This application derives priority from New Zealand patent application number 715391 the contents of which as incorporated herein by reference.
Described herein is a variable behavior control mechanism for a motive system. More specifically, a mechanism is described with sensitivity to a variety of motion characteristics, the mechanism comprising means to measure a plurality of motion characteristics and, where the system is activated to complete some manner of movement, or movement prevention, in response to the mechanism dynamics of movement, activation only occurs as a result of sensitivity to a plurality of characteristics of motion.
As noted above, this disclosure relates to a mechanism for a motive system whose activation alters in response to the characteristic of the dynamics of the motion of the system.
Known art systems use a single characteristic measure on the dynamic motion as the input for determining a point of activation (e.g., position, velocity, acceleration, or jerk). These systems provide an activation of the systems based of the input characteristics of a single threshold value of the measured metric. An example of this type of mechanism may be a seat belt used in a vehicle. The seat belt mechanism allows line extension and retraction however, when a sudden acceleration occurs, latches engage a stop mechanism and line extension halts. In this example the single motion characteristic measured is acceleration. No other aspects of system motion are measured or used to control the activation of the stop mechanism. This type of system is clearly effective however it is far from perfect, for example, because the system is prone to unwanted activation for example when the user fits the seatbelt and pulls the belt too rapidly.
In many situations and applications it is desired (and beneficial) to have the activation of the system vary based on the dynamics of the motion—the dynamics of the motion being determined by considering the variation in motion characteristic(s) with respect to time.
By definition, a system setting an activation threshold value based on a single characteristic measure is unable to determine activation based on a threshold set by that single characteristic measure itself.
However, if a change of the characteristic measure was determined, or the characteristic behavior of the motion with respect to a time reference was considered, or an alternative characteristic measure was considered, and a measure or assessment of this was then used in some manner with or alongside the single characteristic measured to determine the activation, then the desired system activation response could be achieved. Activation may for example be a threshold, varied by one or more motion characteristic measures or using a plurality of characteristic measures to determine a fixed activation threshold. Expressed another way, if a greater range of motion characteristics are measured, the eventual mechanism may be less prone to false activations, more likely to activate when needed and potentially more likely to activate faster than perhaps might be the case when a single motion characteristics is measured.
An aim of the mechanism described herein may be to provide an alternative variable behavior control mechanism for a motive system or at least provide the public with a choice.
Further aspects and advantages of the control mechanism and method of use will become apparent from the ensuing description that is given by way of example only.
Described herein is a variable behavior control mechanism with a variety of motion characteristics, the mechanism comprising means to reference a plurality of motion characteristics and, where the mechanism activates when a threshold is reached to complete some manner of control or control prevention in response to the motion characteristics, activation only occurring as a result of a plurality of characteristic of motion. The mechanism described is comparatively more complicated than art single motion characteristic measurement system like a simple vehicle seat belt and as a result may be used to for example, minimize or prevent unwanted activation thereby creating increased functional and application yet operate with great accuracy when activation is required.
In a first aspect, there is provided a variable behavior control mechanism in a motive system, the mechanism comprising:
In a second aspect, there is provided a variable behavior control mechanism in a motive system, the mechanism comprising:
In a third aspect, there is provided a variable behavior control mechanism in a motive system, the mechanism comprising:
In a fourth aspect, there is provided a method of controlling a variable behavior control mechanism in a motive system by the steps of:
Advantages of the above may comprise one or more of:
Quicker activation times and lower nuisance lock off occurrence—when the device is used in a self retracting lifeline (SRL) application, the activation time for the device can be improved thereby resulting in short fall distances whilst maintaining or reducing in potential nuisance lock-off events. Equally, in seat belt applications, the device can increase the useability of the product by reducing the number of accidental activations of the locking mechanism when the belt is extracted by the users whilst improving the activation time and accuracy during an actual accident or collision;
The mechanism disclosed may overcome the shortcoming of the known art systems in the way noted above, by characterizing the motion of the system through a richer set of characteristic measures. Activation of the mechanism may be determined based on variation of a threshold value of one characteristic motion measure by another (or combination of) characteristic measure(s). Alternatively, the threshold for activation may be determined by the profile of one or more characteristic measures values considered with respect to a time reference. This may be achieved mechanically, electrically/electronically, or a combination of both. The characteristic of motion may be determined instantaneously at a point in time, or over a time period.
Processors and/or algorithms may further be utilized alongside the mechanism to further tune the mechanism dynamics thus providing greater mechanism versatility.
Further aspects of the variable behavior control mechanism and method of use will become apparent from the following description that is given by way of example only and with reference to the accompanying drawings in which:
As noted above, described herein is a variable behavior control mechanism with a variety of motion characteristics, the mechanism comprising means to reference a plurality of motion characteristics and, where the mechanism activates when a threshold is reached to complete some manner of control or control prevention in response to the motion characteristics, activation only occurring as a result of a plurality of characteristic of motion. The mechanism described is comparatively more complicated than art single motion characteristic measurement system like a vehicle seat belt and as a result may be used to for example, minimize or prevent unwanted activation thereby creating increased functional and application yet operate with great accuracy when activation is required.
For the purposes of this specification, the term ‘about’ or ‘approximately’ and grammatical variations thereof mean a quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 15, 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1% to a reference quantity, level, degree, value, number, frequency, percentage, dimension, size, amount, weight or length.
The term ‘substantially’ or grammatical variations thereof refers to at least about 50%, for example 75%, 85%, 95% or 98%.
The term ‘comprise’ and grammatical variations thereof shall have an inclusive meaning—i.e., that it will be taken to mean an inclusion of not only the listed components it directly references, but also other non-specified components or elements.
The term ‘member’ may refer to one part or element or a plurality of parts or elements that together achieve the function noted.
