Current computers, such as laptops, desktop computers, as well as smart phones and tablet computers, do not have the capability to easily include persons other than the primary user on a call if the others are located in different positions in the room, even if the device includes directional microphones or microphone arrays. Simple amplification of all sound sources in a room typically produces a large amount of undesirable background noise. Individuals, who wish to participate in a telephone or video-telephony call, are typically required to physically move and sit near the microphone or in front of the camera. Consequently, persons who may be seated or comfortably resting, but wish to say a few words on a call are either obligated to move closer to the microphone and/or camera or will not be clearly heard or seen.
While beamforming techniques using microphone arrays are known, such as high noise-suppression techniques, and are able to reduce distracting ambient noise and bit rate requirements during voice calls, Voice over Internet Protocol (VOIP) or otherwise, these techniques rely generally on beam steering algorithms which attempt to identify a single talker based on several temporal-, spatial-, frequency-, and amplitude-based cues, which cause attenuation during fast switches between talkers and prevent multiple talker scenarios such as the one described. Additionally, under poor signal to noise ratio (SNR) conditions, the direction of arrival identification task becomes difficult causing voice muffling, background noise modulation and other artifacts. Moreover, with devices that are mobile, such as a computer tablet or smart phone, the device is likely to be moved during the conversation rendering the direction of arrival identification task even more difficult.
It would therefore be beneficial to develop a system whereby a user can easily include others who are in the room in the telephone or video telephony conversation (or other such applications) with minimal effort.
A mobile platform includes a microphone array and implements beamforming to amplify or suppress audio information from the direction of a sound source. The mobile platform further includes orientation sensors that are used to detect movement of the mobile platform, which is used to adjust the beamforming to continue to amplify or suppress audio information from the direction of a sound source while the mobile platform moves with respect to the sound source. The direction of the sound source can be provided through a user input. For example, the mobile platform may be pointed towards the sound source to identify the direction of the sound source. Additionally or alternatively, locations of sounds sources may be identified using the microphone array and displayed to the user. The user may then identify the direction of sound sources using, e.g., a touch screen display. When the mobile platform moves with respect to the sound source, the orientation sensors detect the movement. The direction that the beamforming is implemented can then be adjusted based on the measured movement of the mobile platform as detected by the orientation sensors. Accordingly, beamforming may be continuously implemented in a desired direction of a sound source despite movement of the mobile platform with respect to the sound source. Images or video from a camera may be likewise controlled based on the data from the orientation sensors.
The mobile platform 100 may also include a wireless transceiver 112 and one or more cameras, such as a camera 114 on the front side of the mobile platform 100 and camera 116 on the back side of the mobile platform 100 (shown in
As used herein, a mobile platform refers to any portable electronic device such as a cellular telephone, smart phone, tablet computer, or other wireless communication device, personal communication system (PCS) device, personal navigation device (PND), Personal Information Manager (PIM), Personal Digital Assistant (PDA), or other suitable mobile device. The mobile platform may be capable of transmitting and receiving wireless communications. The term mobile platform is also intended to include devices that communicate with a personal navigation device (PND), such as by short-range wireless, infrared, wireline connection, or other connection—regardless of whether satellite signal reception, assistance data reception, and/or position-related processing occurs at the device or at the PND. Also, “mobile platform” is intended to include all devices, including wireless communication devices, computers, etc. which are capable of communication with a server, such as via the Internet, WiFi, or other network, and regardless of whether satellite signal reception, assistance data reception, and/or position-related processing occurs at the device, at a server, or at another device associated with the network. Any operable combination of the above are also considered a “mobile platform.”
Moreover, the mobile platform 100 may access via transceiver 112 any wireless communication networks, such as cellular towers or from wireless communication access points, such as a wireless wide area network (WWAN), a wireless local area network (WLAN), a wireless personal area network (WPAN), and so on or any combination thereof. The term “network” and “system” are often used interchangeably. A WWAN may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Access (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency Division Multiple Access (OFDMA) network, a Single-Carrier Frequency Division Multiple Access (SC-FDMA) network, Long Term Evolution (LTE), and so on. A CDMA network may implement one or more radio access technologies (RATs) such as cdma2000, Wideband-CDMA (W-CDMA), and so on. Cdma2000 includes IS-95, IS-2000, and IS-856 standards. A TDMA network may implement Global System for Mobile Communications (GSM), Digital Advanced Mobile Phone System (D-AMPS), or some other RAT. GSM and W-CDMA are described in documents from a consortium named “3rd Generation Partnership Project” (3GPP). Cdma2000 is described in documents from a consortium named “3rd Generation Partnership Project 2” (3GPP2). 3GPP and 3GPP2 documents are publicly available. A WLAN may be an IEEE 802.11x network, and a WPAN may be a Bluetooth network, an IEEE 802.15x, or some other type of network.
