The present disclosure relates generally to the field of internal combustion engines and, more particularly, to methods and systems for varying compression ratio and/or other operating parameters of opposed-piston and other internal combustion engines.
There are numerous types of internal combustion engines in use today. Reciprocating piston internal combustion engines are very common in both two- and four-stroke configurations. Such engines can include one or more pistons reciprocating in individual cylinders arranged in a wide variety of different configurations, including “V”, in-line, or horizontally-opposed configurations. The pistons are typically coupled to a crankshaft, and draw fuel/air mixture into the cylinder during a downward stroke and compress the fuel/air mixture during an upward stroke. The fuel/air mixture is ignited near the top of the piston stroke by a spark plug or other means, and the resulting combustion and expansion drives the piston downwardly, thereby transferring chemical energy of the fuel into mechanical work by the crankshaft.
As is well known, conventional reciprocating piston internal combustion engines have a number of limitations—not the least of which is that much of the chemical energy of the fuel is wasted in the forms of heat and friction. As a result, only about 25% of the fuel's energy in a typical car or motorcycle engine is actually converted into shaft work for moving the vehicle, generating electric power for accessories, etc.
Opposed-piston internal combustion engines can overcome some of the limitations of conventional reciprocating engines. Such engines typically include pairs of opposing pistons that reciprocate toward and away from each other in a common cylinder to decrease and increase the volume of the combustion chamber formed therebetween. Each piston of a given pair is coupled to a separate crankshaft, with the crankshafts typically coupled together by gears or other systems to provide a common driveline and control engine timing. Each pair of pistons defines a common combustion volume or cylinder, and engines can be composed of many such cylinders, with a crankshaft connected to more that one piston, depending on engine configuration. Such engines are disclosed in, for example, U.S. patent application Ser. No. 12/624,276, which is incorporated herein in its entirety by reference.
In contrast to conventional reciprocating engines which typically use reciprocating poppet valves to transfer fresh fuel and/or air into the combustion chamber and exhaust combustion products from the combustion chamber, some engines, including some opposed-piston engines, utilize sleeve valves for this purpose. The sleeve valve typically forms all or a portion of the cylinder wall. In some embodiments, the sleeve valve reciprocates back and forth along its axis to open and close intake and exhaust ports at appropriate times to introduce air or fuel/air mixture into the combustion chamber and exhaust combustion products from the chamber. In other embodiments, the sleeve valve can rotate about its axis to open and close the intake and exhaust ports.
Internal combustion engines are typically required to perform over a wide range of operating conditions. In most instances, however, the optimum geometric compression ratio in the combustion chamber is not the same for each operating condition. To the contrary, the optimum compression ratio often depends on engine load, valve timing, and other factors. Variable valve timing provides some flexibility to optimize or at least improve engine performance based on load, fuel, temperature, humidity, altitude and other operating conditions. Combining variable valve timing with variable compression ratio (VCR), however, can further reduce pumping work losses by reducing intake throttling and optimizing the expansion stroke for improved power and efficiency at a given engine operating condition.
While some systems for varying valve timing have overcome the issue of complexity, systems for varying compression ratio in, for example, conventional internal combustion engines are generally very complex and, as a result, have not been widely adopted. In the case of opposed-piston engines, many of these are diesel engines which may not realize significant benefits from variable compression ratio.
The following disclosure describes various embodiments of systems and methods for varying the compression ratio in opposed-piston and other internal combustion engines. Variable compression ratio can be employed in internal combustion engines to enable optimization or at least improvement of the thermodynamic cycle for the required operating conditions. In a spark ignited engine, for example, incorporating variable compression ratio capability enables the engine to operate more efficiently at light loads and more powerfully at relatively high loads.
In general, engine performance is linked to airflow through the combustion system. Airflow into the combustion chamber is dependent on both the flow characteristics of the various delivery passages and corresponding valve openings, as well as the timing of the valve opening and closing events. Modern engines can use variable valve timing to adjust some of the operating characteristics of the engine to a particular operating environment and performance demand. In conventional internal combustion engines (e.g., conventional reciprocating piston internal combustion engines), however, the internal volume of the combustion chamber versus crankshaft angle is a fixed relationship. As a result, variable compression ratio systems designed for use with such engines are typically very complex and, as a result, have not been widely implemented.
