direction perpendicular to the width of laser beam 502B from left to right, a progressively lower energy flux level may be applied as regions 506C, 506B and 506A are applied to sequentially scan the material in the area. By configuring the energy profile for the laser beam shape 502B this way, a 2-D scan using laser beam shape 502B may provide control on the cooling rate of the solidified material. Controlling the cooling rate may reduce thermal stress and further enable production of the resultant microstructure of the build piece components to desired properties.


In some aspects, a laser beam may be configured with an energy profile to provide localized heating of powder material and cooling rate control after the powder material has been melted. As shown in FIG. 5, rectangular laser beam 502C includes seven regions. When applied to powder material in an area of powder bed 510, regions 508G, 508F, 508E progressively heat the powder material in the area prior to melting when region 508D scans the area. After region 508D scans the designated area of the powder bed 510, regions 508C, 508B, and 508A may be sequentially applied to progressively lower the applied energy flux level thereby controlling the cooling rate of the melted material. Accordingly, the energy flux level of the laser beam (e.g., 502A, 502B, or 502C) may be adjusted according to the material being processed to reduce thermal stresses commonly observed in parts fabricated by L-PBF processes.



FIG. 6 is a flowchart of an exemplary method of configuring a laser beam to scan a build piece in a L-PBF apparatus. A L-PBF apparatus may optionally determine a geometry of a defined build piece (602). The L-PBF apparatus may adapt a geometry of a laser beam to form an adapted laser beam comprising a line or a 2-D shape (604). For example, referring to FIGS. 2A-2B, the beam shaping component 200 may receive a laser beam from a laser beam source. The beam shaping component 200 may be configured with fixed optical elements (202A, 202B) and motorized optical elements (204A, 204B). The motorized optical elements (204A, 204B) may be moved or repositioned relative to the fixed optical elements (202A, 202B) to control the propagation space between optical elements (e.g., motorized and fixed optical elements) such that the resultant laser beam size and shape may be modified. Alternative techniques for adapting the desired laser beam shape may also be possible.


In some aspects, the geometry of the laser beam may be varied during application of the laser beam. For example, as shown in FIG. 4, a laser beam adapted to be in the form of a line (e.g., 402A, 402B, and 402C) may be continuously modified as the laser beam scans the powder material to generate a build piece. In the example of FIG. 4, the length of the laser spot line was modified as the scan progressed across the powder bed. However, the present disclosure is not so limiting and other modifications are contemplated. For example, the shape of the beam may also be adapted as the scan progresses. That is, the laser beam may be formed as a rectangle during one portion of a scan and may later be changed to a triangle shape at another portion of the scan. In some aspects, the laser beam may be adapted based on the geometry of the defined build piece (610). For example, the geometry of the desired build piece may be analyzed to determine the geometrical shape that may most efficiently (e.g., such that the completion time may be reduced or optimized) be used to scan the desired build piece. In another example, as shown in FIG. 4, the length of the laser spot line is adjusted based on a boundary specified for the part being built.


In some aspects, the laser beam geometry may be adapted based on an energy profile associated with the part being built (608). For instance, the melting point may vary based on the type of powder material (e.g., different metals) used for the desired build piece. The adapted laser beam geometry may be divided into regions. An energy profile may specify a different energy flux level to be applied via each of the different regions of the adapted laser beam. For example, as shown in FIG. 5, a rectangular laser beam 502A may be configured with four regions. In each of the regions 504B, 504C, and 504D, the energy flux level applied is successively reduced. Accordingly, when applied to powder (in reverse order), rectangular beam 502A progressively heats the powder. As each successive region (e.g., 504D→504C→504B→504A) is applied to the same area of powder material, the energy flux level (e.g., laser beam intensity) may be increased, and in turn, the temperature of the powder material may be increased. By adapting the laser beam with regions based on the energy profile, the laser beam may be configured to preheat the powder material before heating the powder to melting (via region 504A). Accordingly, thermal fluctuation and resultant thermal stresses in the resulting build piece may be reduced.


Furthermore, the energy profile may be used to adapt the laser beam in order to provide cooling control after the powder material has been melted. For example, as shown in FIG. 5, a rectangular laser beam 502B may be adapted and configured to include four regions having different energy flux levels. As the rectangular laser beam 502B scans powder material in a region of the powder bed, the energy flux level applied in each region of the laser beam to the powder may be progressively reduced. By controlling the cooling rate, thermal stresses in the resulting build piece may be further reduced.


