Variable capacitance circuit

Information

  • Patent Application
  • 20010004221
  • Publication Number
    20010004221
  • Date Filed
    December 05, 2000
    24 years ago
  • Date Published
    June 21, 2001
    23 years ago
Abstract
A variable capacitance circuit enables electrostatic capacity to be adjusted as a trimmer capacitor, and that enables a temperature characteristic to be set variably. An input voltage is made to lead by a phase angle of 90° due to a differentiating circuit, before being amplified by an in phase amplifier, thus a current with phase angle of 90° shifted is obtained in such a manner as to take out the output while passing through a resistor. Gain and/or an output resistance of the amplifier are made to set variable. If a thermistor is combined with the circuit as a resistance of the differentiating circuit, temperature coefficient can be made to set variable.
Description


BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention


[0002] The present invention relates to a variable capacitance circuit which is suitable for fine adjustment of a frequency-amplitude characteristic or a frequency-phase characteristic of a negative-feedback operational amplifier.


[0003] 2. Description of the Related Art


[0004] In some cases, in the negative-feedback amplifier employing the operational amplifier (hereinafter referred to as OP-amplifier), adjustment of a frequency-amplitude characteristic or a frequency-phase characteristic is necessary. In such a case, generally, variable capacitance circuit is employed. A method of adjustment is that a feedback resistor or an input resistor of the negative-feedback amplifier is connected to a trimmer capacitor of minor capacitance in parallel, followed by adjusting the electrostatic capacity. Such adjustment method is applied to, for instance, a notch filter and so forth employing the above-described negative-feedback amplifier in order to obtain a deep notch characteristic with high “Q”. In such a case, exceedingly fine adjustment is required. Further, in this case, it is desirable that a temperature characteristic of a variable adjustment circuit itself for correction employed for the sake of this adjustment is made to meet with a temperature characteristic, which is required for the whole other circuits.


[0005] Consequently, a variable capacitance circuit for characteristic correction, which is employed for achieving an object of such adjustment, is required to possess function capable of establishing the electrostatic capacitance as well as the temperature coefficient in connection with respective necessary values. However, a trimmer capacitor with such function is not developed yet. Of course, it is possible to select a trimmer capacitor with necessary temperature characteristic from among many trimmer capacitors. However, since such selection requires enormous times, it is not realistic.



SUMMARY OF THE INVENTION

[0006] An object of the present invention is to provide a variable capacitance circuit which has two functions that electrostatic capacitance of the circuit can be varied such as the trimmer capacitor and further it is possible to establish the electrostatic capacitance against its necessary predetermined temperature coefficient that is temperature compensation function.


[0007] In order to attain the above-described object, a variable capacitance circuit of the present invention is provided with a first circuit for generating an output voltage which leads an input voltage by a phase angle of 90°, a second circuit for performing in phase amplification to the output voltage, followed by taking out an output current corresponding to this amplified output voltage, and variable means for varying the output current of the second circuit.


[0008] Also, in the variable capacitance circuit of the present invention, it is suitable that a temperature compensation temperature-sensitive circuit is combined with the first or the second circuit.


[0009] Further, in the variable capacitance circuit of the present invention, it is suitable that the second circuit includes an operational amplifier and a temperature transducer is made to combine with an input circuit of the operational amplifier, or the first circuit is configured by a differentiating circuit consisting of a capacitor and a resistance circuit and the temperature transducer is made to combine with the resistance circuit.


[0010] Furthermore, in the present invention, it is suitable that the second circuit is an amplifier of a current output type. While it is suitable that the second circuit includes an amplifier of a voltage output type and variable resistor connected to output of the amplifier.


[0011] The trimmer capacitor has a function of varying magnitude of electrostatic capacity. This function is that an output current which leads an applied input voltage by a phase angle of 90° changes magnitude thereof. Consequently, with respect to this function, in the first place, a phase of applied input voltage is made to advance by a phase angle of 90°, then, this voltage with the phase angle of 90° advanced is subjected to in phase amplification by an amplifier before this amplified output voltage is taken through an output resistance. Since the output current flowing through the resistance is the same phase as a current flowing through the above described electrostatic capacity, if an amplification degree of the above-described amplifier and/or the output resistance are made to vary, magnitude of the output current can be varied, therefore, the above described function can be realized. Further, it is utilized that this amplification degree and/or the output resistance can be varied, and if a temperature transducer such as thermistor and so forth is combined with this circuit so that sensitivity can be adjusted, it enables this circuit to be established into necessary temperature coefficient.







