The present invention relates to refrigeration systems, and in particular to a variable capacity refrigeration system for efficiently handling large variations in cooling load requirements of a frozen beverage product dispenser.
Cooling load requirements of frozen beverage product dispensers are highly variable. Customer demand for beverages can vary from no drinks dispensed per minute to as many as 3 or 4 or more drinks served per minute. This volatile variation in customer demand results in a very broad range in cooling load requirements for a refrigeration system of a typical frozen product dispenser, for example as is shown by the chart of
As is known, refrigeration systems of conventional frozen product dispensers utilize a compressor that delivers refrigerant through a condenser to one or more expansion valves, each of which controls delivery of refrigerant to an associated evaporator cooling coil that is thermally coupled to an associated beverage product freeze barrel in order to chill the barrel and at least partially freeze beverage product in the barrel. To accommodate various cooling load requirements of the barrels, the expansion valves may be variably controlled. As load requirements of an evaporator coil change due to changing customer demands, the expansion valve supplying refrigerant to the evaporator changes to a more appropriate flow metering position. The objective is to adjust the expansion valve so as to match the cooling capability of the evaporator, based upon refrigerant flow to the evaporator, more closely to the dynamically changing cooling load requirements of the barrel being chilled by the evaporator. However, fixed speed compressors of a type normally used for frozen product dispensers are not readily able to accommodate changes in cooling load requirements, and are best suited to providing refrigerant flow at a certain rate, despite changes in the cooling load. Refrigeration system balance therefore becomes disturbed as the expansion valves are adjusted to meet changing cooling load requirements, resulting in saturated evaporator temperatures dropping as cooling load requirements decrease, rising as cooling load requirements increase, and poor control over the temperature of the evaporator. In addition, when cooling load requirements decrease, cooling of beverage product in the barrel is quickly satisfied and the compressor must be frequently cycled off/on, resulting in increased stress of compressor components. In consequence, where the compressor is not matched with the cooling load, during periods of low product demand the compressor will cycle on/off excessively and the system will operate less efficiently and use more energy than would otherwise be required.
An object of the present invention is to provide a variable capacity refrigeration system for a frozen product dispenser, which utilizes a variable capacity compressor that is operated at speeds selected to provide the refrigeration system with a cooling capacity that closely matches a cooling load demand of the dispenser.
Another object is to provide a variable capacity refrigeration system for a frozen product dispenser, in which expansion valves for evaporators for freeze barrels are controlled to meter refrigerant to the evaporators in accordance with the cooling load requirements of the freeze barrels, and in which the variable capacity compressor is operated at a speed to provide at its outlet a refrigerant mass flow commensurate with that being metered through the expansion valves.
In accordance with the present invention, a frozen product dispenser comprises at least one product freeze barrel for freezing liquid product introduced therein; means for dispensing frozen product from the freeze barrel; means for introducing liquid product into the at least one freeze barrel as a function of dispensing frozen product from the at least one freeze barrel; a refrigeration system for chilling the at least one freeze barrel to freeze liquid product in the at least one freeze barrel; and means for controlling the refrigeration system to have a variable cooling capacity in accordance with a heat load placed on the refrigeration system by the frozen product dispenser, whereby the refrigeration system efficiently responds to large variations in cooling load requirements of the frozen product dispenser.
The invention also provides a method of making a frozen product using a frozen product dispenser having at least one freeze barrel, which method comprises the steps of using a refrigeration system to chill the at least one freeze barrel to freeze liquid product therein; dispensing frozen product from the at least one freeze barrel; introducing liquid product into at least one freeze barrel as a function of dispensing frozen beverage product from the at least one freeze barrel; and controlling the refrigeration system to have a variable cooling capacity in accordance with a heat load placed on the refrigeration system by the frozen product dispenser, whereby the refrigeration system efficiently responds to large variations in cooling load requirements of the frozen product dispenser.