The L-PBF apparatus may apply the adapted laser beam to at least a portion of a powder material to scan at least a portion of the defined build piece (606). For example, as shown in FIG. 3, a laser beam adapted to be in the form of a line (306) is applied to the powder material in powder bed 308 thereby melting the powder material to define a portion of the build piece. The adapted laser beam may be applied in a direction perpendicular to its length (e.g., a line) or its width. In this way, the adapted laser beam may be applied to a greater area during a scan thereby reducing production time.


In some aspects, the geometry of the laser beam may be adapted based on a temperature profile (612). For example, the temperature profile may include the temperature at which the powder material to be used for the build piece melts, as well as other thresholds (e.g., temperature at which the powder material evaporates). A temperature sensor such as temperature sensor 122A of FIG. 1A may monitor the temperature of the powder material in the powder bed. When the temperature reaches a critical point, the laser beam may be adapted (e.g., to reduce the energy flux of the laser beam).


In other embodiments, the 2-D shapes may be amorphous, asymmetrical, and need not be in the form of a known shape. In some embodiments, the CAD software or applications working in conjunction with the CAD software may determine an optimal sequence of varying shapes as a function of time for use in a 3-D print job. The software may take into account, among other variables, some or all of the factors described above, including temperature profiles, areas where pre-heating and/or pre-cooling are favorable, geometrical shape of the build object, desire to minimize vaporization effects, etc. The beam shaping component 104 (FIG. 1) may be built using various hardware elements referenced herein and implemented in the 3-D printer to adapt the geometrical shape of the beam. The beam shaping component 104 may be configured to change the beam shape over time, such as a continuous change of a length of a beam shape in the form of a line. Continuously moving motorized lens and other optical elements, in conjunction with fixed elements, may assist in providing the capability to change the beam shape with the progression of time. The CAD software and/or application software associated therewith may be used as a data model for providing instructions to the 3-D printer to operate the beam shaping component 104 and the power profile of the laser beam source 103 in a manner that will render the desired results for a given build piece.


While the laser beam source 103 and the beam shaping component 104 have been generally identified as separate components, in some exemplary embodiments the functionality of both components may be included as part of a single integrated structure without departing from the scope of the disclosure.


Various exemplary embodiments disclosed herein are directed to novel configurations of a laser with variable bean geometry in a L-PBF system.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these exemplary embodiments presented throughout this disclosure will be readily apparent to those skilled in the art, and the concepts disclosed herein may be applied to other support structures and systems and methods for removal of support structures. Thus, the claims are not intended to be limited to the exemplary embodiments presented throughout the disclosure, but are to be accorded the full scope consistent with the language claims. All structural and functional equivalents to the elements of the exemplary embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. § 112(f), or analogous law in applicable jurisdictions, unless the element is expressly recited using the phrase “means for” or, in the case of a method claim, the element is recited using the phrase “step for.”

Claims
  • 1. An apparatus for additively manufacturing a build piece, comprising: a depositor configured to deposit a layer of a powder material;a laser beam source configured to generate a laser beam to fuse a portion of the layer of powder material during a scanning stage; anda beam shaping component configured to shape a beam geometry of the laser beam during the scanning stage, wherein at a first time during the scanning stage the beam shaping component shapes the beam geometry into a first geometrical shape based on a first geometrical boundary of the build piece, and at a second time during the scanning stage the beam shaping component shapes the beam geometry into a second geometrical shape based on a second geometrical boundary of the build piece.
  • 2. The apparatus of claim 1, wherein the first and second geometrical boundaries are based on a design profile for the build piece.
  • 3. The apparatus of claim 1, wherein the beam shaping component is further configured to shape the beam geometry based on an energy profile for the build piece.
  • 4. The apparatus of claim 1, wherein at least the first or second geometrical shape comprises a two-dimensional shape.
  • 5. The apparatus of claim 1, wherein at least the first or second geometrical shape comprises a line.
  • 6. The apparatus of claim 5, wherein a length of the line is variable based on an energy profile of the laser beam.
  • 7. The apparatus of claim 3, wherein the laser beam includes at least a first portion of the beam geometry and a second portion of the beam geometry, and the energy profile includes a first portion of the energy profile associated with the first portion of the beam geometry and a second portion of the energy profile associated with the second portion of the beam geometry, wherein the first portion of the energy profile is different from the second portion of the energy profile.
