1. Field of the Invention
The present invention pertains to the art of refrigerators and, more particularly, to a variable capacity ice storage assembly for a refrigerator.
2. Description of the Related Art
Automatic ice making systems for use in domestic refrigerators are well known. A typical ice making system includes an ice maker mounted within the freezer compartment of the refrigerator and an ice storage receptacle or bin supported beneath the ice maker for receiving the formed ice from the ice maker. The ice maker is commonly mounted within the freezer compartment adjacent the side or rear wall of the freezer compartment such that water and power can be readily supplied to the ice maker. The ice storage receptacle is supported by a shelf or other structure arranged beneath the ice maker within the freezer compartment. The ice storage receptacle generally extends across a significant portion of the freezer compartment and has a front end adjacent the freezer door. U.S. Pat. No. 4,942,979 to Linstromberg et al. is an example of such a prior art ice making system. Alternatively, it is also known to provide a removable ice storage bucket on the door of a freezer compartment, as illustrated in U.S. Pat. No. 6,425,259 to Nelson et al.
Conventional ice making systems are designed to produce and maintain a relatively fixed quantity of ice pieces. This leads to the potential problem of ice staleness for consumers who have relatively low ice consumption needs. U.S. Pat. No. 4,835,978 to Cole discloses a common means used to limit the quantity of ice formed by the ice maker. In Cole, an ice quantity sensor, comprising a sensing arm, is periodically lowered into the ice storage receptacle for sensing the amount of ice supplied into the storage receptacle.
To avoid the problem of ice staleness, it is desirable to limit the amount of ice available based on individual consumers ice consumption. U.S. Pat. Nos. 3,436,928 and 6,148,624 illustrate past efforts to provide flexibility in the amount of ice stored in an ice bin. More specifically, the '928 patent discloses a vertically telescoping ice receptacle, while the '624 patent discloses a system wherein an ice bucket can be vertically adjusted relative to an ice maker. In addition to other problems, these systems require specialize structure and cannot be utilized with standard pre-existing ice dispensing systems.
The present invention addresses the need for a variable capacity storage assembly that can be readily employed without necessitating alterations to pre-existing ice making systems.
The present invention is directed to a variable capacity ice storage assembly for a refrigerator freezer compartment including an ice sensing system and a removable ice storage bucket positioned below an ice maker. A removable insert is provided that can be placed into the ice bucket by a consumer to alter the ice storage capacity of the ice bucket. More specifically, the insert includes one or more tabs having clips thereon for attaching the insert to one or more side walls of the ice bucket. The tabs are fixed to a main body portion having a first solid deflector extending at a first angle therefrom and a second solid deflector extending at a second angle therefrom.
One or more hinges may be utilized to connect various parts of the insert, resulting in a reconfigurable insert that can be utilized in multiple positions. Such a reconfigurable insert may including “locking” hinges, or may be utilized with an ice bucket having multiple slotted retainers for holding the insert in a desired position.
In use, the main body portion extends into the storage cavity of the ice bucket, effectively reducing the storage volume of the ice bucket. When utilized in an automatic ice dispensing system employing an ice delivery auger, the insert is configured such that the main body portion of the insert does not interfere with the function of the auger. Thus, the ice storage volume can be adapted to a particular user's needs, preventing prolonged ice-storage and the development of stale ice.
Additional objects, features and advantages of the present invention will become more readily apparent from the following detailed description of preferred embodiments when taken in conjunction with the drawings wherein like reference numerals refer to corresponding parts in the several views.
a and 5b show a third insert embodiment of the present invention in two different configurations within a shelf-mounted ice bucket;
c shows the insert of
With initial reference to
An ice making assembly 22 is disposed within the freezer compartment 16 and may be mounted to top wall 24 of the freezer compartment 16 as shown, to a side wall, or on freezer door 20, with each of these mounting arrangements also being known in the art. Preferably, ice maker assembly 22 takes the form of a conventional ice piece making apparatus and produces generally crescent shaped ice pieces as depicted in
An ice dispensing system 26, mounted to the freezer door 20, is provided below the ice making assembly 22 for receiving ice pieces. The ice dispensing system 26 includes an ice bucket or bin 28, as well as a lower ice crushing system 30. When operated, the ice dispensing system 26 transfers ice pieces from the bin 28 through the freezer door 20 whereby ice pieces may be dispensed through a forwardly exposed, external ice dispenser station or area 31. One of the benefits of such a system is that ice bin 28 is removable from the freezer door. This allows a user to readily dispense a large quantity of ice from the ice bucket 28 into a receptacle, such as an insulated cooler.