The invention discloses a novel refrigeration system for efficiently providing a wide range of cooling capacities that closely match a wide range of cooling load requirements placed on the system. To efficiently provide various cooling capacities, the refrigeration system utilizes a variable capacity compressor that is driven at various speeds selected in accordance with the cooling load placed on the refrigeration system, in such manner that the refrigeration system is able to efficiently meet and closely match dynamically changing cooling load requirements. While it will be appreciated from the foregoing detailed description that the refrigeration system may be used in various diverse applications where dynamically changing cooling load requirements are encountered, a presently contemplated use for the refrigeration system is in cooling beverage product freeze barrels of a frozen carbonated beverage (FCB) dispenser, and it will therefore be described in that environment.
Ideally, a refrigeration system must efficiently handle a broad range of cooling loads imposed upon it by an FCB dispenser with which it is used in order that the dispenser might maintain good control over frozen product temperature and viscosity. Unlike conventional refrigeration systems for FCB dispensers, which normally use a fixed speed compressor that runs and pumps refrigerant at a relatively constant rate and is sized for a maximum load situation, in the refrigeration system of the invention the pumping rate of a compressor, and therefore the capacity of the compressor, is variable and closely matched to the cooling load to be met by the refrigeration system at any point in real time. The pumping rate of the compressor is decreased when cooling loads decrease, and increased when cooling loads increase, in a manner to maintain high refrigeration system efficiency. It is contemplated that the refrigeration system use a variable speed compressor having, preferably but not necessarily, a speed range on the order of at least 3:1, which can provide the ability to efficiently match compressor cooling capacity with cooling load requirements over a fairly broad range. It also is contemplated that the speed range for the compressor be on the order of about 50% nominal speed at minimum cooling capacity, to as much as 150% nominal speed at maximum cooling capacity. As a result, the need for the compressor to cycle off/on is significantly reduced, which significantly reduces the frequency of startup stresses on the compressor.
Some of the benefits achieved in use of the refrigeration system include: improvements in refrigeration cycle and energy efficiency because of a better matching of compressor pumping rate to cooling load; improvements in the reliability of the compressor; improvements in the consistency of the temperature and viscosity of finished frozen beverage product inside a barrel of an FCB dispenser; a reduction in the noise levels of the refrigeration system, since the compressor will often run at lower speeds; and a further decrease in operating noise as a result of a reduction in condenser fan speed as compressor speed is reduced.
Referring to the drawings, a refrigeration system embodying the teachings of the invention is shown in
The refrigeration system 20 has two defrost circuits, a first one of which includes a solenoid operated refrigerant valve 60 having an inlet coupled through a refrigerant line 62 to hot refrigerant at the outlet from the compressor 22 and an outlet coupled through a refrigerant line 64 to the inlet to the freeze barrel evaporator 42. A second defrost circuit includes a solenoid operated refrigerant valve 66 having an inlet coupled through a refrigerant line 68 to hot refrigerant at the outlet from the compressor and an outlet coupled through a refrigerant line 70 to the inlet to the freeze barrel evaporator 46. The defrost circuits may be operated to heat the evaporators 42 and 46 to defrost the beverage product barrels 44 and 48 in defrost cycles of the refrigeration system.
The refrigeration system 20 is adapted for use with FCB dispensers that have both beverage product freeze barrels and pre-chillers. To provide chilling for FCB dispensers that do not have pre-chillers, a refrigeration system of a type shown in
Since operation of an FCB dispenser having a pre-chiller generally embodies operation of an FCB dispenser that does not have a pre-chiller, the invention will be described in terms of the refrigeration system 20 being used with FCB dispensers having both product freeze barrels and pre-chillers. One such FCB dispenser is shown in
To carbonate water in the carbonator tank 100, an externally regulated supply of CO2 is coupled through a temperature compensated pressure regulator 110 and a check valve 112 to the carbonator, the regulator 110 including a capillary sensor 114 for detecting the temperature of incoming water and adjusting the regulator in accordance therewith. A sensor 116 detects a CO2-out condition, and the supply of CO2 also is coupled to inlets to each of two CO2 pressure regulators of a manifold 118. An outlet from a first one of the manifold CO2 pressure regulators is coupled through a solenoid shut-off valve 119, a CO2 flow control valve 123 and a CO2 check valve 121 to the water and syrup mixture line extending between the pre-chiller 52 and an inlet to the freeze barrel 44. In addition, CO2 at an outlet from the manifold second CO2 pressure regulator is coupled to an upper opening to an expansion tank 122, a lower opening to which is coupled to the water and syrup mixture line between the pre-chiller and freeze barrel. The flow control valve 123 accommodates adjustment of the carbonation level in the barrel 44 by enabling the introduction of CO2 into the barrel for a brief period before a mixture of water and syrup is delivered into the barrel. As is understood by those skilled in the art, when a pressure transducer 124 coupled to an inlet to the barrel 44 detects a lower cut-in pressure in the barrel, for example 20 psi, the pair of brixing valves 102, 84 is opened for flow of a water and syrup mixture into the barrel, until the pressure transducer detects an upper cut-out pressure in the barrel, for example 29 psi, whereupon the pair of brixing valves is closed. During flow of the water and syrup mixture to the barrel, the mixture is cooled as it flows through an associated circuit in the pre-chiller 52. As the water and syrup mixture freezes in the barrel 44, it expands and backs up into the expansion chamber 122.