  • 8. The apparatus of claim 7, wherein the first portion of the energy profile and the second portion of the energy profile are configured based at least in part on a temperature profile.
  • 9. The apparatus of claim 7, wherein the laser beam source is configured to provide a constant energy flux between the first portion of the energy profile and the second portion of the energy profile.
  • 10. The apparatus of claim 7, wherein the first portion of the energy profile is configured to preheat the powder material and the second portion of the energy profile is configured to fuse the powder material.
  • 11. The apparatus of claim 7, wherein the first portion of the energy profile is configured to fuse the powder material and the second portion of the energy profile is configured to reduce an energy flux to control cooling of the fused powder material.
  • 12. The apparatus of claim 1, further comprising a controller coupled to the laser beam source and configured to control a power density of the laser beam.
  • 13. The apparatus of claim 1, wherein the beam shaping component is further configured to shape the beam geometry based on a temperature profile for the build piece.
  • 14. The apparatus of claim 1, wherein the beam shaping component comprises at least one of each of a fixed optical element and a motorized optical element aligned to encompass the laser beam.
  • 15. The apparatus of claim 14, wherein at least one of the optical elements comprises a lens.
  • 16. A method of additively manufacturing a build piece, comprising: shaping a geometrical shape of a beam geometry of a laser beam into a first geometrical shape to form a first adapted laser beam such that a boundary of the first geometrical shape matches a boundary of a first geometry of the build piece;applying the first adapted laser beam to fuse a first portion of powder material to form a first portion of the build piece;changing the geometrical shape of the beam geometry of the laser beam from the first geometrical shape to a second geometrical shape to form a second adapted laser beam such that a boundary of the second geometrical shape matches a boundary of a second geometry of the build piece; andapplying the second adapted laser beam to fuse a second portion of powder material to form a second portion of the build piece.
  • 17. The method of claim 16, wherein changing the geometrical shape further comprises obtaining an energy profile for the build piece, wherein the second adapted laser beam is formed based on the energy profile.
  • 18. The method of claim 16, wherein at least the first or second geometrical shape comprises a two-dimensional shape.
  • 19. The method of claim 16, wherein the first geometrical shape comprises a line, and applying the first adapted laser beam further comprises applying the first adapted laser beam in a direction perpendicular to a length of the line.
  • 20. The method of claim 19, further comprising varying a length of the line based on an energy profile of the first adapted laser beam.
  • 21. The method of claim 16, wherein at least the first or second adapted laser beam includes at least a first portion and a second portion, and an energy profile of the first portion is different than the energy profile of the second portion.
  • 22. The method of claim 21, wherein the energy profile of the first portion and the energy profile of the second portion are configured based at least in part on a temperature profile.
  • 23. The method of claim 21, wherein the energy profile of the first portion and the energy profile of the second portion are configured to provide a constant energy flux between the first portion and the second portion.
  • 24. The method of claim 21, wherein the first portion is configured to preheat the powder material and the second portion is configured to fuse the powder material.
  • 25. The method of claim 21, wherein the first portion is configured to fuse the powder material and the second portion is configured to reduce an energy flux to control cooling of the fused powder material.
  • 26. The method of claim 16, further comprising obtaining an overall geometry of the build piece and determining the first and second geometries of the build piece based on the overall geometry of the build piece.
  • 27. The apparatus of claim 1, wherein the beam shaping component is configured to shape the beam geometry into the first geometrical shape such that at least a portion of the first geometrical shape matches the first geometrical boundary of the build piece.
  • 28. The apparatus of claim 27, wherein the first geometrical shape is a line having a first length, and the second geometrical shape is a line having a second length, wherein the first and second lengths are different.
  • 29. The apparatus of claim 1, wherein at least the first or second geometrical shape includes at least a line, a square, a rectangle, a triangle, or a polygon.
  • 30. The apparatus of claim 1, wherein at least the first or second geometrical shape is an amorphous shape.
  • 31. The apparatus of claim 1, wherein at least the first or second geometrical shape is an asymmetrical shape.
  • 32. The apparatus of claim 1, wherein the first geometrical shape is a rectangle and the second geometrical shape is a triangle.
  • 33. The apparatus of claim 1, wherein the first geometrical shape is a first amorphous shape and the second geometrical shape is a second amorphous shape.