The term ‘sensor’ or grammatical variations thereof refers to either, or a combination of; an individual sensing element, combination of sensing elements, a sensing system, a sensing element and measurement system, a signal processing and manipulation system, and that it may be a single system or combination of systems, either combined or separated. Further, the term ‘sensor’ or grammatical variations thereof refers to an item or items that both references at least one motion characteristic and then undergoes some behavior itself (active) or actions some behavior on another mechanism (passive), this behavior causing or leading to an activation event. In summary, the at least one sensor is able to respond to the applied conditions imposed by the component dynamics and statics that then lead the sensor to operate directly or indirectly in response to these to achieve an activation event.
The term ‘threshold’ or grammatical variations thereof refers to a value, or being determined as an event that is determined from a set of motion characteristics, equating to a point at which activation action occurs.
The term ‘variable behavior’ or grammatical variations thereof refers to the mechanism varying its response based on a plurality of inputs, the a plurality of inputs giving a greater number of possible but yet predictable and predetermined responses than single input mechanisms. Specifically, the variable behavior may be variation with respect to one motion characteristic due to the influence of other motion characteristics.
The term ‘measure’ or grammatical variations thereof refers to ascertaining the size, amount, or degree of at least one mechanism motion characteristic.
The term ‘signal’ or grammatical variations thereof refers to at least one motion characteristic that provides an indication, warning, or command, or value, e.g., voltage, current, force, binary, reaction of the mechanism configuration or possible future predicted position.
In a first aspect, there is provided a variable behavior control mechanism in a motive system, the mechanism comprising:
As may be appreciated from the above, the inventors have identified a design of mechanism where activation occurs with the motion characteristic both having an absolute and relative direct measurement against the threshold and therefore singularly and combined have direct influence on the activation.
In one embodiment, activation as noted above may result when the threshold is reached, this being when the two or more motion characteristic measures reach a predefined threshold, each motion characteristic given a direct weighting.
In an alternative embodiment, activation may result when the threshold is reached, wherein at least one motion characteristic measure is given a relatively higher threshold weighting than the at least one further motion characteristic when measured against a fixed threshold.
In a second aspect, there is provided a variable behavior control mechanism in a motive system, the mechanism comprising:
As may be appreciated from the above, the inventors in this aspect have identified a mechanism where sensing of the one or more motion characteristic influences the activation threshold that one other motion characteristic senses and activates upon. That is, the mechanism provides a means of activating when a weighted combination of motion characteristics exceed a chosen threshold while remaining un-activated or dis-engaged at all other times.
In a third aspect, there is provided a variable behavior control mechanism in a motive system, the mechanism comprising:
In a further embodiment common to both of the above aspects, the mechanism may utilize direct sensing and activation where the mechanism is configured with at least one sensor located on the mechanism or a part thereof that senses at least one motion characteristic and, when the threshold is met the at least one sensor causes activation directly on the mechanism, system, or a part thereof.
The at least one sensor may also move with the mechanism or part thereof.
Alternatively to the above embodiment, the mechanism may utilize indirect sensing. Only indirect or remote sensing may be used. Alternatively, a combination of indirect and direct sensing may be used. For example, the mechanism may be configured with at least one sensor located remotely from the mechanism, optionally with or without a further sensor located directly on the primary system and, when the threshold is met, activation occurs with the secondary system. As may be appreciated, in an embodiment where two sensors are used, one direct on the primary system and another indirect, each sensor may sense at least one motion characteristic. By contrast, in the embodiment where only a single indirect sensor is used, the indirect sensor senses at least two motion characteristics. Also, as noted above, there may be two indirect or remote sensors, each sensing at least one motion characteristic. Where multiple indirect sensors are used, the sensors may be on different remote objects.
In a further embodiment, activation may result when the threshold is reached, the threshold being derived from motion characteristics determined at a single instant in time.
In an alternative embodiment to the above, activation may result when the threshold is reached, the threshold being determined based on a profile of at least two of the sensed motion characteristic established. As may be appreciated, reference to a single motion characteristic may inherently capture or require reference also to another motion characteristic, particularly when the motion characteristics are measured over a time period as opposed to a single instant of time, the further inherent motion characteristic being time and the way the motion characteristics change over time. Reference herein to a single motion characteristic should not be given strict interpretation and it should be appreciated that the motion characteristic may also use time as a further motion characteristic.
As may be appreciated from the above embodiments, activation may occur when a signature of motion characteristics exceed a chosen threshold while remaining un-activated at all other times. The signature of motion characteristics may be a unique combination of the motion characteristic attributes at a single instant in time. Alternatively, the signature of motion characteristics may be a unique combination of the motion characteristic attributes determined over a period time.
As noted above, activation may occur based on a measured threshold being achieved. Activation may be due to an exceeding action, or alternatively, a decreasing action. For example, the threshold being reached and activation occurring, may only happen when at least one of the measured motion characteristics exceeds a desired threshold. Alternatively, the threshold being reached and activation occurring may only happen when at least one of the measured motion characteristics decreases below a desired threshold. Expressed another way, the term ‘activation’ covers both activating an action to take place as well as deactivating the action, activation or deactivation being changes or alterations in relationship between the primary system and secondary system.
In one embodiment for example, activation occurs in response to a sudden jerk action in combination with a measured high velocity triggering activation due to a threshold of jerk and velocity or ratio of jerk to velocity (or other relationships) being exceeded. Conversely, in a different mechanism, the opposite set of inputs may trigger the threshold being reached, i.e., the jerk motion characteristics stop and/or the velocity decreases (or the relationship between these two motion characteristics deceases in some manner), the threshold occurring due to a decreased measure. As should be appreciated, either an increase or decrease action may trigger a threshold being reached and activation occurring and reference to one action or the other should not be seen as limiting.