The ice maker assembly 22 is designed to prevent ice harvesting when the ice storage bin 28 is full of ice pieces, when the door 20 is open, or when the ice bucket is removed from the door. The need for this function is well recognized in the ice maker art and a means for providing this function is described in detail in U.S. Pat. Nos. 4,649,717 and 5,160,094, which are incorporated herein by reference.
Any type of conventional ice bucket may be utilized in accordance with the present invention, including auger-type ice bucket 28 illustrated in
In one preferred embodiment, ice bucket 28 is utilized with an auger-type ice dispensing system, such as the one described in U.S. Pat. No. 6,425,259, incorporated herein by reference. Additionally, ice bucket 28 may be utilized in conjunction with different ice-sensing systems, including the infrared sensing system described in U.S. Pat. No. 6,314,745, also incorporated herein by reference. In the preferred embodiment shown, ice bucket 28 includes apertures or slots 61 and 62, which provide a clear path through which an infrared ice-sensing beam can be directed. Turning to
In general, the above-described structure is known in the art and does not form part of the present invention. Instead, this description is provided for the sake of completeness. The present invention is particularly directed to providing a removable insert to be selectively positioned in ice bucket 28, thereby allowing a user to selectively alter the capacity of ice bucket 28. In a first embodiment depicted in
Preferably insert 100 is a one-piece molded plastic insert. However, other suitable materials and constructions may be used without departing from the nature of the invention. Insert 100 may be dimensioned as desired to fit into various sizes of open ice buckets. More specifically, the entire length of insert 100 is preferably sized to extend from the top of a respective wall 48-51 of ice bucket 28 to at or near bottom wall portion 64 of storage cavity 60. The width of insert 100 is preferably sized to extend substantially the entire width between front wall 48 and back wall 51. When utilized with an auger-type dispensing system as shown in
As best seen in
A second embodiment including an insert 100′, as shown in
In a third embodiment depicted in
First and second clips 142 and 144 are connected to respective first and second tab portions 136 and 138, and are adapted to selectively attach insert 126 to one of opposing side walls 150 or 152 of a shelf-mounted ice bucket 160. While shown as separate from first and second tab portions 136, 138, first and second clips 142 and 144 may alternatively be integrally formed therewith. In use, first and second hinges 134 and 140 allow second deflector 131 to extend in a first direction substantially perpendicular to first and second tab portions 136 and 138 as depicted in
The first hinge 134 may be configured to “lock” in place at a desired angle. Alternatively, insert 126 may be utilized in conjunction with an ice bucket 160′ that includes multiple slotted retainers 164 as depicted in
In a fourth embodiment depicted in
Still further embodiments of the present invention are depicted in
A generally similar, removable curved insert 300 is depicted in
Although various ice bucket embodiments are depicted and described, it should be understood that the inserts of the present invention are intended for use in a variety of standard ice buckets and should not be limited to those ice bucket configurations discussed herein. Additionally, although described with reference to preferred embodiments of the invention, it should be readily understood that various changes and/or modifications can be made to the invention without departing from the spirit thereof. For instance, the particular structure utilized to attach a given insert to an ice bucket may be varied without departing from the spirit of the invention. In general, the invention is only intended to be limited by the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2717505 | Anderson | Sep 1955 | A |
3230591 | Holton | Jan 1966 | A |
3436928 | Swerbinsky | Apr 1969 | A |
3892105 | Bernard | Jul 1975 | A |
4649717 | Tate, Jr. et al. | Mar 1987 | A |
4835978 | Cole | Jun 1989 | A |
4942979 | Linstromberg et al. | Jul 1990 | A |
5082139 | Quam | Jan 1992 | A |
5160094 | Willis et al. | Nov 1992 | A |
5350085 | Kidd et al. | Sep 1994 | A |
5615797 | Ripamonti | Apr 1997 | A |
6082130 | Pastryk et al. | Jul 2000 | A |
6148624 | Bishop et al. | Nov 2000 | A |
6314745 | Janke et al. | Nov 2001 | B1 |
6324855 | Mullis | Dec 2001 | B1 |
6405553 | Willett | Jun 2002 | B1 |
6425259 | Nelson et al. | Jul 2002 | B2 |
6438976 | Shapiro et al. | Aug 2002 | B2 |
6763674 | Siefker | Jul 2004 | B2 |
7062935 | Siefker | Jun 2006 | B2 |
7083064 | Zorzo | Aug 2006 | B2 |
Number | Date | Country |
---|---|---|
2000180005 | Jun 2000 | JP |
2001153515 | Jun 2001 | JP |
Entry |
---|
Search FAQ's; http://whirlpool.custhelp.com; 2007. |
Number | Date | Country | |
---|---|---|---|
20090205358 A1 | Aug 2009 | US |