Changing the basic engine architecture, however, can overcome some of the basic complexity of variable compression ratio systems. For example, while conventional engines include a single piston in a single cylinder with a corresponding cylinder head, opposed-piston engines utilize two reciprocating pistons acting in a common cylinder. While originally developed to eliminate or reduce heat losses through the cylinder head by simply eliminating the cylinder head entirely, opposed-piston engines also lend themselves better to variable compression ratio systems than conventional internal combustion engines.
Traditionally, opposed-piston engines that employed variable crankshaft phasing to vary compression ratio were two-stroke engines that used port scavenging, eliminating the issue of camshaft timing relative to the crankshafts. Conversely, the advent of functional four-stroke opposed-piston engines necessitated new systems for variable crankshaft phasing to vary compression ratio in such engines. Embodiments of variable crankshaft phasing systems for use in opposed-piston engines, including four-stroke opposed-piston engines, are disclosed in, for example, in U.S. Non-provisional patent application Ser. No. 12/624,276, filed Nov. 23, 2009, and entitled “INTERNAL COMBUSTION ENGINE WITH OPTIMAL BORE-TO-STROKE RATIO,” which is incorporated herein in its entirety by reference.
When two crankshafts are used in, for example, an opposed-piston engine, and the phase of one crankshaft is changed while the other remains unchanged relative to engine (e.g., valve) timing, the minimum volume positions of the crankshafts change relative to their original minimum volume positions. If, for example, the phase of a first crankshaft is advanced 20 degrees relative to the opposing second crankshaft, the position of minimum cylinder volume will occur at 10 degrees after TDC for the first crankshaft and 10 degrees before TDC for the second. Moreover, the advanced first crankshaft will be moving away from its physical TDC position as the retarded second crankshaft is moving toward its TDC position when the cylinder volume is at a minimum. If, however, it is desirable for the intake and exhaust valves to continue to operate at their original timing relative to the minimum combustion chamber volume (i.e., the “virtual TDC”), then the camshaft (or “cam”) timing must also be changed to accommodate the change in crankshaft phase angle. More specifically, in the example above the camshaft would need to be retarded by 10 degrees relative to the advanced first crankshaft to maintain the same valve timing that existed before the phase angle of the first advanced crankshaft was changed.
As the foregoing example illustrates, if the phase of one crankshaft in an opposed-piston engine is changed (e.g., advanced) while the other remains unchanged relative to engine timing, then it will be necessary to change the timing of the associated camshaft(s) relative to the crankshafts to maintain constant cam timing relative to the conventional relationships of minimum and maximum combustion chamber volumes. Otherwise, simply incorporating phase change into a single crankshaft will likely lead to poorly optimized valve timing. In one aspect of the present technology, however, each crankshaft is associated with its own phase-changing device so that one crankshaft can be advanced while the other is retarded (by, e.g., an equivalent amount), thereby obviating the need to change camshaft timing relative to the crankshafts to maintain constant cam timing.
In one embodiment of the present technology, the compression ratio in an opposed-piston engine can be varied by changing the minimum distance between opposing pistons by means of two phasing devices (“phasers”)—one associated with each crankshaft. In this embodiment, the first phaser can change (e.g., advance) the first crankshaft, while the second phaser can change (e.g., retard) the second crankshaft. At light loads, for example, the crankshafts can be in phase or nearly in phase so that the minimum distance between the pistons would be relatively small (leading to higher compression ratios). As a result, the primary balance of the engine at light loads can be relatively good. Conversely, at higher loads, the crankshafts can be moved more out of phase to increase the minimum distance between the pistons and thereby reduce the compression ratio. One consequence of increasing the phase angle, however, is that the primary balance may be sacrificed to a degree. But because higher loading operation is typically used less frequently than low load operation, the corresponding increase in engine vibration may be acceptable for short periods of time.