The at least two motion characteristics may be selected as absolute or relative measures from: displacement, force degree and/or direction, velocity, acceleration, deceleration, movement direction, jerk, time reference, and combinations thereof.
The at least two motion characteristics may alternatively or in combination with the above be selected as absolute or relative measures from a modified signal of: displacement, force degree and/or direction, velocity, acceleration, deceleration, movement direction, jerk, and combinations thereof.
By way of example, if the primary system was a pawl or inertial disk and motion of the pawl or inertial disk was damped, the signal from the pawl or inertial disk would be ‘modified’, damping therefore being the modification means. Equally an electronic signal could be processed and modified, offset, multiplied and so on hence reference to a mechanical embodiment should not be seen as limiting.
In one embodiment the characteristic of motion is displacement or any differential of displacement with respect to time. The first, second, third, fourth, fifth and sixth differentials of displacement with respect to time are velocity, acceleration, jerk, snap (or jounce), crackle and pop respectively. These motion characteristics are physical vector quantities meaning a direction and magnitude defines them. Although most of these motion characteristics are the rate of change of another quantity with respect to time, they can be measured at an instant in time or evaluated over a period of time.
Two or more motion characteristics can be combined in various ways to define a threshold or a set of criteria. Input motion characteristics can be assessed to determine if the threshold has been exceeded or the criteria has been met.
Examples of when a threshold is exceeded may be: when the sum of the measured velocity and acceleration is greater than x, when the measured velocity is greater than x where x is inversely proportional to acceleration at that moment in time. Examples of when a criteria is met may be: when the measured velocity exceeds x and the measured acceleration exceeds y, when the acceleration is greater than x or the displacement is less that y.
It should be noted that the measured motion characteristic value or measure may range from not changing over time, e.g., a constant velocity, or may change slowly over time, e.g., a gradual increase or decrease in acceleration, or may undergo a sudden change, e.g., sudden displacement. Each one of these measured motion characteristics may only provide part of the overall mechanism (or at least primary system) kinematics and hence, why basing a threshold on a plurality of motion characteristics may be important or at least useful. For example, the mechanism may be a fall safety device such as a self retracting lifeline (SRL) and the measured motion characteristics may be displacement of line from a spool along with line acceleration. During a fall, the line acceleration may be gradual or even non-existent if the user was already in motion prior to a fall hence, if only rate of change in acceleration were measured, payout of line may well continue despite the fall since the sensor of acceleration ‘sees’ or senses no change occurring. When the acceleration rate is sensed in combination or in relation to line displacement from a spool, the mechanism may ‘see’ that the rate of line payout exceeds a threshold, this threshold equating to a fall scenario and activation resulting in a halt or slowing of line payout being initiated through secondary system activation, the secondary system being a braking mechanism in this example.
Activation may cause at least partial engagement between the at least one primary system and the at least one secondary system or parts thereof. Engagement may be full engagement. Activation may instead by disengagement. Reference is made for brevity herein to the term engagement, however, it should be appreciated that the opposite of disengagement may also be read where the term engagement is referred to and reference to engagement should not be seen as limiting in all cases noted.
The at least partial engagement may be direct. For example, direct may refer to an element or elements of the primary system directly touching and/or mating with an element or elements of the secondary system. The at least partial engagement may instead be indirect. In this case, engagement may be between an element or elements of the primary system activating an additional member or members that in turn engage with the secondary system. In either case, the final result of engagement between the primary and secondary systems or parts thereof, are common whether direct or indirect engagement methods are used.
The at least partial engagement may result in synchronized motion between the at least one primary system and the at least one secondary system. Both systems may for example be in a rotary mechanism, once engaged, spin together with no independent motion between the systems.
The at least partial engagement may cause the at least one secondary system to resist change (in one example being movement) of the at least one primary system. Alternatively, engagement may cause the at least one primary system to resist change of the at least one secondary system.
The at least partial engagement may halt motion of the at least one primary mechanism and the at least one secondary system.
The at least partial engagement may result in change to the interaction with the secondary system.
The at least partial engagement may result in alteration/modification/change to the characteristics of the secondary system.
The at least one sensor may be selected from: at least one mechanical sensor, at least one fluidic sensor, at least one thermal sensor, at least one magnetic sensor, at least one electrical sensor, at least one electronic sensor, and combinations thereof.
A sensor as described herein may be a discrete element or a system of elements comprised such that, in combination, their behavior is sensitive to particular input conditions (such as motion behavior) and optionally, providing a repeatable response to the sensed (motion) behavior. The response noted may provide a signal output to an external system or element, or may act to alter or influence the operational conditions of a related system or element (that is not part of the sensor itself).
As noted above, the sensor may be a non-acting passive element or elements simply sensing the motion characteristic and sending this sensed information to another element. The sensor may instead be an active device that senses and is or are the activation/engagement means or mechanisms. Combinations of both forms of sensor (active and passive) may be used and reference to a passive sensor or active sensor should not be seen as limiting. One example of an active activation/engagement system may for example be a pawl in a rotary system (together being the primary system) where the pawl is velocity sensitive/sensing and which rotates about an axis away from the rotary system when the threshold is reached, the pawl then latching with a secondary system. It should further be appreciated that a component's function for sensing may not limit the ability of the component to provide function in other aspects of the primary system.
One advantage of the described mechanism is that the sensor dynamics may be tuned to vary the primary system dynamics. By way of example, if the sensor were a pawl that senses velocity, the sensitivity of the sensor may be tuned by varying the pawl, for example by varying the pawl shape, varying the pawl center of gravity, varying the pawl pivot point location and by having a bias that restricts pawl movement.