BRIEF DESCRIPTION OF THE DRAWINGS

[0012]
FIG. 1 is circuit views illustrating respective embodiments of the present invention;


[0013]
FIG. 2 is view illustrating one example of a basic circuit of a temperature transducer to which temperature coefficient is capable of being established; and


[0014]
FIG. 3 is circuit views illustrating respective embodiments of variable capacitance circuits to which the temperature coefficients are capable of being established.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] Embodiments of the present invention will now be specifically explained with reference to the drawings accompanying therewith. FIG. 1 is respective embodiments of roughly equivalent variable capacitance circuit to the trimmer capacitor. In FIG. 1, three variable capacitance circuits (a), (b) and (c) are illustrated. All of the three have a configuration of a voltage-input and a current-output. The variable capacitance circuit employs an operational amplifier OP1 of voltage-output type and a variable resistor R4 or a potentiometer R5 and fixed resistor R6. In FIG. 1 (a), PHS is a 90°-phase shifter, OP1 is an operational amplifier, R1 to R4 are resistors. In FIG. 1 (b), a differentiating circuit is configured in such a manner that a capacitor C and a resistor R1, instead of a 90°-phase shifter PHS, are selected so that it makes 1/ωC>>R1 against a use frequency. For that reason, since roughly 90°-phase shift can be realized, a circuit of FIG. 1 (b) is simple as the case may be. Also a circuit of FIG. 1 (c), in which a differentiating circuit is configured by a capacitor C, an operational amplifier OP2 and a resistor R1 in roughly the same configuration as that of FIG. 1 (b).


[0016] Thus, the 90°-phase shift is made to set by virtue of some method or other. Subsequently, a voltage amplifier OP1 is made to set to a variable gain amplifier and/or it causes the output resistors R4, R6 to be variable. If an output current is obtained through the above-described circuit configuration, it is possible to obtain an output current roughly similar to that of the trimmer capacitor. Consequently, if the temperature compensation circuit is combined with this circuit, it is possible to realize a variable capacitance circuit having required temperature coefficient.


[0017] Moreover, if a current output type amplifier is employed as this amplifier OP1, of course, the output resistor R4 or R5, R6 are unnecessary.


[0018]
FIG. 2 is one example of a temperature-sensitive circuit for temperature compensation. It is possible to establish the temperature-sensitive circuit in connection with its temperature coefficient into a predetermined one in such manner as to adjust resistance change caused by temperature of a thermistor R9 by the use of value of resistor R7 and R8. As illustrated in FIG. 3, this circuit is made to combine with a part of the amplifier OP1. In a circuit of FIG. 3 (a), the circuit of FIG. 2 is employed instead of the resistor R1 of the differentiating circuit of the input of the amplifier OP1. A polarity of the temperature coefficient of the whole circuit can be made to set to the same direction as the thermistor R9. In a circuit of FIG. 3 (b), the circuit of FIG. 2 is employed instead of the resistor R2 of a feedback route of the amplifier OP1. The polarity of the temperature coefficient of the whole circuit can be made to set to the reverse direction against the thermistor R9.


[0019] As described in detail, the circuit of the present invention can also be regarded as the trimmer capacitor, which is capable of being established to necessary temperature coefficient. Accordingly, in particular, the circuit of the present invention is exceedingly useful a fine phase adjustment and so forth necessary for notch filter and so forth in low frequency band.


Claims
  • 1. A variable capacitance circuit comprising: a first circuit for generating an output voltage which leads an input voltage by a phase angle of 90°; a second circuit for performing in phase amplification to said output voltage, followed by taking out an output current corresponding to this amplified output voltage; and variable means for varying said output current of said second circuit.
  • 2. A variable capacitance circuit according to claim 1, wherein a temperature compensation temperature-sensitive circuit is combined with either said first or said second circuit.
  • 3. A variable capacitance circuit according to claim 2, wherein said second circuit includes an operational amplifier, and a temperature transducer is combined with an input circuit of said operational amplifier.
  • 4. A variable capacitance circuit according to claim 2, wherein said first circuit is configured by a differentiating circuit consisting of a capacitor and a resistance circuit, and a temperature transducer is combined with said resistance circuit.
  • 5. A variable capacitance circuit according to claim 1, wherein said second circuit is an amplifier of a current output type.
  • 6. A variable capacitance circuit according to claim 1, wherein said second circuit includes an amplifier of a current output type and a variable resistance connected to an output of said amplifier.
Priority Claims (1)
Number Date Country Kind
11-357054 Dec 1999 JP