  • 34. The apparatus of claim 1, wherein the first geometrical shape is a first asymmetrical shape and the second geometrical shape is a second asymmetrical shape.
  • 35. The apparatus of claim 1, wherein the beam shaping component is configured to change the shape of the beam geometry continuously during at least a portion of the scanning stage.
  • 36. The method of claim 16, wherein at least the first or second geometrical shape includes at least a line, a square, a rectangle, a triangle, or a polygon.
  • 37. The method of claim 16, wherein at least the first or second geometrical shape is an amorphous shape.
  • 38. The method of claim 16, wherein at least the first or second geometrical shape is an asymmetrical shape.
  • 39. The method of claim 16, wherein the first geometrical shape is a rectangle and the second geometrical shape is a triangle.
  • 40. The method of claim 16, wherein the first geometrical shape is a first amorphous shape and the second geometrical shape is a second amorphous shape.
  • 41. The method of claim 16, wherein the first geometrical shape is a first asymmetrical shape and the second geometrical shape is a second asymmetrical shape.
  • 42. The method of claim 16, wherein the adapting includes dynamically configuring a plurality of optical elements and at least one optical element is motorized and configured to move to vary a shape of the beam geometry based on a geometry of the build piece to be produced.
US Referenced Citations (363)
Number Name Date Kind
5203226 Hongou et al. Apr 1993 A
5742385 Champa Apr 1998 A
5990444 Costin Nov 1999 A
6010155 Rinehart Jan 2000 A
6096249 Yamaguchi Aug 2000 A
6140602 Costin Oct 2000 A
6250533 Otterbein et al. Jun 2001 B1
6252196 Costin et al. Jun 2001 B1
6318642 Goenka et al. Nov 2001 B1
6365057 Whitehurst et al. Apr 2002 B1
6391251 Keicher et al. May 2002 B1
6409930 Whitehurst et al. Jun 2002 B1
6468439 Whitehurst et al. Oct 2002 B1
6554345 Jonsson Apr 2003 B2
6585151 Ghosh Jul 2003 B1
6644721 Miskech et al. Nov 2003 B1
6811744 Keicher et al. Nov 2004 B2
6866497 Saiki Mar 2005 B2
6919035 Clough Jul 2005 B1
6926970 James et al. Aug 2005 B2
7152292 Hohmann et al. Dec 2006 B2
7344186 Hausler et al. Mar 2008 B1
7500373 Quell Mar 2009 B2
7586062 Heberer Sep 2009 B2
7637134 Burzlaff et al. Dec 2009 B2
7710347 Gentilman et al. May 2010 B2
7716802 Stern et al. May 2010 B2
7745293 Yamazaki et al. Jun 2010 B2
7766123 Sakurai et al. Aug 2010 B2
7852388 Shimizu et al. Dec 2010 B2
7908922 Zarabadi et al. Mar 2011 B2
7951324 Naruse et al. May 2011 B2
8094036 Heberer Jan 2012 B2
8163077 Eron et al. Apr 2012 B2
8286236 Jung et al. Oct 2012 B2
8289352 Vartanian et al. Oct 2012 B2
8297096 Mizumura et al. Oct 2012 B2
8354170 Henry et al. Jan 2013 B1
8383028 Lyons Feb 2013 B2
8408036 Reith et al. Apr 2013 B2
8429754 Jung et al. Apr 2013 B2
8437513 Derakhshani et al. May 2013 B1
8444903 Lyons et al. May 2013 B2
8452073 Taminger et al. May 2013 B2
8599301 Dowski, Jr. et al. Dec 2013 B2
8606540 Haisty et al. Dec 2013 B2