With the use of the microphone array 108 and the orientation sensors 110, the mobile platform 100 is capable of implementing beamforming of one or more sound sources despite movement of the mobile platform 100 altering the orientation of the mobile platform with respect to the sound sources. As used herein, a sound source includes anything producing audio information, including people, animals, or objects.
Referring back to
In a conventional multiple microphone array based noise-suppression system, the algorithm attempts to identify the direction of the talker by processing a series of temporal-, spatial-, frequency- and amplitude-based acoustic information arriving at each one of the microphones. Microphones in tablet computers and netbooks are, in most use-cases, far enough away from the mouth speaker that the acoustic energy path-loss can be greater than 30 dB relative to the mouth reference point. This path-loss requires a high gain in the CODEC prior to digital conversion. Thus, conventional noise-suppression algorithms that maybe used for tablet computers and netbooks must overcome the fact that the background noise is also being amplified by the same gain factor as the desired speech. Consequently, a conventional noise-cancellation algorithm computes a direction for the desired speaker and steer a narrow beam towards that speaker. The beam width is a function of the frequency and microphone array 108 configuration, where narrower beamwidths come with stronger side lobes. A databank of beams of varying widths may be designed and stored in the mobile platform 100 and selected automatically or through the user interface so that the beam is of an appropriate width to include or exclude sound sources.
Using the orientation sensors 110, such as the compass, gyroscope, or a reference-angle-of-arrival generated from a stationary noise-source, movement of the mobile platform 100 is determined (206). In general, it may be presumed that the mobile platform 100 is moved with respect to the sound sources. Determining movement, including the change in orientation or position, using orientation sensors or a stationary noise-source is well known in the art.
The beamforming is adjusted based on the determined movement to continue to implement beamforming in the direction of the sound source after the mobile platform has moved (208). Thus, for example, as illustrated in
Additionally, during a video-telephony conversation, it may be desirable for an image of a desired sound source, along with the user, to be displayed and transmitted. While the mobile platform 100 may be relatively stationary with respect to a user who is holding the mobile platform 100, the user's movement may cause the mobile platform 100 to move relative to other sound sources. Thus, images of the other sound sources may be shaky or, with sufficient user movement, the camera may pan away from the other sound sources. Accordingly, camera 116 may be controlled to compensate for movement of the mobile platform 100 using the measured motion from, e.g., the orientation sensors 110, by controlling the camera 116 to capture video or images from the indicated direction of a sound source and to use the determined movement to adjust the control of the camera to continue to capture images or video in the direction of the sound source after the mobile platform has moved.
The camera 116 can be controlled, e.g., by adjusting the PTZ (pan tilt zoom) of the camera 116 to point in the adjusted direction to continue capture video or images of the sound source after movement of the mobile platform.
Additionally, the microphone array 108 may be used to pick up audio information from a specified direction that is used for applications other than telephone or video-telephony type applications. For example, the audio information may simply be recorded and stored. Alternatively, the audio information or may be translated in real-time or near real-time, e.g., either by the mobile platform 100 itself or by transmitting the audio information to a separate device, such as a server, via transceiver 112, where the audio information is translated and transmitted back to the mobile platform 100 and received by transceiver 112, such as Jibbigo by Mobile Technologies, LLC.
The mobile platform 100 further includes a user interface 160 that may include, e.g., a speaker 104, and loud speakers 106L and 106R, as well as a display 102, which may be, e.g., an LCD (liquid crystal display) technology, or LPD (light emitting polymer display) technology, and may include a means for detecting a touch of the display, such as the capacitive or resistive touch sensors. The user interface 160 may further include a keypad 162 or other input device through which the user can input information into the mobile platform 100. If desired, the keypad 162 may be obviated by integrating a virtual keypad into the display 102 with a touch sensor. The user interface 160 also includes one or more of the microphones in the microphone array 108, such as microphone 108B shown in
The mobile platform 100 includes a control unit 150 that is connected to accept and process data from the orientation sensors 110, microphone array 108, transceiver 112, cameras 114, 116 and the user interface 160. The control unit 150 also controls the operation of the devices, including the microphone array 108, and thus, serves as a means for implementing beamforming and using movement detected by the orientation sensors to adjust the beamforming to continue to implement beamforming in the direction of the sound source after the mobile platform has moved with respect to the sound source. The control unit 150 may be provided by a processor 152 and associated memory 154, hardware 156, software 158, and firmware 157. The control unit 150 includes a means for implementing beamforming, which is illustrated as a microphone array controller 192, and a means for measuring movement of the mobile platform, illustrated as the orientation sensor controller 194. Where the movement is determined based on a reference-angle-of-arrival generated from a stationary noise-source, the microphone array controller 192 may be used to determine movement. The microphone array controller 192 and orientation sensor controller 194 may be implanted in the processor 152, hardware 156, firmware 157, or software 158, i.e., computer readable media stored in memory 154 and executed by processor 152, or a combination thereof, but are illustrated separately for clarity.