In one embodiment, the at least one primary system may comprise a carriage or rotor and the at least one sensing member may be linked to the carriage or rotor. The at least one sensing member linked to the carriage or rotor may for example be selected from: a pawl, rocker, cam system, latch, disk, carrier, carriage, spool, and combinations thereof. This list should not be seen as limiting since a variety of other sensing members may used.
As noted above, the primary system and sensor may be combined elements. In one example, a combined mechanical sensor/primary system may consist of elements containing, but not limited to; masses, biasing elements, levers, cams, and/or magnetic drag elements. For example, an acceleration sensor may take the form of a mass constrained in the direction of acceleration by a biasing element whose resistance force alters predictably with displacement. The act of applying motion acceleration to a free end of the biasing element in line with the bias device will result in change in the biasing element until a sufficient force is applied to the free mass by the biasing element to accelerate the free mass at the same rate as the external acceleration. As the mass accelerates in proportion to its mass and the force applied, the change in the biasing element may vary for different values of acceleration. In this way, the external acceleration is sensed by the mass and bias device interaction and the level of acceleration may be determined by the level of change in the biasing element.
In another example, a rotational velocity may be sensed through mechanical means by a mass on a rotational element with a degree of motion freedom in the radial direction. Under rotation the mass will exhibit a tendency to accelerate in the radial direction proportional to the square of the rotational velocity. Restraining the mass by a bias device of similar properties to the above example, the radial change in the bias may be referenced to determine the rotational velocity.
The at least one sensor need not provide a discrete output in proportion to the sensed motion to be utilized and effective in the activation of a system. Instead, the at least one sensor may act upon its own elements to provide an activation behavior, or interact with the constraints and/or variables of other systems to affect an activation behavior.
A further sensor may be the use of electrical elements such as switches, electrical generators, and electric solenoids. Although not essential, these may be combined with mechanical elements to form the at least one sensor or sensors. An example of an electric speed sensor is an electrical generator whose electrical voltage output is proportional to the velocity of rotation. In another example, an electric solenoid may be combined with a magnet mass attached to a bias device as detailed in the above mechanical example. The motion of the magnet in the solenoid coil may result in an electrical voltage proportional to the velocity. As the movement of the magnet mass occurs with a change in acceleration, the rate of change in acceleration results in a velocity of the magnet with respect to the solenoid coil. The resulting voltage is therefore proportional to the rate of change of acceleration—i.e., a jerk motion characteristic.
An at least one sensor may comprise electronic components and discrete sensing elements configured to provide a sensor output related to the motion characteristic being measured. Such a sensor may utilize passive elements, or alternatively, may use a processor and/or algorithm in defining the sensor output or response. Alternatively, an electronic sensor may provide output signals for external input into a processor and/or algorithm for subsequent determination of an activation.
The at least one secondary system may be a mechanical mechanism that the primary system or a part thereof engages. The at least one secondary system may for example be: a stop such as a cam plate, or latch plate and combinations thereof. This list should not be seen as limiting since a variety of other mechanical secondary system configurations may used.
The at least one secondary system may alternatively be an electrical or electronic mechanism comprising: a transmission mechanism, a motor, a solenoid, and combinations thereof. This list should not be seen as limiting since a variety of other electrical and electronic secondary system configurations may used. In this embodiment, the at least one secondary system may be a motor or brake that is directly coupled to the primary system and upon activation the motor or brake then provides resistance to movement of the primary system.
In one example, the motor noted above may for example be the secondary system and if so, it may then be coupled to the primary system before activation and the activation causes the motor or brake to be powered to resist or stop the motion.
In a fourth aspect, there is provided a method of controlling a variable behavior control mechanism in a motive system by the steps of:
The at least one primary member may contain at least one member sensitive to velocity and, at least one member sensitive to acceleration and a carrier in which the at least two members are mounted on.
The at least one acceleration sensitive member has a sensing means that alters the characteristics of the at least one acceleration sensitive member relative to the carrier. The sensing means may for example be a force sensor.
The relative characteristics of the at least one acceleration sensing member may be proportional to the acceleration present.
The characteristics of the at least one velocity sensing member may alter when the velocity passes a threshold, thus engaging or activating the at least one secondary system. The threshold at which the at least one velocity sensitive member changes may be altered by the characteristics of the at least one acceleration sensitive member.
The characteristics of the acceleration sensor may be controlled by at least one bias element and the at least one bias element in turn may alter at least one second bias element between the at least one acceleration sensing member and the at least one velocity sensing member. The bias element or elements may be a spring or springs.
Alternately a single primary member may be mounted to a carrier and may be sensitive to both velocity and acceleration.
The single primary member may be configured in such a way that the forces acting on it due to velocity and acceleration combine, with the combined force altering the characteristics of a single primary member relative to the carrier when a pre-determined threshold is exceeded, thus activating or engaging the at least one secondary system.
Velocity sensing noted above may be achieved in various ways beyond those noted above. For example, the velocity activation system may use the dynamics of a rocker travelling over a ramp and the dynamics making the rocker move into a latched position above a velocity threshold. The rocker resistance to latched position movement may be modified through changing the bias on the rocker in response the acceleration on the system.
Activation in the above example may be at least in part related to velocity, the carrier being a rocker and the velocity sensed using the dynamics of a rocker travelling over a ramp and the dynamics making the rocker move into an activated position above a velocity threshold.
Activation causes the rocker to engage the primary and secondary systems together and/or engage the at least one additional latching member if present.
The rocker resistance to latched position movement is modified through changing the bias on the rocker in response to acceleration on the mechanism or part thereof.
