In PCT/EP2009/051702, which is the closest prior art, an eccentric ring is interposed between the crankpin and the big end bearing of the connecting rod. The eccentric ring rotates in synchronization to the crankshaft by means of a set of gear wheels. The rotation of a control member changes the phase between the crankshaft and the eccentric ring and so controls the compression ratio.
The necessary eccentricity between the inner and outer cylindrical surfaces of the eccentric ring is small, for instance a 4 mm eccentricity enables a compression ratio range between 8:1 and 18:1 in an engine having 100 mm piston stroke.
Among the drawbacks of the closest prior art are the degradation of the crankshaft strength, the increased complication, size and cost, the additional inertia vibrations, the need for special cylinder arrangement in order to keep reasonable the number of additional parts.
This invention proposes a Variable Compression Ratio (VCR) mechanism based on the eccentric ring principle, too. But instead of a gear wheel, the eccentric ring is secured at the one end of a secondary connecting rod. The eccentric ring, interposed between the big end bearing of the connecting rod and the crankpin, is secured at one end of the secondary connecting rod, the other end of the secondary connecting rod is rotatably mounted on a crankpin of a secondary crankshaft. Displacing the rotation axis of the secondary crankshaft about the rotation axis of the crankshaft, the compression ratio changes.
In a first preferred embodiment,
The distance E between the center of the inner cylindrical surface 17 and the center of the outer cylindrical surface 18 is the eccentricity of the eccentric ring 16. The eccentric ring 16 is secured at the one end of a secondary connecting rod 15; the other end of the secondary connecting rod 15 is rotatably mounted on a crank pin 14 of the secondary crankshaft 12. The length L of the secondary connecting rod 15, defined as the distance between the center of the inner cylindrical surface 17 of the eccentric ring 16 and the center of the crank pin 14 of the secondary crankshaft 12 equals to the distance of the crankshaft rotation axis 3 to the secondary crankshaft rotation axis 13. The rotation of the main crankshaft 2 causes, by means of the secondary connecting rods 15, the rotation of the secondary crankshaft 12 at the same direction and with the same instant angular velocity. The secondary connecting rods 15 move parallel to themselves about a center. The angular displacement of the control frame 11 about the rotation axis 3 of the crankshaft causes an equal angular displacement of all eccentric rings 16 about their crank pin centers, and this changes the compression ratio.
The angular velocity of the big end bearing 10 of the connecting rod 7 relative to the outer surface 18 of the eccentric ring 16 equals to the angular velocity of the wrist pin 9 of the connecting rod 7 and is several times smaller than the angular velocity of the big end bearing of the connecting rod, relative to the crankpin, of the conventional engine. The angular velocity of the inner surface 17 of the eccentric ring 16 relative to the crankpin 4 equals to the angular velocity of the crankshaft journals relative their bearings. The ratio L/E is about equal to the ratio of the inertia and combustion forces applied from the connecting rod 7 on the eccentric ring 16 to the inertia and combustion forces applied on the secondary crankpin 14. Typically L/E is around 20, which means that the secondary crankshaft 12 and the secondary connecting rods 15 can be light and of small dimensions, still robust for the loads they carry. For instance, if the high-pressure gas into the cylinder applies a 20,000 Nt force on the piston, the resulting force on the secondary crankpin is only 1,000 Nt.
The small dimensions of the secondary connecting rods and the temperature in the crankcase cause no heat expansion issues to the mechanism.
In a second preferred embodiment,
In a third preferred embodiment,
To avoid the use of a second secondary crankshaft in a single cylinder, or in general in a multicylinder engine with flat crankshaft, for instance the conventional straight four or the V-8 with flat crankshaft, there is the option of using a transmission from the crankshaft to the secondary crankshaft to make them rotate at the same direction and with the same instant angular velocity, for instance by a chain and two sprockets.
To make the connection between the crankshaft and the secondary crankshaft more “flexible” to compensate for thermal expansion, construction inaccuracies and other deformations, the opposite to the eccentric ring end of the secondary connecting rod is not rotatably mounted on the crankpin of the secondary crankshaft. Instead, an additional eccentric ring is interposed between the opposite to the eccentric ring end of the secondary connecting rod and the crankpin of the secondary crankshaft.
Another way to avoid uncertainty for the case of flat crankshafts is to add to the crankshaft a crank pin out of the plane that contains the rotation axis and the crankpin centers, to add a crankpin to the single secondary crankshaft and to add an additional secondary connecting rod between them. The two additional crankpins have the same eccentricity, not necessarily equal to the eccentricity of the main crankpins.
In a fourth embodiment,
The idea behind this invention is to take most of the loads directly by the crankpin of the crankshaft. This way the parts that control the compression ratio deal with only a slight portion of the loads, enabling compact, lightweight and robust construction and small friction due to the small mass of the moving parts and the small pin diameters. The energy delivered to the secondary crankshaft returns to the crankshaft by the set of the secondary connecting rods.
The resistance of the control frame to move, in order to change the compression ratio, is small, allowing any method known from the state-of-the-art to be used in order to control the position of the control frame, like vacuum assistant control, electric servomotor, hydraulic control etc, and thereby the response is fast.
The control frame can be pivotally mounted either on the crankshaft main journals or directly on bearings on the casing. The second case avoids the friction. The light loads the control frame undergoes, the fact that it is immovable unless a different compression ratio is desirable and the small bending loads enable the control frame support bearings being only at its outer ends.
The type of motion of the secondary connecting rods enables the complete balance of their inertia forces by the balance webs of the crankshaft and of the secondary crankshaft.
Although the invention has been described and illustrated in detail, the spirit and scope of the present invention are to be limited only by the terms of the appended claims.