It will be understood as used herein that the processor 152 can, but need not necessarily include, one or more microprocessors, embedded processors, controllers, application specific integrated circuits (ASICs), digital signal processors (DSPs), and the like. The term processor is intended to describe the functions implemented by the system rather than specific hardware. Moreover, as used herein the term “memory” refers to any type of computer storage medium, including long term, short term, or other memory associated with the mobile platform, and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
The methodologies described herein may be implemented by various means depending upon the application. For example, these methodologies may be implemented in hardware 156, firmware 157, software 158, or any combination thereof. For a hardware implementation, the processing units may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, micro-controllers, microprocessors, electronic devices, other electronic units designed to perform the functions described herein, or a combination thereof.
For a firmware and/or software implementation, the methodologies may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein. Any machine-readable medium tangibly embodying instructions may be used in implementing the methodologies described herein. For example, software codes may be stored in memory 154 and executed by the processor 152. Memory may be implemented within the processor unit or external to the processor unit. As used herein the term “memory” refers to any type of long term, short term, volatile, nonvolatile, or other memory and is not to be limited to any particular type of memory or number of memories, or type of media upon which memory is stored.
For example, software 158 may include program codes stored in memory 154 and executed by the processor 152 and may be used to run the processor and to control the operation of the mobile platform 100 as described herein. A program code stored in a computer-readable medium, such as memory 154, may include program code program code program code to identify a direction of a sound source based on a user input; program code to implement beamforming to amplify or suppress audio information received by a microphone array in the direction of the sound source; program code to determine movement of the microphone array; and program code to use the determined movement to adjust the beamforming to continue to implement beamforming in the direction of the sound source after the microphone array has moved with respect to the sound source. The program code stored in a computer-readable medium may additionally include program code to cause the processor to control any operation of the mobile platform 100 as described herein.
If implemented in firmware and/or software, the functions may be stored as one or more instructions or code on a computer-readable medium. Examples include computer-readable media encoded with a data structure and computer-readable media encoded with a computer program. Computer-readable media includes physical computer storage media and does not refer to transitory propagating signals. A storage medium may be any available medium that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer; disk and disc, as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
Although the present invention is illustrated in connection with specific embodiments for instructional purposes, the present invention is not limited thereto. Various adaptations and modifications may be made without departing from the scope of the invention. Therefore, the spirit and scope of the appended claims should not be limited to the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
5715318 | Hill et al. | Feb 1998 | A |
20020149672 | Clapp et al. | Oct 2002 | A1 |
20060271370 | Li | Nov 2006 | A1 |
20070025562 | Zalewski et al. | Feb 2007 | A1 |
20080101624 | Schentrup et al. | May 2008 | A1 |
20080199025 | Amada | Aug 2008 | A1 |
20080259731 | Happonen | Oct 2008 | A1 |
20080297589 | Kurtz et al. | Dec 2008 | A1 |
20100046779 | Crawford et al. | Feb 2010 | A1 |
20100123785 | Chen et al. | May 2010 | A1 |
20100128892 | Chen et al. | May 2010 | A1 |
20100323652 | Visser et al. | Dec 2010 | A1 |
20110038489 | Visser et al. | Feb 2011 | A1 |
20110158418 | Bai et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
2009296232 | Dec 2009 | JP |
Entry |
---|
Wang, H. et al., “Voice Source Localization for Automatic Camera Pointing System in Videoconferencing”, Acoustics, Speech, and Signal Processing, 1997. ICASSP-97, Apr. 1997, pp. 187-190, vol. 1. |
International Search Report and Written Opinion—PCT/US2012/021340—ISAEPO—May 4, 2012. |
Number | Date | Country | |
---|---|---|---|
20120182429 A1 | Jul 2012 | US |