Final embodiments for the mechanism described herein may be varied. For example, an automatic belay device (autobelay) or self retracting lifeline (SRL) embodiment may use the mechanisms. In an SRL embodiment, a line may extend and retract from the SRL device and when the line extends from the SRL device at a rate beyond the threshold, the mechanism engages and applies a retarding force on the rate of line extension. SRL and autobelay applications should not be seen as limiting since the devices described may be used for a wide variety of other applications, non-limiting examples including speed control or load control of:
Advantages of the above may comprise one or more of:
Short fall distance/lower nuisance lock off occurrence—when the device is used in an SRL, the system can be tuned to quickly active under the correct combination of acceleration and velocity thereby obtaining short fall distance. This would occur in a free fall event. However the same device will be keep false activations during normal work events (nuisance lock off) to a minimum by differentiating the different combinations of accelerations and velocities in these events;
Tuneability—it may be possible to control the sensitivity of the device to the actual and relative values of motion (including velocity and acceleration). Likewise, it may be possible to control the sensitivity of the device to how the effects of motion (for example velocity and acceleration) are combined. Furthermore, using the effects it may be possible to control the threshold of the device at which a secondary system within the device is activated or engaged.
Increased functionality—Based on the tuneability of the device, it is possible for the device to have an increase in functionality when used in specific application, particular where the ‘signatures’ of the input motion in which the device should not activate are close to those where activation is essential. As will be understood, as the device has the ability to sense and activate from a range of motion characteristics, the combination of the motion characteristics, and the relative thresholds of the characteristics, the accuracy of the device for determining the need to active secondary functions is significantly improved.
Quicker activation times and lower nuisance lock off occurrence—when the device is used in a self retracting lifeline (SRL) application, the activation time for the device can be improved thereby resulting in short fall distances whilst maintaining or reducing in potential nuisance lock-off events. Equally, in seat belt applications, the device can increase the useability of the product by reducing the number of accidental activations of the locking mechanism when the belt is extracted by the users whilst improving the activation time and accuracy during an actual accident or collision;
The mechanism disclosed may overcome the shortcoming of the known art systems in the way noted above, by characterizing the motion of the system through a richer set of characteristic measures. Activation of the mechanism may be determined based on variation of a threshold value of one characteristic motion measure by another (or combination of) characteristic measure(s). Alternatively, the threshold for activation may be determined by the profile of one or more characteristic measures values considered with respect to a time reference. This may be achieved mechanically, electrically/electronically, or a combination of both. The characteristic of motion may be determined instantaneously at a point in time, or over a time period.
Processors and/or algorithms may further be utilized alongside the mechanism to further tune the mechanism dynamics thus providing greater mechanism versatility.
The embodiments described above may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more said parts, elements or features.
Further, where specific integers are mentioned herein which have known equivalents in the art to which the embodiments relate, such known equivalents are deemed to be incorporated herein as of individually set forth.
The above described control mechanism and method of use are now described by reference to specific examples.
As noted in the detailed description above, one activation sensing mechanism may sense at least two motion characteristics on a primary system.
This embodiment is described in more detail below with reference to
Note that in this example activation may occur by a direct action of the sensor causing activation with the secondary system, for example by causing primary and secondary system engagement.
As noted in the detailed description above, one activation sensing mechanism may sense at least two motion characteristics one motion characteristic being directly on the primary system and another at a point remote to the primary system.
This embodiment is described in more detail below with reference to
The flow diagram shown in
Note that in this example activation may occur by a combination of direct 3 and indirect 4 sensing causing activation with the secondary system 2, activation being via a direct action of the first sensor 3 causing activation.
As noted in the detailed description above, a further activation sensing mechanism may sense at least two motion characteristics at an instant of time and base activation on the sensed characteristics at the instant of time.
This embodiment is described in more detail below with reference to the mechanism of
The flow diagram shown in
Note that while direct sensing 3 is indicated in
Example 3 illustrated measurement at an instant of time. By contrast, the mechanism may sensing the two or more motion characteristics over a period of time and basing activation on the system behavior over time, more like a signature of motion or mechanism behavior.
Using the same mechanism is that shown in
In this mechanism, the flow diagram may be slightly different as shown in
The process may also follow the flow diagram shown in
In this Example, an embodiment is described where activation is based on at least two measured motion characteristics acting in conjunction directly to activate against a threshold, the threshold being set by a bias spring.
The activation process for this mechanism is further described in the flow diagram of
As an alternative to the additive weighting or even weighting described in Example 5, the different characteristics may be given a varied weighting relative to one another to achieve and different activation threshold.
Using the basic mechanism of Example 1 and
In this example a more practical approach is shown of the mechanism of Example 7 above where activation results when one motion characteristic, e.g., acceleration, influences the threshold of activation for sensing on another motion characteristic, e.g., velocity.
As shown in
The possible resulting profiles for the above mechanism, assuming velocity and acceleration are the motion characteristics might look as per:
In this Example a more practical approach is described illustrating a mechanism using multiple sensors located on and acting directly on the primary system along with an indirect sensor, the combination of sensors being both mechanical and electronic sensors.
