Information
-
Patent Grant
-
6584943
-
Patent Number
6,584,943
-
Date Filed
Wednesday, September 18, 200222 years ago
-
Date Issued
Tuesday, July 1, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Denion; Thomas
- Chang; Ching
-
CPC
-
US Classifications
Field of Search
US
- 123 9016
- 123 9024
- 123 9031
- 123 906
- 123 9039
- 123 904
- 123 9041
- 123 9044
- 123 9061
- 123 9062
- 123 9063
- 123 9064
-
International Classifications
-
Abstract
A variable compound rocker system for varying the lift of intake valves of an internal combustion engine is provided. The system comprises a rocker shaft with eccentric rings non-rotatably attached thereto. Furthermore, the system includes primary rockers non-rotatably attached to the eccentric rings. The primary rockers have engaging surfaces for engaging rollers attached to secondary rockers. The rollers enable the primary rockers to actuate the secondary rockers, thus actuating the intake valves. The system further includes an actuator assembly adapted to incrementally rotate the rocker shaft, and thus the primary rockers. This incremental rotation of primary rockers changes their attitude causing the lift of the intake valves to vary, thus varying the engine performance characteristics.
Description
FIELD OF THE INVENTION
The present invention relates to a rocker system for push rod and overhead camshaft engines, more particularly to a variable compound rocker system having primary and secondary rocker assemblies adapted for varying valve lift.
BACKGROUND OF THE INVENTION
Traditional push rod internal combustion engines include a single camshaft disposed in the valley of the engine block for actuating the intake and exhaust valves via pushrods and rockers that pivot about a rocker shaft. A disadvantage of this design, however, is that no convenient method for varying the lift of the intake valves exists. It is desirable to vary the lift of the intake valves to increase engine performance in certain applications. For example, during start-up it would be advantageous to lower the lift of the intake valves to help decrease fuel emissions and improve fuel economy. Similarly, at high cruising speeds it would be advantageous to increase the lift of the intake valves to increase performance. Hence, a rocker system capable of varying the lift of the intake valves in an internal combustion engine is desired. Such systems are disclosed in U.S. Pat. No. 5,560,329, U.S. Pat. No. 6,041,746, U.S. Pat. No. 6,055,949, and U.S. Pat. No. 6,123,053.
Each of these patents however, disclose or suggest a system of cams and linkages moving in sequence to vary the intake valve lift events. A disadvantage apparent to these configurations is the need for many moving parts, which increases the risk of failure. Another disadvantage of these systems is the loss of energy due to frictional and rotational resistances apparent in such complex configurations. A further disadvantage to these systems is the need for very particular assembly procedures, which lacks economic efficiency.
Thus, a simplified variable compound rocker system that is fully contained within the cylinder head is desired. This ensures compactness of the engine block, easy adaptation to current production push rod and overhead camshaft engines, and minimal energy losses due to friction and gyro dynamics.
SUMMARY OF THE INVENTION
The present invention provides a compound rocker system for varying the lift of intake valves adaptable for push rod and overhead camshaft internal combustion engines for use in motor vehicles. The rocker system includes a rocker shaft, a plurality of primary rockers positioned on a plurality of eccentric rings, a plurality of secondary rockers, and a plurality of exhaust rockers, all positioned on the rocker shaft. The primary rockers are adapted to actuate the secondary rockers, and the secondary rockers are adapted to actuate the intake valves. Furthermore, an actuator assembly is adapted to incrementally rotate the rocker shaft, thus changing the attitude of the primary rockers causing a variance in the lift of the intake valves. This allows for increased performance in different applications.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
FIG. 1
is an isometric view of a preferred embodiment of the present invention.
FIG. 2
is an exploded view of a preferred embodiment of the present invention.
FIG. 3
is an end view of a preferred embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
FIGS. 1 and 2
, a preferred embodiment of the variable compound rocker system
10
of the present invention is shown in isometric view and in exploded view, respectively, as adapted to an internal combustion engine
58
for use in a motor vehicle
60
. The variable compound rocker system
10
includes a rocker shaft
12
having an axis of rotation, whereby the rocker shaft
12
is rotatably supported on a plurality of cylinder head pedestals
14
and contained thereon by a plurality of rocker caps
16
. An eccentric ring
18
is also provided having an axis of rotation, an interior surface
42
, and an exterior surface
44
non-rotatably attached to the rocker shaft
12
. It should be appreciated that the eccentric ring
18
could be directly formed as part of the rocker shaft
12
, or as illustrated in
FIG. 2
, it could be assembled to the rocker shaft
12
by weld, press fit, pin, or other mechanical fastening means.
Further included in the system
10
is a primary rocker
20
having an interior surface
46
rotatably attached to the exterior surface
44
of the eccentric ring
18
. The primary rocker
20
includes a socket surface
54
for receiving an intake pushrod
22
and an engaging surface
24
for engaging a roller
32
. A secondary rocker
30
is positioned generally adjacent to the primary rocker
20
and includes a roller
32
in constant sliding engagement with the engaging surface
24
of the primary rocker
20
. The secondary rocker
30
further includes a first valve arm
26
in constant driving engagement with a first intake valve
28
and a second valve arm
34
in constant driving engagement with a second intake valve
36
.