As mentioned, the dispenser 80 includes the freeze barrel 48 and, therefore, includes further structure (not shown) that is generally duplicative of that to the right of the pair of water and syrup brixing valves 102, 84 and that accommodates delivery of a water and syrup mixture from the brixing valves 104, 87 to the barrel 48, except that the beverage mixture does not flow through a separate pre-chiller, but instead flows through an associated beverage circuit of the pre-chiller 52. In addition, a line 126 delivers CO2 to an upper opening to an expansion chamber (not shown) for the barrel 48, a lower opening from which couples to an inlet to the barrel, and to accommodate addition of CO2 to the barrel 48, the outlet from the first CO2 pressure regulator of the manifold 118 is coupled through a solenoid shut-off valve 128, a CO2 flow control valve 133 and a CO2 check valve 132 to the inlet to the barrel.
Another type of FCB dispenser with which the refrigeration system 20 may be used is shown in
An externally regulated supply of CO2 is coupled to inlets to each of four CO2 pressure regulators of a manifold 134 through a line 136, to which is coupled the sensor 116 for detecting a CO2-out condition. An outlet from a first one of the manifold pressure regulators is coupled through a line 138 to the CO2 driven water pump 96 to operate the pump. An outlet from a second one of the manifold CO2 pressure regulators is coupled through the solenoid shut-off valve 119, the CO2 orifice 120 and the CO2 check valve 121 to the chilled water/syrup mixture flowing from the pre-chiller 52 to the inlet to the freeze barrel 44, thereby to selectively carbonate the chilled beverage mixture in accordance with the solenoid shut-off valve 119 being open or closed and the setting of the manifold second CO2 pressure regulator, whereby either carbonated or non-carbonated beverages may selectively be frozen in the barrel 44. An outlet from a third one of the manifold CO2 pressure regulators is coupled to the upper opening to the expansion tank 122, the lower opening to which is coupled to the water/syrup mixture line extending between the outlet from the pre-chiller 52 and inlet to the freeze barrel 44. For service of frozen carbonated beverages, the manifold second CO2 pressure regulator accommodates adjustment of the carbonation level in the barrel 44 by controlling the introduction of CO2 into the barrel for a brief period before a mixture of water and syrup is delivered into the barrel. The pressure transducer 124 monitors the pressure of the beverage mixture in the barrel. As is understood by those skilled in the art, when the pressure transducer detects a selected lower cut-in pressure in the barrel 44, for example 23 psi, the brixing valves 102, 84 are opened for delivery of a water/syrup beverage mixture into the barrel until the pressure transducer detects an upper cut-out pressure in the barrel, for example 29 psi, in response to which the brixing valves are closed. As the water and syrup mixture freezes in the barrel 44, it expands and backs up into the expansion chamber 122.