The primary system in this embodiment may be a carriage 40 that a pawl 41 is rotatingly linked to about axis 42. The pawl 41 may be paramagnetic and, when the primary system moves by carriage 40 motion M through a magnetic field 43 shown as the shaded area in
Aspects of the variable behavior control mechanism and method of use have been described by way of example only and it should be appreciated that modifications and additions may be made thereto without departing from the scope of the claims herein. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
715391 | Dec 2015 | NZ | national |
Number | Name | Date | Kind |
---|---|---|---|
638950 | Addison et al. | Dec 1899 | A |
2058024 | Logan, Jr. | Oct 1936 | A |
2122312 | Cassion | Jun 1938 | A |
2122315 | Fosty et al. | Jun 1938 | A |
2272509 | Cavallo | Feb 1942 | A |
2409009 | Bakke | Oct 1946 | A |
2428104 | Winther | Sep 1947 | A |
2437871 | Wood | Mar 1948 | A |
2492776 | Winther | Dec 1949 | A |
2771171 | Schultz | Nov 1956 | A |
2807734 | Lehde | Sep 1957 | A |
3364795 | De Coye De Castelet | Jan 1968 | A |
3447006 | Bair | May 1969 | A |
3721394 | Reiser | Mar 1973 | A |
3868005 | McMillan | Feb 1975 | A |
3934446 | Avitzur | Jan 1976 | A |
3962595 | Eddens | Jun 1976 | A |
3967794 | Fohl | Jul 1976 | A |
4078719 | Durland et al. | Mar 1978 | A |
4093186 | Golden | Jun 1978 | A |
4224545 | Powell | Sep 1980 | A |
4271944 | Hanson | Jun 1981 | A |
4306688 | Hechler, IV | Dec 1981 | A |
4359139 | Bloder | Nov 1982 | A |
4416430 | Totten | Nov 1983 | A |
4434971 | Cordrey | Mar 1984 | A |
4544111 | Nakajima | Oct 1985 | A |
4561605 | Nakajima | Dec 1985 | A |
4567963 | Sugimoto | Feb 1986 | A |
4612469 | Muramatsu | Sep 1986 | A |
4676452 | Nakajima | Jun 1987 | A |
4690066 | Morishita et al. | Sep 1987 | A |
4708364 | Doty | Nov 1987 | A |
4708366 | Doty | Nov 1987 | A |
4729525 | Rumpf | Mar 1988 | A |
4826150 | Minoura | May 1989 | A |
4846313 | Sharp | Jul 1989 | A |
4895317 | Rumpf et al. | Jan 1990 | A |
4938435 | Varner et al. | Jul 1990 | A |
4957644 | Price et al. | Sep 1990 | A |
4974706 | Maji et al. | Dec 1990 | A |
5054587 | Matsui et al. | Oct 1991 | A |
5064029 | Araki et al. | Nov 1991 | A |
5084640 | Morris et al. | Jan 1992 | A |
5205386 | Goodman et al. | Apr 1993 | A |
5248133 | Okamoto et al. | Sep 1993 | A |
5272938 | Hsu et al. | Dec 1993 | A |
5342000 | Berges et al. | Aug 1994 | A |
5392881 | Cho et al. | Feb 1995 | A |
5441137 | Organek et al. | Aug 1995 | A |
5465815 | Ikegami | Nov 1995 | A |
5477093 | Lamb | Dec 1995 | A |
5483849 | Orii et al. | Jan 1996 | A |
5495131 | Goldie et al. | Feb 1996 | A |
5636804 | Jeung | Jun 1997 | A |
5692693 | Yamaguchi | Dec 1997 | A |
5711404 | Lee | Jan 1998 | A |
5712520 | Lamb | Jan 1998 | A |
5722612 | Feathers | Mar 1998 | A |
5742986 | Corrion et al. | Apr 1998 | A |
5779178 | McCarty | Jul 1998 | A |
5791584 | Kuroiwa | Aug 1998 | A |
5822874 | Nemes | Oct 1998 | A |
5862891 | Kröger et al. | Jan 1999 | A |
5928300 | Rogers et al. | Jul 1999 | A |
6041897 | Saumweber et al. | Mar 2000 | A |
6042517 | Gunther et al. | Mar 2000 | A |
6051897 | Wissler et al. | Apr 2000 | A |
6062350 | Spieldiener et al. | May 2000 | A |
6086005 | Kobayashi et al. | Jul 2000 | A |
6209688 | Kuwahara | Apr 2001 | B1 |
6220403 | Kobayashi et al. | Apr 2001 | B1 |
6279682 | Feathers | Aug 2001 | B1 |
6293376 | Pribonic | Sep 2001 | B1 |
6412611 | Pribonic | Jul 2002 | B1 |
6460828 | Gersemsky et al. | Oct 2002 | B1 |
6466119 | Drew | Oct 2002 | B1 |
6523650 | Pribonic et al. | Feb 2003 | B1 |
6533083 | Pribonic et al. | Mar 2003 | B1 |
6557673 | Desta et al. | May 2003 | B1 |
6561451 | Steinich | May 2003 | B1 |
6659237 | Pribonic | Dec 2003 | B1 |
6756870 | Kuwahara | Jun 2004 | B2 |
6793203 | Heinrichs et al. | Sep 2004 | B2 |
6810997 | Schreiber et al. | Nov 2004 | B2 |
6918469 | Pribonic et al. | Jul 2005 | B1 |
6962235 | Leon | Nov 2005 | B2 |
6973999 | Ikuta et al. | Dec 2005 | B2 |
7011607 | Kolda et al. | Mar 2006 | B2 |
7014026 | Drussel et al. | Mar 2006 | B2 |
7018324 | Lin | Mar 2006 | B1 |
7279055 | Schuler | Oct 2007 | B2 |
7281612 | Hsieh | Oct 2007 | B2 |
7281620 | Wolner et al. | Oct 2007 | B2 |
7513334 | Calver | Apr 2009 | B2 |
7528514 | Cruz et al. | May 2009 | B2 |