The engaging surface
24
extends from the primary rocker
20
and includes a curved profile
25
for interaction with the roller
32
as best shown in FIG.
3
. The curved profile
25
includes a generally arcuate surface disposed at a distal end of the engaging arm
24
and a recess disposed adjacent the arcuate surface. The particular geometry of both the arcuate surface and the recess is governed by the geometry of the eccentric ring
18
such that as the eccentric ring
18
rotates, the roller
32
concurrently moves along the engaging surface
24
to maintain the intake valves
28
in a closed position. Specifically, as the rocker shaft
12
rotates in direction A, as shown in
FIG. 3
, the primary rocker
20
is caused to shift in a first direction generally away from the cylinder head pedestal
14
due to the eccentric relationship of the axis of rotation of the eccentric cam
18
and the axis of rotation of the rocker shaft
12
. As the primary rocker
20
moves sufficiently in the first direction, the roller
32
is caused to move along the curved profile
25
from the recess to the arcuate surface, thereby causing no rotation of the secondary rocker
30
, and preventing the rockers
26
,
34
from lifting from the valve tips.
FIGS. 1 and 2
also illustrate the system
10
including an exhaust rocker
38
positioned generally central between the first valve arm
26
and the second valve arm
34
and including an exhaust valve arm
40
. The system
10
further includes an exhaust pushrod
48
in constant driving engagement with a receiving surface (not shown) on the exhaust rocker
38
and an exhaust arm
40
having an exhaust spring
41
mounted thereto for actuating the exhaust valve
56
. Lastly, the system
10
includes an actuator assembly
50
in constant rotational engagement with the rocker shaft
12
for bi-directionally rotating the rocker shaft
12
. It should be appreciated that the actuator assembly
50
could be a generic phaser, a piston lever mechanism, or any other mechanical device capable of bi-directionally rotating the rocker shaft. It should further be appreciated that while
FIGS. 1 and 2
illustrate a single piston application, the system
10
could be adapted to accommodate a conventional multi-piston engine by simply extending the rocker shaft
12
and providing additional single piston configurations thereon. It should further yet be appreciated that while
FIGS. 1 and 2
illustrate a three-valve configuration, the system
10
can be adapted to accommodate any number of valve configurations.
Referring now to
FIG. 3
, the primary rocker
20
is shown in a low-lift mode. When the internal combustion engine is running, the intake
22
and exhaust
48
pushrods stroke in accordance with the rotation of a camshaft (not shown). The intake pushrod
22
strokes, thus rotating the primary rocker
20
in a clockwise direction. The engaging surface
24
of the primary rocker
20
forces the roller
32
and the secondary rocker
30
to also rotate in a clockwise direction. The secondary rocker
30
pivots about an axis approximately central to the rocker shaft
12
, forcing the first
26
and second
34
(see in
FIGS. 1 and 2
) valve arms to depress the first
28
and second
36
(seen in
FIGS. 1 and 2
) intake valves. Upon further rotation of the camshaft (not shown) the intake valve springs
52
force the secondary rocker
30
upward, and the intake pushrod
22
down, thus, closing the first
28
and second
36
intake valves.
From
FIG. 3
it should be appreciated that when the actuator assembly
50
(shown in
FIGS. 1 and 2
) rotates the rocker shaft
12
in the direction of arrow A, the eccentric ring
18
rotates causing the attitude of the primary rocker
20
to change relative to the secondary
30
and exhaust
38
(shown in
FIGS. 1 and 2
) rockers, as previously discussed. This change in attitude results in an increase in the depression of the first
28
and second
36
intake valves when the intake pushrod
22
strokes. The engaging surface
24
is such that when the actuator assembly
50
rotates the rocker shaft
12
thus, rotating the eccentric ring
18
, the first
28
and second
36
intake valves remain closed due to the interaction of the roller
32
on the curved profile
25
, as illustrated in FIG.
3
. In a preferred embodiment, the actuator assembly
50
is a piston-lever assembly that rotates the rocker shaft
12
approximately ninety degrees. In another embodiment the actuator assembly
50
is a conventional phaser that rotates the rocker shaft
12
approximately ninety-degrees. It should be appreciated that while the embodiment described herein includes one ninety degree rotational increment of the rocker shaft
12
, an embodiment including any degree and number of rotational increments is included within the scope of the present invention.
Changing the attitude of the primary rocker
20
from the low-lift position to the high-lift position, as discussed above, decreases the depression of the first
28
and second
36
intake valves. Decreasing and increasing the intake valve depression decreases the engine emissions at startup and provides more power and efficiency during acceleration. It should be appreciated that while the system
10
described herein includes a two position rocker system
10
, systems capable of providing three or more positions are included within the scope of the present invention. It should also be appreciated that the actuator assembly
50
should be configured such that no actuation is required for the base operating condition of the system, i.e, the condition most commonly utilized. In a system having three or more rotational positions the base condition would most likely be a middle position. Lastly, it should be appreciated that while the description contained herein describes the system
10
adapted to a V-style internal combustion engine, the system
10
is also adaptable to an overhead camshaft internal combustion engine by replacing the pushrods with an overhead camshaft.