As the dispenser 140 includes the freeze barrel 48, it also includes further structure (not shown) that is generally duplicative of the structure shown to the right of the pair of water and syrup brixing valves 102, 84, which accommodates delivery of a water and syrup mixture from the brixing valves 104, 87 to the barrel 48, except that the beverage mixture does not flow through a separate pre-chiller, but instead flows through an associated beverage circuit of the pre-chiller 52. In addition, the line 126 at the output from the manifold third CO2 pressure regulator delivers CO2 to an upper opening to an expansion chamber (not shown) for the barrel 48, a lower opening from which is coupled to the inlet to the barrel, and to accommodate carbonating the beverage mixture delivered to the barrel 48, the outlet from a fourth CO2 pressure regulator of the manifold 118 is coupled through the solenoid shut-off valve 128, the CO2 orifice 130 and the CO2 check valve 132 to the chilled beverage mixture intermediate the pre-chiller 52 and the inlet to the barrel.
A further type of FCB dispenser with which the refrigeration system 20 may be used, and which utilizes cold carbonation, is illustrated in
Each pair of water/syrup brix valves 210, 186 and 212, 184 is adjustable to provide a selected water/syrup ratio to its associated freeze barrel 44 and 48. A common outlet from the valves 212, 184 is coupled through a 3-way valve 218 to a beverage mixture inlet to the freeze barrel 44. The valve 218 has an outlet 220 leading to ambient, whereby a water and syrup beverage mixture supplied by the brix valves 212, 184 may be collected for analysis of its water/syrup ratio, for example by means of a refractometer reading, so that any necessary adjustments can be made to the valves 212, 184 to provide a desired ratio. A pressure transducer 222 senses the pressure of the beverage mixture in the product freeze barrel 44, and CO2 from the external supply is delivered through a third CO2 pressure regulator of the manifold 212 to an upper opening to an expansion tank 226, a lower opening to which is fluid coupled to the water and syrup beverage mixture in the line between the valve 218 and the inlet to the freeze barrel 44, and a sensor 227 detects a CO2 out condition. CO2 from the manifold third pressure regulator is also delivered through a line 227 to an upper opening of an expansion chamber (not shown) associated with the freeze barrel 48.
Since the dispenser 180 includes the freeze barrel 48 (not shown), a common outlet from its associated pair of water/syrup brixing valves 210, 186 is delivered through an associated sway valve (also not shown) to a beverage mixture inlet to the freeze barrel 48, and a pressure transducer and an expansion tank are coupled to the inlet to the freeze barrel (neither shown). Operation of the dispenser 180 in providing frozen beverage product from the freeze barrels 44 and 48 is understood by those skilled in the art, particularly in view of the above-described manner of operation of the dispensers 80 and 140.
One contemplated control strategy for operating the refrigeration system 20 to efficiently respond to dynamically changing broad ranges of cooling load requirements of an FCB dispenser will now be considered in connection with the FCB dispenser 80 of
To develop an indication of customer demand for frozen beverages and, therefore, an indication of the cooling load demand of the freeze barrels 44 and 48 and pre-chiller 52, so that the cooling capacity of the refrigeration system 20 might be adjusted to match to the cooling load requirements of the FCB dispenser 80, it is contemplated that the time and frequency of actuation and opening of the pairs of brix valves 108, 84 and 106, 86 be monitored. For each drink drawn, there is a batch of cooling, in terms of Btu's, that must be provided by the refrigeration system to the dispenser to chill and freeze replacement beverage product delivered by the brixing valves, and as multiple drinks are drawn, the batches multiply. Since the flow rate of water and syrup through the brixing valves can be closely approximated, the number of batches of warm beverage product delivered by the brixing valves to the freeze barrels can be correlated with the on-time of the brixing valves, which in turn relates to the cooling load that must be met by the refrigeration system. The cooling load, in terms of Btu's required to chill and freeze each batch of warm beverage product flowed from the brixing valves, can be calculated and is based upon two factors: 1) the size of the batch, which is directly related to on-time of the brixing valves, and 2) the ambient temperature of the water and syrup delivered by the brixing valves. With brixing valve on-time being monitored, a controller for the FCB dispenser counts Btu's required to be provided by the refrigeration system to the dispenser. As new and warm beverage product is delivered by the brixing valves, a Btutotal counter of the controller is updated and incremented on a second by second basis. During times when no new product flows from the brixing valves, as the refrigeration system extracts heat from the beverage product, the Btutotal counter is decremented over a selected period of time that may be, for example, on the order of 40 seconds. Consequently, if no new product flows from the brixing valves for the selected cooling cycle time, the total number of Btu's accumulated in the Btutotal counter will decrement to zero and the cooling requirement of the refrigeration system will be dose to ending. However, decrementing the Btutotal counter to zero is not determinative to turning off the refrigeration system, and the final factor that shuts off the refrigeration system is the measured viscosity of the frozen beverage product, which may be determined as a function of the current draw of motors for the freeze barrel scrapers.