7971820 | Kitazawa et al. | Jul 2011 | B2 |
7984796 | Pribonic | Jul 2011 | B2 |
8037978 | Boren | Oct 2011 | B1 |
8272476 | Hartman et al. | Sep 2012 | B2 |
8424460 | Lerner et al. | Apr 2013 | B2 |
8490751 | Allington et al. | Jul 2013 | B2 |
8511434 | Blomberg | Aug 2013 | B2 |
8556234 | Hartman et al. | Oct 2013 | B2 |
8567561 | Strasser et al. | Oct 2013 | B2 |
8601951 | Lerner | Dec 2013 | B2 |
8851235 | Allington et al. | Oct 2014 | B2 |
9016435 | Allington et al. | Apr 2015 | B2 |
9199103 | Hetrich et al. | Dec 2015 | B2 |
9242128 | Macy | Jan 2016 | B2 |
9962588 | Allington et al. | May 2018 | B2 |
10971988 | Diehl | Apr 2021 | B2 |
11226016 | Elias | Jan 2022 | B1 |
20020050542 | Nagata | May 2002 | A1 |
20020162477 | Palumbo | Nov 2002 | A1 |
20020179372 | Schreiber et al. | Dec 2002 | A1 |
20030116391 | Desta et al. | Jun 2003 | A1 |
20030168911 | Anwar | Sep 2003 | A1 |
20030211914 | Perkins et al. | Nov 2003 | A1 |
20040055836 | Pribonic et al. | Mar 2004 | A1 |
20040073346 | Roelleke | Apr 2004 | A1 |
20040168855 | Leon | Sep 2004 | A1 |
20040191401 | Bytnar et al. | Sep 2004 | A1 |
20050051659 | Wolner | Mar 2005 | A1 |
20050082410 | Tanaka et al. | Apr 2005 | A1 |
20050117258 | Ohta et al. | Jun 2005 | A1 |
20050189830 | Corbin, III et al. | Sep 2005 | A1 |
20050263356 | Marzano et al. | Dec 2005 | A1 |
20060186252 | Kitazawa et al. | Aug 2006 | A1 |
20060214043 | Nomura | Sep 2006 | A1 |
20060219498 | Organek et al. | Oct 2006 | A1 |
20060278478 | Pribonic et al. | Dec 2006 | A1 |
20070000741 | Pribonic et al. | Jan 2007 | A1 |
20070001048 | Wooster et al. | Jan 2007 | A1 |
20070135561 | Rath et al. | Jun 2007 | A1 |
20070228202 | Scharf et al. | Oct 2007 | A1 |
20070228713 | Takemura | Oct 2007 | A1 |
20070256906 | Jin et al. | Nov 2007 | A1 |
20070290091 | Mori | Dec 2007 | A1 |
20080059028 | Willerton | Mar 2008 | A1 |
20080074223 | Pribonic | Mar 2008 | A1 |
20080087510 | Pribonic | Apr 2008 | A1 |
20080105503 | Pribonic | May 2008 | A1 |
20080106420 | Rohlf | May 2008 | A1 |
20080135579 | Bertram et al. | Jun 2008 | A1 |
20090026303 | Schmitz et al. | Jan 2009 | A1 |
20090032785 | Jones | Feb 2009 | A1 |
20090084883 | Casebolt et al. | Apr 2009 | A1 |
20090114892 | Lesko | May 2009 | A1 |
20090166459 | Niitsuma et al. | Jul 2009 | A1 |
20090178887 | Reeves et al. | Jul 2009 | A1 |
20090211846 | Taylor | Aug 2009 | A1 |
20090319212 | Cech et al. | Dec 2009 | A1 |
20090321550 | Boyer et al. | Dec 2009 | A1 |
20100032255 | Conti et al. | Feb 2010 | A1 |
20100065373 | Stone et al. | Mar 2010 | A1 |
20100112224 | Lott | May 2010 | A1 |
20100116922 | Choate et al. | May 2010 | A1 |
20100211239 | Christensen et al. | Aug 2010 | A1 |
20100231402 | Flynt et al. | Sep 2010 | A1 |
20110084158 | Meillet et al. | Apr 2011 | A1 |
20110114907 | Hartman et al. | May 2011 | A1 |
20110147125 | Blomberg | Jun 2011 | A1 |
20110166744 | Lu et al. | Jul 2011 | A1 |
20110174914 | Yang | Jul 2011 | A1 |
20110175473 | Kitabatake et al. | Jul 2011 | A1 |
20110240403 | Meillet | Oct 2011 | A1 |
20110297778 | Meillet et al. | Dec 2011 | A1 |
20120055740 | Allington et al. | Mar 2012 | A1 |
20120118670 | Olson et al. | May 2012 | A1 |
20120312540 | Lefebvre | Dec 2012 | A1 |
20130048422 | Hartman et al. | Feb 2013 | A1 |
20130087433 | Sejourne | Apr 2013 | A1 |
20130105247 | Casebolt | May 2013 | A1 |
20130118842 | Lerner | May 2013 | A1 |
20130186721 | Bogdanowicz et al. | Jul 2013 | A1 |
20140048639 | Allington et al. | Feb 2014 | A1 |
20140110947 | Mongeau | Apr 2014 | A1 |
20140224597 | Takezawa et al. | Aug 2014 | A1 |
20140346909 | Vogler et al. | Nov 2014 | A1 |
20140375158 | Allington et al. | Dec 2014 | A1 |
20150196820 | Allington et al. | Jul 2015 | A1 |
20150266454 | McGowan | Sep 2015 | A1 |
20150352380 | Huang et al. | Dec 2015 | A1 |
20160052401 | McGowan et al. | Feb 2016 | A1 |
20160236647 | Sato | Aug 2016 | A1 |
20160317936 | Diehl et al. | Nov 2016 | A1 |
20160339867 | Choi et al. | Nov 2016 | A1 |
20160360738 | Richardson | Dec 2016 | A1 |
20170237313 | Diehl et al. | Aug 2017 | A1 |
20170244313 | Diehl et al. | Aug 2017 | A1 |
20170274261 | Allington et al. | Sep 2017 | A1 |
20170328424 | Allington et al. | Nov 2017 | A1 |
20170338728 | Diehl et al. | Nov 2017 | A1 |
