This application claims priority to British Patent Application No. 1319251.3 filed Oct. 31, 2013, which is incorporated herein by reference in its entirety.
The technical field relates to a variable belt tensioner, which adjusts a belt tensioning of internal combustion engine belts.
Given the global demand to reduce the use of fossil fuels and to reduce the associated production of the greenhouse gas, carbon dioxide (CO2), many new innovations and ideas have already emerged from the automotive industry to date, that minimize the fuel consumption of conventional internal combustion engines. However, to simultaneously meet the growing demand for more comfort and safety in automobiles, there must be an increase in auxiliary equipment. To supply the required energy to the extra components, mechanical power must be drawn from the internal combustion engine. The auxiliary units such as generator, air compressor, water pump and hydraulic steering pump, usually have a belt drive system for power. Among these known belts is the timing belt which is a part of an internal combustion engine that synchronizes the rotation of the crankshaft and the camshaft (or camshafts, if more than one are available) so that the engine valves open and close at the proper times during each cylinder intake and exhaust strokes. A timing belt is a belt that usually features teeth on the inside surface.
To make sure the belt can transmit power to the individual components in any situation, a defined pre-tensioning force must act on the belt. However, the friction caused by this mechanical belt drive leads to excess fuel consumption.
A belt tensioning device is disclosed in DE 101 18 277 A1 which includes a swinging lever mounted on a pivotal axis. A pre-tensioned spring acts on the lever. Spring tension is controlled by an electric motor with reverse motion prevention. The motor is controlled by an operational parameter associated with a stored engine characteristic diagram. However, such belt tensioner does not allow to adjust the belt tensioning in a flexible way, according to the engine operating conditions.
Therefore a need exists for a belt tensioner, which is designed to minimize the above inconveniences.
The present disclosure provides a variable belt tensioner that acts under given technical and efficiency conditions during operation. This is intended to reduce the mechanical friction produced and consequently lower the total fuel consumption of the engine. Furthermore, a variable belt pre-tension controller lowers the average belt load and leads to a longer belt service life.
An embodiment of the disclosure provides a variable belt tensioner of an internal combustion engine for adjusting a belt tensioning including in a series configuration an electric motor, a worm drive, a lever drive and a belt tensioner roller. The worm drive is driven by the electric motor and is mechanically connected to the lever drive, to which the worm drive transmits a rotation. The lever drive is mechanically connected to the belt tensioner roller, to which the lever drive transmits a translation, thus allowing the belt tensioner roller to adjust the belt tensioning.
An advantage of this embodiment is that such variable belt tensioner is able to adjust the belt tension and fine tuning the transmission ratio between the electric motor and the belt tensioner roller, by using only a simple lever drive. In other words, the rotation imposed by the electric motor is transformed into a translation of the belt tensioner roller. The roller, according to the direction of the translation, increases or decreases pulling the belt, this increasing or decreasing the belt tensioning.
According to another embodiment, the lever drive includes a first lever, a second lever and a third lever, which are mechanically interconnected. An advantage of this embodiment is that the three levers provide the adjustment of the transmission ratio between the electric motor and the belt tensioner roller, only by means of the lever geometry and the interconnections among them.
According to a further embodiment the first lever rotates around a first fixed point, located at a first lever end, and a first lever second end moves in a groove of the second lever. An advantage of this embodiment is that the first lever has only a rotational degree of freedom, and the rotation of the lever can be determined by means of an angle value which is considered input angle of the lever drive, in other words, what is transmitted by the electric motor, via the worm drive, to the lever drive.
According to a still further embodiment, the second lever rotates around a second fixed point and a second lever first end is guided through a grove in the third lever. An advantage of this embodiment is the kinematics of such second lever allows to transform the input angle of the lever drive in an output angle of the lever drive.
According to still another embodiment, the third lever rotates around an axis of rotation corresponding to a first end of the third lever and the belt tensioner roller is constrained to a second end of the third lever. An advantage of this embodiment is that the rotation of the third lever around the axis of rotation, which is located at one end of the lever implies that the other end of the lever will translate. The translation will be proportional to the angle of the lever rotation and to the lever length. Since the belt tensioner roller is constrained in the movable end of the lever, the roller will have the same translation, thus increasing or decreasing the belt tensioning.
According to another embodiment, a transmission ratio of the lever drive is derived from the quotient of a first angle and a second angle, being the first angle the rotation of the first lever around the first fixed point and the second angle the rotation of the third lever around the axis of rotation. An advantage of this embodiment is that the transmission ratio of the lever drive can be described only by means of two characteristic angles.
According to a further embodiment, the transmission ratio of the lever drive is determined by the length of the first, second and third lever. An advantage of this embodiment is that the transmission ratio of the lever drive can be easily adjusted, by varying the levers length.
According to another embodiment of the disclosure, an internal combustion engine is provided, including at least a belt, which transmits power to a plurality of engine components, having a variable belt tensioner according to any of the preceding claims.