8610761 Haisty et al. Dec 2013 B2
8631996 Quell et al. Jan 2014 B2
8675925 Derakhshani et al. Mar 2014 B2
8678060 Dietz et al. Mar 2014 B2
8686314 Schneegans et al. Apr 2014 B2
8686997 Radet et al. Apr 2014 B2
8694284 Berard Apr 2014 B2
8720876 Reith et al. May 2014 B2
8752166 Jung et al. Jun 2014 B2
8755923 Farahani et al. Jun 2014 B2
8787628 Derakhshani et al. Jul 2014 B1
8818771 Gielis et al. Aug 2014 B2
8873238 Wilkins Oct 2014 B2
8978535 Ortiz et al. Mar 2015 B2
9006605 Schneegans et al. Apr 2015 B2
9071436 Jung et al. Jun 2015 B2
9101979 Hofmann et al. Aug 2015 B2
9104921 Derakhshani et al. Aug 2015 B2
9126365 Mark et al. Sep 2015 B1
9128476 Jung et al. Sep 2015 B2
9138924 Yen Sep 2015 B2
9149988 Mark et al. Oct 2015 B2
9156205 Mark et al. Oct 2015 B2
9186848 Mark et al. Nov 2015 B2
9244986 Karmarkar Jan 2016 B2
9248611 Divine et al. Feb 2016 B2
9254535 Buller et al. Feb 2016 B2
9266566 Kim Feb 2016 B2
9269022 Rhoads et al. Feb 2016 B2
9327452 Mark et al. May 2016 B2
9329020 Napoletano May 2016 B1
9332251 Haisty et al. May 2016 B2
9346127 Buller et al. May 2016 B2
9389315 Bruder et al. Jul 2016 B2
9399256 Buller et al. Jul 2016 B2
9403235 Buller et al. Aug 2016 B2
9418193 Dowski, Jr. et al. Aug 2016 B2
9457514 Schwärzler Oct 2016 B2
9469057 Johnson et al. Oct 2016 B2
9478063 Rhoads et al. Oct 2016 B2
9481402 Muto et al. Nov 2016 B1
9486878 Buller et al. Nov 2016 B2
9486960 Paschkewitz et al. Nov 2016 B2
9502993 Deng Nov 2016 B2
9525262 Stuart et al. Dec 2016 B2
9533526 Nevins Jan 2017 B1
9555315 Aders Jan 2017 B2
9555580 Dykstra et al. Jan 2017 B1
9557856 Send et al. Jan 2017 B2
9566742 Keating et al. Feb 2017 B2
9566758 Cheung et al. Feb 2017 B2
9573193 Buller et al. Feb 2017 B2
9573225 Buller et al. Feb 2017 B2
9586290 Buller et al. Mar 2017 B2
9595795 Lane et al. Mar 2017 B2
9597843 Stauffer et al. Mar 2017 B2
9600929 Young et al. Mar 2017 B1
9609755 Coull et al. Mar 2017 B2
9610737 Johnson et al. Apr 2017 B2
9611667 GangaRao et al. Apr 2017 B2
9616623 Johnson et al. Apr 2017 B2
9626487 Jung et al. Apr 2017 B2
9626489 Nilsson Apr 2017 B2
9643361 Liu May 2017 B2
9662840 Buller et al. May 2017 B1
9665182 Send et al. May 2017 B2
9672389 Mosterman et al. Jun 2017 B1
9672550 Apsley et al. Jun 2017 B2
9676145 Buller et al. Jun 2017 B2
9684919 Apsley et al. Jun 2017 B2
9688032 Kia et al. Jun 2017 B2
9690286 Hovsepian et al. Jun 2017 B2
9700966 Kraft et al. Jul 2017 B2
9703896 Zhang et al. Jul 2017 B2
9713903 Paschkewitz et al. Jul 2017 B2
9718302 Young et al. Aug 2017 B2
9718434 Hector, Jr. et al. Aug 2017 B2
9724877 Flitsch et al. Aug 2017 B2
9724881 Johnson et al. Aug 2017 B2
9725178 Wang Aug 2017 B2
9731730 Stiles Aug 2017 B2
9731773 Gami et al. Aug 2017 B2
9741954 Bruder et al. Aug 2017 B2
9747352 Karmarkar Aug 2017 B2
9764415 Seufzer et al. Sep 2017 B2
9764520 Johnson et al. Sep 2017 B2
9765226 Dain Sep 2017 B2
9770760 Liu Sep 2017 B2
9773393 Velez Sep 2017 B2
9776234 Schaafhausen et al. Oct 2017 B2
9782936 Glunz et al. Oct 2017 B2
9783324 Embler et al. Oct 2017 B2