Accordingly, a simple rocker system that compactly fits within the cylinder head of a V-style or overhead camshaft internal combustion engine and is capable of varying intake valve lift events for increasing engine efficiency and performance characteristics is provided. Furthermore, a single-shaft rocker system capable of varying intake valve lift events via static means without suffering frictional or gyro dynamic energy losses is provided.
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Claims
- 1. A variable compound rocker system for actuating and varying intake valve lift events and actuating exhaust valve lift events of an internal combustion engine, said rocker system comprising:a rocker shaft; an eccentric ring non-rotatably attached to said rocker shaft; a primary rocker rotatably attached to said eccentric ring and having an engaging surface disposed therefrom, said primary rocker adapted to actuate a secondary rocker; said secondary rocker rotatably attached to said rocker shaft and positioned generally adjacent to said primary rocker; a roller disposed adjacent to and in direct constant rolling engagement with said engaging surface of said primary rocker, said secondary rocker adapted to actuate a first intake valve; and an actuator assembly in constant rotational engagement with said rocker shaft and adapted to bi-directionally rotate said rocker shaft for changing the attitude of said primary rocker, causing a change in said intake valve lift events.
- 2. The rocker system of claim 1, wherein said eccentric ring includes a plurality of eccentric rings.
- 3. The rocker system of claim 2, wherein said eccentric ring is formed as an integral part of said rocker shaft.
- 4. The rocker system of claim 2, wherein said eccentric ring is separate from and non-rotatably fixed to said rocker shaft by mechanical means.
- 5. The rocker system of claim 2, wherein said primary rocker includes a plurality of primary rockers.
- 6. The rocker system of claim 5, wherein said secondary rocker includes a plurality of secondary rockers.
- 7. The rocker system of claim 6, further comprising an exhaust rocker rotatably attached to said rocker shaft and positioned generally adjacent to said secondary rocker and opposite said primary rocker, said exhaust rocker for actuating an exhaust valve.
- 8. The rocker system of claim 7, wherein said exhaust rocker includes a plurality of exhaust rockers.
- 9. The rocker system of claim 8, further including an intake pushrod for actuating said primary rocker and an exhaust pushrod for actuating said exhaust rocker.
- 10. The rocker system of claim 9, wherein said intake pushrod includes a plurality of intake pushrods and said exhaust pushrod includes a plurality of exhaust pushrods.
- 11. The rocker system of claim 8, further including an overhead camshaft for actuating said primary rocker and said exhaust rocker.
- 12. The rocker system of claim 8, wherein said actuator assembly is a conventional phaser.
- 13. The rocker system of claim 8, wherein said actuator assembly is a piston-lever assembly.
- 14. The rocker system of claim 1, wherein said secondary rocker is adapted to actuate a second intake valve.
- 15. An internal combustion engine having multiple cylinders wherein each cylinder has multiple intake valves, said engine comprising:a variable compound rocker system for actuating and varying the intake valve lift events for the multiple cylinders and actuating the exhaust valve lift events for the multiple cylinders, said rocker system comprising: a rocker shaft; an eccentric ring non-rotatably attached to said rocker shaft; a primary rocker rotatably attached to said eccentric ring and having an engaging surface disposed therefrom, said primary rocker adapted to actuate a secondary rocker; said secondary rocker rotatably attached to said rocker shaft and positioned generally adjacent to said primary rocker and having a roller disposed therefrom in direct constant rolling engagement with said engaging surface of said primary rocker, said secondary rocker adapted to actuate a first intake valve and a second intake valve; and an actuator assembly in constant rotational engagement with said rocker shaft and adapted to bi-directionally rotate said rocker shaft for changing the attitude of said primary rocker, causing a change in said intake valve lift events.
- 16. A motor vehicle having a passenger compartment and a powertrain, said motor vehicle comprising:an internal combustion engine having multiple cylinders wherein each cylinder has multiple intake valves, said engine comprising: a variable compound rocker system for actuating and varying the intake valve lift events for the multiple cylinders and actuating the exhaust valve lift events for the multiple cylinders, said rocker system comprising: a rocker shaft; an eccentric ring non-rotatably attached to said rocker shaft; a primary rocker rotatably attached to said eccentric ring and having an engaging surface disposed therefrom, said primary rocker adapted to actuate a secondary rocker; said secondary rocker rotatably attached to said rocker shaft and positioned generally adjacent to said primary rocker and having a roller disposed therefrom in direct constant rolling engagement with said engaging surface of said primary rocker, said secondary rocker adapted to actuate a first intake valve and a second intake valve; and an actuator assembly in constant rotational engagement with said rocker shaft and adapted to bi-directionally rotate said rocker shaft for changing the attitude of said primary rocker, causing a change in said intake valve lift events.
US Referenced Citations (8)
Foreign Referenced Citations (1)
Number |
Date |
Country |
717174 |
Jun 1996 |
EP |