20170361136 | Wu | Dec 2017 | A1 |
20180245658 | Diehl et al. | Aug 2018 | A1 |
20180264296 | Diehl et al. | Sep 2018 | A1 |
20180269767 | Diehl et al. | Sep 2018 | A1 |
20180269768 | Diehl et al. | Sep 2018 | A1 |
20180269769 | Allington et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
1783674 | Jun 2006 | CN |
101820952 | Sep 2010 | CN |
202203305 | Apr 2012 | CN |
102497085 | Jun 2012 | CN |
102627063 | Aug 2012 | CN |
103244577 | Aug 2013 | CN |
103326538 | Sep 2013 | CN |
115177885 | Oct 2022 | CN |
93 00 966 | Mar 1993 | DE |
10 2005 032 694 | Jan 2007 | DE |
0 247 818 | Dec 1987 | EP |
0273584 | Jul 1988 | EP |
0383520 | Aug 1990 | EP |
0 460 494 | Dec 1991 | EP |
0 909 684 | Apr 1999 | EP |
1 094 240 | Apr 2001 | EP |
1 401 087 | Mar 2004 | EP |
1 432 101 | Jun 2004 | EP |
1 480 320 | Nov 2004 | EP |
1 564 868 | Aug 2005 | EP |
1 244 565 | Jul 2006 | EP |
2 777 773 | Sep 2014 | EP |
4019092 | Jun 2022 | EP |
2617050 | Dec 1988 | FR |
721748 | Jan 1955 | GB |
908128 | Oct 1962 | GB |
1011757 | Dec 1965 | GB |
2 340 461 | Feb 2000 | GB |
2 352 644 | Feb 2001 | GB |
2 352 645 | Feb 2001 | GB |
2 352 784 | Feb 2001 | GB |
2 357 563 | Jun 2001 | GB |
49-097163 | Sep 1974 | JP |
S53-113528 | Sep 1978 | JP |
S54155524 | Dec 1979 | JP |
S5668546 | Jun 1981 | JP |
56-107092 | Aug 1981 | JP |
58-25152 | Feb 1983 | JP |
S58101657 | Jul 1983 | JP |
60-259278 | Dec 1985 | JP |
63-64542 | Mar 1988 | JP |
H05-72684 | Mar 1993 | JP |
5-296287 | Nov 1993 | JP |
H05-84347 | Nov 1993 | JP |
8-252025 | Oct 1996 | JP |
10-98868 | Apr 1998 | JP |
10-140536 | May 1998 | JP |
H10-178717 | Jun 1998 | JP |
10-304799 | Nov 1998 | JP |
11-119680 | Apr 1999 | JP |
11-189701 | Jul 1999 | JP |
11-315662 | Nov 1999 | JP |
2000-189530 | Jul 2000 | JP |
2000-316272 | Nov 2000 | JP |
2001-17041 | Jan 2001 | JP |
2005-353123 | Dec 2005 | JP |
2006-224920 | Aug 2006 | JP |
2008-044470 | Feb 2008 | JP |
2011-111007 | Jun 2011 | JP |
2012-152316 | Aug 2012 | JP |
106 462 | Jul 2011 | RU |
9516496 | Jun 1995 | WO |
9617149 | Jun 1996 | WO |
9847215 | Oct 1998 | WO |
0138123 | May 2001 | WO |
03055560 | Jul 2003 | WO |
2007060053 | May 2007 | WO |
2008139127 | Nov 2008 | WO |
2009013479 | Jan 2009 | WO |
2009047469 | Apr 2009 | WO |
2009108040 | Sep 2009 | WO |
2009127142 | Oct 2009 | WO |
2010104405 | Sep 2010 | WO |
Entry |
---|
Extended European Search Report, dated Jul. 11, 2017, for European Application No. 14872681.3-1809, 10 pages. |
Extended European Search Report, dated Mar. 29, 2018, for European Application No. 15834380.6-1201, 12 pages. |
Extended European Search Report, dated Apr. 6, 2018, for European Application No. 15864540.8-1201, 26 pages. |
Final Office Action, dated Feb. 28, 2017, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 10 pages. |
MSA Safety Incorporated, Auto Belay Stop Use Notice, Oct. 15, 2009, URL=http://verticalendeavors.com/minneapolis/auto-belay-stop-us-notice/, download date Apr. 6, 2017, 2 pages. |
North Safety Products Europe B.V., “Climbing Wall Descender: FP2/5**GDD,” Climbing Wall Descent Controllers Instruction Manual v3, Aug. 18, 2008, 20 pages. |
Notice of Allowance, dated Jul. 21, 2014, for U.S. Appl. No. 13/255,625, Allington et al., “Braking Mechanisms,” 11 pages. |
Office Action, dated Aug. 22, 2017, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 5 pages. |
Office Action, dated Feb. 20, 2018, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 15 pages. |
Office Action, dated Jan. 17, 2018, for U.S. Appl. No. 15/586,111, Allington et al., “Braking Mechanisms,” 15 pages. |
Office Action, dated Jan. 9, 2014, for U.S. Appl. No. 13/255,625, Allington et al., “Braking Mechanisms,” 9 pages. |
Office Action, dated Jul. 25, 2016, for U.S. Appl. No. 14/464,255, Allington et al., “Braking Mechanisms,” 10 pages. |
Park et al., “Torque analysis and measurements of a permanent magnet type Eddy current brake with a Halbach magnet array based on analytical magnetic field calculations,” Journal of Applied Physics 115(17):17E707, 2014. (3 pages). |
Trublue Auto Belays, Model TB150-12C Operator Manual, Jun. 20, 2013, 37 pages. |
Number | Date | Country | |
---|---|---|---|
20210316697 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16063589 | US | |
Child | 17179258 | US |