According to a further embodiment of the disclosure, a method of controlling a variable belt tensioner is described. The variable belt tensioner is defined according to any of previous embodiments, and the method for controlling the first angle, which represents the rotation of the first lever around the first fixed point, by means of an actuated current determined by a controller on the basis of an angular deviation, which is calculated as the sum of a nominal angle and a current angle. The nominal angle is estimated on the basis of a required nominal belt force and the current angle is measured by a rotation sensor.
Consequently an apparatus is described for controlling the variable belt tensioner, the apparatus including a first angle controller, representing the rotation of the first lever around the first fixed point, by means of an actuated current determined by a controller on the basis of an angular deviation, which is calculated as the sum of a nominal angle and a current angle. The nominal angle is estimated on the basis of a required nominal belt force and the current angle is measured by a rotation sensor. An advantage of this embodiment is that the variable belt tensioner can be easily controlled in closed loop on the basis of the required belt force by controlling the input angle of the lever system by means of the current acting in the electric motor.
The method according to one of its aspects can be carried out with the help of a computer program including a program-code for carrying out all the steps of the method described above, and in the form of computer program product including the computer program. The computer program product can be embedded in a control apparatus for an internal combustion engine, including an Electronic Control Unit (ECU), a data carrier associated to the ECU, and the computer program stored in a data carrier, so that the control apparatus defines the embodiments described in the same way as the method. In this case, when the control apparatus executes the computer program all the steps of the method described above are carried out.
The present disclosure will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements.
The following detailed description is merely exemplary in nature and is not intended to limit the present disclosure or the application and uses of the present disclosure. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
The layout of the lever drive 520 is specified in
The transmission ratio is determined by the length of the levers in the starting position. The length lA describes the distance between the points 1 and 2. The distance between the points 2 and 3, and the points 2 and 4 is respectively described by the lengths lB and lC. The value lD describes the distance from the point of rotation 4 to point of rotation 5. The resulting transmission ratio is derived from the quotient of the angle γ and σ(γ).
The variable belt tensioner, as above described, can be controlled in closed loop. To this purpose, a relation between the belt force and a parameter of the system is needed. One possible parameter is the angle γ. The angle γ describes the angle between the lever A and the engine bearer. The value of the angle γ is measured by a rotation sensor 550, which is arranged between the lever A and the engine bearer. To transform the belt force into the angle γ the characteristic diagram 560 is used, as shown in
Summarizing, it can be proven by measuring the fuel consumption for different static belt tension forces that, by reducing the belt pre-tensioning force, there is a definitive reduction in power drawn from the engine by drive the belt. This can be achieved by holding the allowable slip between the belt and the pulleys at its maximum. Furthermore, the fuel consumption results can only be achieved if the pre-tensioning force is combined with active force regulation. Because, if instead of a belt tension controller, a vibration-damping system is installed on the crankshaft pulley combined with reduced static pre-tensioning force, then, due to the increased mass moment of inertia, the gains in economy would be canceled out. Further advantages result from a need-based/controller-regulated belt pre-tensioning force, where a lower belt force can lead to a longer service live of the belt.
While at least one exemplary embodiment has been presented in the foregoing summary and detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing at least one exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
1319251.3 | Oct 2013 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
2726364 | Merritt | Dec 1955 | A |
4298342 | Clayton | Nov 1981 | A |
4478595 | Hayakawa | Oct 1984 | A |
4573952 | Schulze | Mar 1986 | A |
4702727 | Dahm | Oct 1987 | A |
4878885 | Brandenstein et al. | Nov 1989 | A |
4917654 | Edwards | Apr 1990 | A |
5439420 | Meckstroth | Aug 1995 | A |
5752891 | Meckstroth et al. | May 1998 | A |
6090001 | Cantwell | Jul 2000 | A |
6478701 | Yasuhara | Nov 2002 | B1 |
6953407 | Kitamura | Oct 2005 | B2 |
7011591 | Nakamura | Mar 2006 | B2 |
7217206 | Stone | May 2007 | B2 |
7918758 | Di Giacomo | Apr 2011 | B2 |
8137223 | Watarai | Mar 2012 | B2 |
8840495 | Comsa | Sep 2014 | B2 |
9151366 | Antchak | Oct 2015 | B2 |
9328806 | Noguchi | May 2016 | B2 |
9334932 | Antchak | May 2016 | B2 |
20020039942 | Liu | Apr 2002 | A1 |
20030171179 | Okuda | Sep 2003 | A1 |
20050192142 | Stone | Sep 2005 | A1 |
20050282668 | Ali | Dec 2005 | A1 |
20070137593 | Di Giacomo | Jun 2007 | A1 |
20070142145 | Namuduri | Jun 2007 | A1 |
20100257951 | Quincerot | Oct 2010 | A1 |
20110070984 | Kotzur | Mar 2011 | A1 |
20110312454 | Comsa | Dec 2011 | A1 |
20130172137 | Antchak | Jul 2013 | A1 |
20140309882 | Antchak | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
2707247 | Aug 1978 | DE |
10118277 | Oct 2002 | DE |
2383394 | Jun 2003 | GB |
09300981 | Nov 1997 | JP |
03104628 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20150119175 A1 | Apr 2015 | US |