The count in the Btutotal counter is indicative of the cooling load demand being placed on the refrigeration system 20 by the FCB dispenser 80. Should the count be incrementing, which indicates that cooling load requirements are increasing, then an increase in compressor speed and expansion valve metering rate is required in order to increase the Btu output capacity of the refrigeration system to more closely match dispenser cooling load requirements. In this case, the speed of operation of the compressor may initially be incremented by 10% of its present speed, such that if the compressor is operating at 50% nominal speed, the frequency of the AC voltage applied to the compressor motor is increased by 10% to increment compressor speed to 55% nominal speed. Only during pull-down, as will be described below, when the FCB dispenser is initially turned on, will the increment in compressor speed be more aggressive, for example on the order of 50% to 60% every 5 seconds.
The table of
Pull-down mode occurs when the FCB dispenser is first turned on after being off, such that the freeze barrels 44 and 48 are warm. Under this circumstance, the refrigeration system 20 is controlled to quickly drop the temperatures of the freeze barrels, the objective being to rapidly bring product in the barrels to within predetermined temperature and viscosity ranges, so that warm drinks are not dispensed. Product temperature may be determined by temperature sensors and product viscosity is related to, and may be determined in accordance with, a measurement of current draw in amperes of each motor that rotates a scraper in an associated one of the barrels. In pull-down mode, the compressor 22 is turned on and the expansion valves 36 and 38 are controlled to meter refrigerant to the evaporators of the freeze barrels. When the compressor is turned on, it is contemplated that it initially be run at about 50% maximum capacity, and then be ramped up in speed from 50% maximum capacity to 100% capacity over a selected period of time, for example over 25 seconds, in which case compressor speed would be increased in increments of about 10% every 5 seconds. Product is not to be dispensed from a freeze barrel if its temperature is above or its viscosity is below predetermined ranges or specifications, so a lock for the dispense valve 82 can be provided to prevent dispensing of product from the valve when beverage temperature is above or beverage viscosity is below specification, or when the barrels are being defrosted. As the freeze barrels 44 and 48 are cooled, beverage product in the barrels will be brought to a desired temperature range, generally between about 24°-28° F. and the viscosity of the product, as determined by scraper motor current draw, will be brought to between a selected Lo Limit Value and Hi Limit Value. Once product in the barrels is brought to within the selected temperature and viscosity ranges, the compressor is turned off until further refrigeration is required.
The schedule for the speed of operation of the compressor advantageously is based upon demand for drinks dispensed, as represented by the on-time of the brixing valves 102, 84 and 104, 87, since it is the relatively warm beverage mixture delivered through the dispenser and into the barrels, to replace frozen beverage product dispensed from the barrels, that must be chilled and that places a cooling load on the refrigeration system 20. When no frozen beverages are being dispensed, barrel maintenance occurs, during which periods barrel refrigeration may be initiated if product viscosity drops to a cut-in value or product temperature increases to at least a selected upper temperature. To reduce beverage product temperature before delivery of the product to a freeze barrel, when a pair of brix valves 102, 84 and 104, 87 is actuated to deliver beverage product mixture to a freeze barrel, the pre-chiller expansion valve 40 is operated to cool the pre-chiller 52. Advantageously, pre-chilling is begun as soon as there is a call for the brix valves to open, since refrigeration of just the freeze barrels may be insufficient to meet cooling loads that are both high and sustained.
