The invention relates to an internal combustion with an adjustable compression ratio.
In conventional internal combustion engines, the position of the piston in the cylinder of the internal combustion engine depends exclusively on the position of the crankshaft. In other words, such internal combustion engines have a fixed compression ratio. Under certain operating conditions, however, it is be advantageous to have a variable compression ratio. Several concepts are known in this context.
In a particular embodiment of such internal combustion engines with a variable compression ratio, the connecting rod is divided into two parts, the relative position of which can be changed by means of a link arm in order to adjust the relative position between the piston and the crankshaft while changing the compression ratio. The disadvantage of such connecting rods is that they have a higher mass than known single-part connecting rods. This increases the moving mass of the engine, resulting in a higher load and weight.
Another known solution is the mounting of the crankshaft in eccentric supports, so that the crankshaft is displaceable relative to the crankcase. This, too, allows the position of the dead centers of the piston movement to be changed, so that an internal combustion engine with a variable compression ratio can be implemented. Such an internal combustion engine is for example known from DE 198 41 381 A1. Such systems have the disadvantage that, by changing the relative position of the crankshaft when adjusting the compression ratio, the position of the output shaft of the internal combustion engine is displaced as well. This requires complex structures for transmitting the drive torques from the internal combustion engine to further components of the drive train.
From EP 1 505 276 A1, an internal combustion engine with a variable compression ratio is known wherein the relative position between the cylinder block and the crankcase can be adjusted by means of an eccentric mechanism which comprises a plurality of eccentric elements mounted on a control shaft. Unfortunately, such a mechanism places a high load on the eccentric shaft arrangement mounted between the crankcase and the cylinder housing, which however requires a high strength structure of the crankcase for transmitting forces to the crankshaft and additional measures for the lubrication of the control shaft.
From EP 1 762 415 A1, an internal combustion engine is known which comprises an arrangement similar to that of EP 1 505 276 A1 for adjusting the compression ratio. For this purpose, the position of the cylinder housing relative to the crankcase can be changed by means of two eccentric shafts located in an upper section of the crankcase for moving the cylinder housing relative to the crankcase. In each case however the crankcase must be of a high strength design so as to be capable of transmitting the high forces effective during the compression and the power strokes of the engine between the cylinder head and the crankcase.
It is the object of the present invention to provide an internal combustion engine in which the distance between the cylinder head and crankshaft is adjustable in such a way that the compression ratio of the internal combustion engine can be adjusted by extremely simple means and without the need for a high-strength crankcase design.
In an internal combustion engine for a motor vehicle, comprising a crankcase and a crankshaft accommodated therein and a cylinder housing with a cylinder head, the cylinder housing with the cylinder head is supported directly on the crankshaft via eccentric elements which are pivotable for adjusting a relative position between the cylinder housing with the cylinder head and the crankshaft with the crankcase for changing the compression ratio of the engine.
According to the invention, the eccentric element is pivoted on the crankshaft. The forces generated when adjusting a relative position between the cylinder housing and the crankcase are therefore absorbed by the crankshaft, which is already designed to withstand such forces. An adequate lubrication of the crankshaft is also provided for in standard internal combustion engines, so that there is no need for additional lubrication for the eccentric adjustment. Such an internal combustion engine can therefore be implemented with a minimum of additional components. The moving masses of such an internal combustion engine, in particular, are not increased, so that operating loads remain low. Owing to the fixed relative position of the crankshaft and the crankcase, there is further no need for an additional gearbox on the output side for the transmission of the drive torques to the drive train. As a whole, the result is a particularly simple mechanism for adjusting the compression ratio of the crankshaft, which can be implemented cost-effectively while being operationally reliable.
To ensure the seal tightness of the internal combustion engine, a further development of the invention is provided with a flexible sealing element between the cylinder block and the crankcase.
This sealing element is preferably in the form of a bellows. It ensures that oil and blow-by gases cannot escape from the connection interface between the cylinder block and the crankcase.
In order to ensure a substantially vertical movement of the cylinder block while the eccentric element is being adjusted, the latter is preferably further supported by a momentum support arrangement which guides the cylinder block relative to the crankcase.
Preferably, a plurality of eccentric elements is further provided, which are pivoted on a plurality of and in particular on all of the journals of the crankshaft. As a result forces are introduced evenly over the entire length of the crankshaft during operation and during the adjustment of the compression ratio, so that the crankshaft is not subjected to any buckling loads.
The invention will become more readily apparent from the following description of particular embodiments thereof and its embodiments are explained in greater detail below with reference to the accompanying drawings:
The internal combustion engine for a motor vehicle, which is identified by the reference number 10 as a whole, comprises a crankcase 12 in which a crankshaft 14 is accommodated. A cylinder housing 16 with four cylinders 18 is movable relative to the crankcase 12. Towards the top, the cylinder housing 16 ends in a cylinder head 20. Connecting rods 24 which support the pistons 26 are supported on the crank pins 22 of the crankshaft via bearings. For clarity,
By adjusting the eccentric elements 32, the combination of cylinder housing 16 and cylinder head 20 is displaced relative to the crankcase 12. This changes the relative position of the top and bottom dead centres of the piston movement, so that the compression ratio of the internal combustion engine 10 can be adjusted by adjusting the eccentric elements 32. In order to ensure that the assembly comprising the crankcase 12, the cylinder housing 16 and the cylinder head 12 remains oil-tight, an outer wall 38 of the crankcase 12 is joined to an outer wall 42 of the cylinder head by a bellows 40. The bellows 40 seals the cylinder head against the crankcase 12 at any setting of the eccentric elements 32. In order to change the setting of the eccentric elements 32—and thus the compression ratio of the internal combustion engine 10—an actuator not shown in the drawing is provided. Another component which is not shown is a momentum support which ensures a substantially vertical relative movement of the cylinder housing 16 and the cylinder head 20 relative to the crankcase 12 while the eccentric elements are being adjusted.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 048 716 | Oct 2009 | DE | national |
This is a Continuation-In-Part application of pending international patent application PCT/EP2010/004705 filed Jul. 31, 2010 and claiming the priority of German patent application 10 2009 048 716.6 filed Oct. 8, 2009.
Number | Name | Date | Kind |
---|---|---|---|
1280058 | Martin | Sep 1918 | A |
5025757 | Larsen | Jun 1991 | A |
5443043 | Nilsson et al. | Aug 1995 | A |
5611301 | Gillbrand et al. | Mar 1997 | A |
6880499 | Hoffmann et al. | Apr 2005 | B2 |
8122860 | Kamiyama et al. | Feb 2012 | B2 |
8136489 | Kamiyama et al. | Mar 2012 | B2 |
20100163002 | Kamiyama | Jul 2010 | A1 |
20120017876 | Sawada et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
414 017 | Aug 2006 | AT |
198 41 381 | May 1999 | DE |
0 560 701 | Sep 1993 | EP |
1 505 276 | Feb 2005 | EP |
1 762 415 | Mar 2007 | EP |
55 064131 | Nov 1978 | JP |
60022030 | Feb 1985 | JP |
Number | Date | Country | |
---|---|---|---|
20120210984 A1 | Aug 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/004705 | Jul 2010 | US |
Child | 13441863 | US |