9783977 Alqasimi et al. Oct 2017 B2
9789548 Golshany et al. Oct 2017 B2
9789922 Dosenbach et al. Oct 2017 B2
9796137 Zhang et al. Oct 2017 B2
9802108 Aders Oct 2017 B2
9809977 Carney et al. Nov 2017 B2
9817922 Glunz et al. Nov 2017 B2
9818071 Jung et al. Nov 2017 B2
9821339 Paschkewitz et al. Nov 2017 B2
9821411 Buller et al. Nov 2017 B2
9823143 Twelves, Jr. et al. Nov 2017 B2
9829564 Bruder et al. Nov 2017 B2
9846933 Yuksel Dec 2017 B2
9854828 Langeland Jan 2018 B2
9858604 Apsley et al. Jan 2018 B2
9862833 Hasegawa et al. Jan 2018 B2
9862834 Hasegawa et al. Jan 2018 B2
9863885 Zaretski et al. Jan 2018 B2
9870629 Cardno et al. Jan 2018 B2
9879981 Dehghan Niri et al. Jan 2018 B1
9884663 Czinger et al. Feb 2018 B2
9898776 Apsley et al. Feb 2018 B2
9914150 Pettersson et al. Mar 2018 B2
9919360 Buller et al. Mar 2018 B2
9931697 Levin et al. Apr 2018 B2
9933031 Bracamonte et al. Apr 2018 B2
9933092 Sindelar Apr 2018 B2
9957031 Golshany et al. May 2018 B2
9958535 Send et al. May 2018 B2
9962767 Buller et al. May 2018 B2
9963978 Johnson et al. May 2018 B2
9971920 Derakhshani et al. May 2018 B2
9976063 Childers et al. May 2018 B2
9987792 Flitsch et al. Jun 2018 B2
9988136 Tiryaki et al. Jun 2018 B2
9989623 Send et al. Jun 2018 B2
9990565 Rhoads et al. Jun 2018 B2
9994339 Colson et al. Jun 2018 B2
9996890 Cinnamon et al. Jun 2018 B1
9996945 Holzer et al. Jun 2018 B1
10002215 Dowski et al. Jun 2018 B2
10006156 Kirkpatrick Jun 2018 B2
10011089 Lyons et al. Jul 2018 B2
10011685 Childers et al. Jul 2018 B2
10012532 Send et al. Jul 2018 B2
10013777 Mariampillai et al. Jul 2018 B2
10015908 Williams et al. Jul 2018 B2
10016852 Broda Jul 2018 B2
10016942 Mark et al. Jul 2018 B2
10017384 Greer et al. Jul 2018 B1
10018576 Herbsommer et al. Jul 2018 B2
10022792 Srivas et al. Jul 2018 B2
10022912 Kia et al. Jul 2018 B2
10027376 Sankaran et al. Jul 2018 B2
10029415 Swanson et al. Jul 2018 B2
10040239 Brown, Jr. Aug 2018 B2
10046412 Blackmore Aug 2018 B2
10048769 Selker et al. Aug 2018 B2
10052712 Blackmore Aug 2018 B2
10052820 Kemmer et al. Aug 2018 B2
10055536 Maes et al. Aug 2018 B2
10058764 Aders Aug 2018 B2
10058920 Buller et al. Aug 2018 B2
10061906 Nilsson Aug 2018 B2
10065270 Buller et al. Sep 2018 B2
10065361 Susnjara et al. Sep 2018 B2
10065367 Brown, Jr. Sep 2018 B2
10068316 Holzer et al. Sep 2018 B1
10071422 Buller et al. Sep 2018 B2
10071525 Susnjara et al. Sep 2018 B2
10072179 Drijfhout Sep 2018 B2
10074128 Colson et al. Sep 2018 B2
10076875 Mark et al. Sep 2018 B2
10076876 Mark et al. Sep 2018 B2
10081140 Paesano et al. Sep 2018 B2
10081431 Seack et al. Sep 2018 B2
10086568 Snyder et al. Oct 2018 B2
10087320 Simmons et al. Oct 2018 B2
10087556 Gallucci et al. Oct 2018 B2
10099427 Mark et al. Oct 2018 B2
10100542 GangaRao et al. Oct 2018 B2
10100890 Bracamonte et al. Oct 2018 B2
10107344 Bracamonte et al. Oct 2018 B2
10108766 Druckman et al. Oct 2018 B2
10113600 Bracamonte et al. Oct 2018 B2
10118347 Stauffer et al. Nov 2018 B2
10118579 Lakic Nov 2018 B2
10120078 Bruder et al. Nov 2018 B2