The chart of
The product freeze barrels 44 and 48 are automatically filled based upon internal barrel pressure. For example, when the cut in/cut out pressure sensor (e.g., the sensor 134 in
If at a time when the compressor 22 is running there is little or no heat load imposed by the product barrels 44 and 48, or if product demand suddenly stops, there will very quickly be excess and unutilized compressor capacity. If the compressor were to continue running in that mode, the expansion valves 36 and 38 would dose down and suction pressure at the outlets from the evaporators 42 and 46 would drop to a very low value. The compressor would then pull down the temperature of product in the barrels and would have to be shut off to prevent excessive freezing of product in the barrels. To alleviate this potential problem, the capacity of the refrigeration system 20 is varied by varying the speed of the compressor, such that as cooling load demand drops, as may be measured by a reduction in the count in the Btutotal counter of the controller, compressor speed is reduced in 5% increments, until 50% nominal speed is achieved. Advantageously, compressor speed should be reduced to 50% nominal speed before barrel product temperature and viscosity conditions are fully satisfied, or before compressor suction pressure (or saturated evaporator temperature) drops to a lower limit. Since cooling load demand is conveniently defined in terms the brixing valves 102, 84 and 104, 87 being actuated or opened, and therefore in terms of a call for beverage product, when demand for product decreases, cooling load demand of the freeze barrels decreases, and when demand for product increases, cooling load demand of the barrels increases. Monitoring actuations or openings and the durations of the actuations or openings of the pairs of brix valves 102, 84 and 104, 87 is, therefore, a convenient measure of cooling load demand, such that cooling loads may be considered to be high if the brixing valves are actuated more than 2 times per minute, and may be considered low the brixing valves are actuated less than 2 times per minute. It presently is contemplated that if actuation of a pair of brixing valves is less frequent than 1×16 oz drinks per minute, the compressor can be operated at 50% speed. When compressor speed is reduced and refrigeration cooling capacity is reduced, a saturated evaporator temperature of 4° F. will continue to cool product in a barrel, until both temperature and viscosity conditions of product in the barrel are satisfied, whereupon the compressor shuts off and the speed of the beater bar or scraper in the barrel may be reduced to half speed.
As seen from the chart of
A dosed loop microprocessor,
The pre-chiller 52 is operated whenever a pair of brixing valves 102, 84 and 104, 87 is actuated to chill the water and syrup mixture flowing to the freeze barrels 44 and 46. When the pre-chiller is operated, its expansion valve 40 is controlled so that the beverage mixture flowing through it is chilled to and exits at a temperature of about 40° F. When a beverage mixture ceases to flow through the pre-chiller upon closing of the brixing valves, the pre-chiller expansion valve 40 is closed. If the refrigerant flow path through the pre-chill evaporator 50 is an upward flow path, the evaporator can be treated as a flooded or batch-type evaporator whenever a pair of brix valves is activated, such that its expansion valve 40 is operated so that refrigerant liquid is flowed into the bottom of the evaporator. It is desirable to eliminate refrigerant liquid flow out of the top of the evaporator and also to limit the extent of cooling of the pre-chiller by the evaporator to reduce the risk of freezing the beverage mixture within the pre-chiller. For that purpose, it is contemplated that the expansion valve 40 be controlled such that there is a time dispense of refrigerant liquid into the lower end of the evaporator, with the time based upon the amount of refrigerant liquid required to cool a prescribed volume of beverage mixture flowing through the pre-chiller. The time dispense and the volume of refrigerant liquid introduced into the lower end of the evaporator may be controlled as a function of each of the temperature of the beverage mixture requiring pre-cooling, the volume of the beverage mixture as determined by the time that the brixing valves are actuated, and the speed of the compressor 22, which may be varied to control the flow rate of refrigerant into the evaporator.
The chart of
The chart of
The table of
The graph of
The refrigeration system of the invention has been described in connection with the manufacture of frozen carbonated beverages. However, as is apparent to those of skill in the art, the refrigeration system may also advantageously be used in the manufacture of other types of frozen food products, such as in making ice cream, yoghurt, alcoholic drinks or other suitable creamy and/or slushy frozen food products.
While embodiments of the invention have been described in detail, various modifications and other embodiments thereof may be devised by one skilled in the art without departing from the spirit and scope of the invention, as defined by the appended claims.
This application claims benefit of provisional application Ser. No. 60/851,033, filed Oct. 11, 2006.
Number | Date | Country | |
---|---|---|---|
60851033 | Oct 2006 | US |