10124546 Johnson et al. Nov 2018 B2
10124570 Evans et al. Nov 2018 B2
10137500 Blackmore Nov 2018 B2
10138354 Groos et al. Nov 2018 B2
10144126 Krohne et al. Dec 2018 B2
10145110 Carney et al. Dec 2018 B2
10151363 Bracamonte et al. Dec 2018 B2
10152661 Kieser Dec 2018 B2
10160278 Coombs et al. Dec 2018 B2
10161021 Lin et al. Dec 2018 B2
10166752 Evans et al. Jan 2019 B2
10166753 Evans et al. Jan 2019 B2
10171578 Cook et al. Jan 2019 B1
10173255 TenHouten et al. Jan 2019 B2
10173327 Kraft et al. Jan 2019 B2
10178800 Mahalingam et al. Jan 2019 B2
10179640 Wilkerson Jan 2019 B2
10183330 Buller et al. Jan 2019 B2
10183478 Evans et al. Jan 2019 B2
10189187 Keating et al. Jan 2019 B2
10189240 Evans et al. Jan 2019 B2
10189241 Evans et al. Jan 2019 B2
10189242 Evans et al. Jan 2019 B2
10190424 Johnson et al. Jan 2019 B2
10195693 Buller et al. Feb 2019 B2
10196539 Boonen et al. Feb 2019 B2
10197338 Melsheimer Feb 2019 B2
10200677 Trevor et al. Feb 2019 B2
10201932 Flitsch et al. Feb 2019 B2
10201941 Evans et al. Feb 2019 B2
10202673 Lin et al. Feb 2019 B2
10204216 Nejati et al. Feb 2019 B2
10207454 Buller et al. Feb 2019 B2
10209065 Estevo, Jr. et al. Feb 2019 B2
10210662 Holzer et al. Feb 2019 B2
10213837 Kondoh Feb 2019 B2
10214248 Hall et al. Feb 2019 B2
10214252 Schellekens et al. Feb 2019 B2
10214275 Goehlich Feb 2019 B2
10220575 Reznar Mar 2019 B2
10220881 Tyan et al. Mar 2019 B2
10221530 Driskell et al. Mar 2019 B2
10226900 Nevins Mar 2019 B1
10232550 Evans et al. Mar 2019 B2
10234342 Moorlag et al. Mar 2019 B2
10237477 Trevor et al. Mar 2019 B2
10252335 Buller et al. Apr 2019 B2
10252336 Buller et al. Apr 2019 B2
10254499 Cohen et al. Apr 2019 B1
10257499 Hintz et al. Apr 2019 B2
10259044 Buller et al. Apr 2019 B2
10268181 Nevins Apr 2019 B1
10269225 Velez Apr 2019 B2
10272860 Mohapatra et al. Apr 2019 B2
10272862 Whitehead Apr 2019 B2
10275564 Ridgeway et al. Apr 2019 B2
10279580 Evans et al. May 2019 B2
10285219 Fetfatsidis et al. May 2019 B2
10286452 Buller et al. May 2019 B2
10286603 Buller et al. May 2019 B2
10286961 Hillebrecht et al. May 2019 B2
10289263 Troy et al. May 2019 B2
10289875 Singh et al. May 2019 B2
10291193 Dandu et al. May 2019 B2
10294552 Liu et al. May 2019 B2
10294982 Gabrys et al. May 2019 B2
10295989 Nevins May 2019 B1
10303159 Czinger et al. May 2019 B2
10307824 Kondoh Jun 2019 B2
10310197 Droz et al. Jun 2019 B1
10313651 Trevor et al. Jun 2019 B2
10315252 Mendelsberg et al. Jun 2019 B2
10336050 Susnjara Jul 2019 B2
10337542 Hesslewood et al. Jul 2019 B2
10337952 Bosetti et al. Jul 2019 B2
10339266 Urick et al. Jul 2019 B2
10343330 Evans et al. Jul 2019 B2
10343331 McCall et al. Jul 2019 B2
10343355 Evans et al. Jul 2019 B2
10343724 Polewarczyk et al. Jul 2019 B2
10343725 Martin et al. Jul 2019 B2
10350823 Rolland et al. Jul 2019 B2
10356341 Holzer et al. Jul 2019 B2
10356395 Holzer et al. Jul 2019 B2
10357829 Spink et al. Jul 2019 B2
10357957 Buller et al. Jul 2019 B2
10359756 Newell et al. Jul 2019 B2
10369629 Mendelsberg et al. Aug 2019 B2
10382739 Rusu et al. Aug 2019 B1
10384393 Xu et al. Aug 2019 B2
10384416 Cheung et al. Aug 2019 B2
10389410 Brooks et al. Aug 2019 B2
10391710 Mondesir Aug 2019 B2
10392097 Pham et al. Aug 2019 B2
10392131 Deck et al. Aug 2019 B2
10393315 Tyan Aug 2019 B2
10400080 Ramakrishnan et al. Sep 2019 B2
10401832 Snyder et al. Sep 2019 B2
10403009 Mariampillai et al. Sep 2019 B2
10406750 Barton et al. Sep 2019 B2
10412283 Send et al. Sep 2019 B2
10416095 Herbsommer et al. Sep 2019 B2
10421496 Swayne et al. Sep 2019 B2
10421863 Hasegawa et al. Sep 2019 B2
10422478 Leachman et al. Sep 2019 B2
10425793 Sankaran et al. Sep 2019 B2
10427364 Alves Oct 2019 B2
10429006 Tyan et al. Oct 2019 B2
10434573 Buller et al. Oct 2019 B2
10435185 Divine et al. Oct 2019 B2
10435773 Liu et al. Oct 2019 B2
10436038 Buhler et al. Oct 2019 B2
10438407 Pavanaskar et al. Oct 2019 B2
10440351 Holzer et al. Oct 2019 B2
10442002 Benthien et al. Oct 2019 B2
10442003 Symeonidis et al. Oct 2019 B2
10449696 Elgar et al. Oct 2019 B2
10449737 Johnson et al. Oct 2019 B2
10461810 Cook et al. Oct 2019 B2
10919090 Feldmann et al. Feb 2021 B2
20060108783 Ni et al. May 2006 A1
20130270750 Green Oct 2013 A1
20130300035 Snis Nov 2013 A1
20140271328 Burris Sep 2014 A1
20140277669 Nardi et al. Sep 2014 A1
20160114432 Ferrar Apr 2016 A1
20160184925 Huang et al. Jun 2016 A1
20160339639 Chivel Nov 2016 A1
20170008126 Long Jan 2017 A1
20170021454 Dallarosa et al. Jan 2017 A1
20170113344 Schonberg Apr 2017 A1
20170120332 DeMuth et al. May 2017 A1
20170165792 Buller et al. Jun 2017 A1
20170282294 Uchida Oct 2017 A1
20170304946 Shibazaki Oct 2017 A1
20170320168 Martinsen Nov 2017 A1
20170341309 Piepenbrock et al. Nov 2017 A1
Foreign Referenced Citations (40)
Number Date Country
102015202347 Aug 2016 DE
1996036455 Nov 1996 WO
1996036525 Nov 1996 WO
1996038260 Dec 1996 WO
2003024641 Mar 2003 WO
2004108343 Dec 2004 WO
2005093773 Oct 2005 WO
2007003375 Jan 2007 WO
2007110235 Oct 2007 WO
2007110236 Oct 2007 WO
2008019847 Feb 2008 WO
2007128586 Jun 2008 WO
2008068314 Jun 2008 WO
2008086994 Jul 2008 WO
2008087024 Jul 2008 WO
2008107130 Sep 2008 WO
2008138503 Nov 2008 WO
2008145396 Dec 2008 WO
2009083609 Jul 2009 WO
2009098285 Aug 2009 WO
2009112520 Sep 2009 WO
2009135938 Nov 2009 WO
2009140977 Nov 2009 WO
2010125057 Nov 2010 WO
2010125058 Nov 2010 WO
2010142703 Dec 2010 WO
2011032533 Mar 2011 WO
2014016437 Jan 2014 WO
2014187720 Nov 2014 WO
2014195340 Dec 2014 WO
2015193331 Dec 2015 WO
2016116414 Jul 2016 WO
2017015241 Jan 2017 WO
2017036461 Mar 2017 WO
2019030248 Feb 2019 WO
2019042504 Mar 2019 WO
2019048010 Mar 2019 WO
2019048498 Mar 2019 WO
2019048680 Mar 2019 WO
2019048682 Mar 2019 WO
Non-Patent Literature Citations (4)
Entry
US 9,202,136 B2, 12/2015, Schmidt et al. (withdrawn)
US 9,809,265 B2, 11/2017, Kinjo (withdrawn)
US 10,449,880 B2, 10/2019, Mizobata et al. (withdrawn)
International Search Report and Written Opinion dated May 17, 2019, regarding PCT/US2019/020789.
Related Publications (1)
Number Date Country
20190275612 A1 Sep 2019 US