In some embodiments, the engine in the foregoing example can operate at higher compression ratios under light loads due to relatively low operating temperatures and low air/fuel mixture densities just prior to ignition. Resistance to knock and auto ignition is also relatively high under these conditions. Moreover, the relatively high expansion ratio that results from the higher compression ratio can extract more work out of the expanding hot combustion products than the lower expansion ratio associated with a lower compression ratio. Conversely, at higher power levels the compression ratio can be reduced to avoid or at least reduce engine knock. Although this also reduces the expansion ratio, the higher combustion pressures at the start of the expansion stroke do not dissipate as quickly and are available to provide higher torque during the expansion stroke.
In one aspect of the present technology, the crankshaft that takes the power out of the engine is referred to as the “master crankshaft” and it leads the “slave crankshaft” in an opposed-piston engine. Fixed phase engines of this type can have the master crankshaft lead the slave crankshaft to obtain proper timing of the airflow ports in the side of the cylinder wall (e.g., having the exhaust port open first in two-stroke configurations) and to minimize or at least reduce the torque transfer from the slave crankshaft to the master crankshaft. In the above example, for instance, the master crankshaft would lead the slave crankshaft by 20 degrees when the slave crankshaft piston was at its top-most position in the cylinder (i.e., TDC). At this point, the pressure on the top of the slave crankshaft piston would be aligned with the connecting rod and, accordingly, unable to impart any torque or at least any significant torque to the slave crankshaft. Conversely, the pressure on the opposing piston would be acting against a connecting rod that had much more angularity and leverage relative to the master crankshaft and, as a result, could impart significant torque to the master crankshaft. In this way, the average torque transmitted between the crankshafts is significantly reduced, which can minimize both wear and friction in the power train components.
In the opposed-piston engines described in the present disclosure and in the patent applications incorporated herein by reference, the cylinder walls (i.e., the sleeve valves) move in a manner that is the same as or at least very similar to poppet valve motion in a traditional four-stroke reciprocating internal combustion engine. More specifically, the intake sleeve valve is retracted from the center portion of the engine to expose an inlet port to the internal cylinder volume while the two pistons are moving back toward their bottom position. When the pistons are at or near their bottom positions, the inlet sleeve valve is pushed back towards its seat as the pistons start moving toward each other compressing the intake charge. The valve seal does not allow the high pressure intake charge to leak out of the cylinder, and therefore allows for either a diesel or spark ignited combustion followed by expansion of the combustion products. When the expansion is nearly complete and the pistons are again near the bottom of their travel, the exhaust sleeve valve is opened. The exhaust sleeve valve remains open, or at least near open, while the pistons return toward each other and decrease the internal volume of the combustion chamber to drive the exhaust out of the combustion chamber via a corresponding exhaust port. The exhaust sleeve valve then closes as the combustion chamber approaches its minimum volume, and the cycle repeats.
Adapting the opposed-piston style engine described above to include the embodiments of dual crankshaft phasing described herein provides the opportunity to optimize, or at least improve, the relationship between leading crankshaft and inlet sleeve valve positions. For example, because the piston crown on the inlet side could potentially block some of the flow through the inlet sleeve valve when the piston is near its top TDC position for some engine configurations, it is desirable for the inlet sleeve valve to be on the master or leading crankshaft side of the opposed-piston engine. In this way, the piston will lead the inlet sleeve valve on opening and avoid blocking the inlet port. Conversely, it may also be desirable to position the exhaust sleeve valve on the slave or lagging crankshaft side because the exhaust side piston will thereby arrive at its maximum extension (i.e., its TDC position) after the combustion chamber is at minimum volume and the exhaust valve has closed. This can provide minimum or at least reduced exhaust flow disruption by the exhaust side piston crown approaching the exhaust port during the valve closing event.
The opposed-piston sleeve valve engines described herein can be constructed with either a single cam to operate both intake and exhaust sleeve valves, or with dual cams (one for each valve). The twin cam arrangement can be such that the camshafts maintain a fixed relationship between each other, or, alternatively, the camshafts can also be phased relative to each other. Accordingly, a number of different crankshaft/camshaft configurations are possible including, for example: (1) One camshaft, two crankshafts, and two phasers; with one phaser on one or the other crankshaft and the other phaser on the camshaft. (2) One camshaft, two crankshafts, and two phasers; with one phaser on each crankshaft so that they can both be phased (e.g., one advancing, one lagging) relative to the camshaft. (3) Two camshafts, two crankshafts, and two phasers; with one phaser on each crankshaft so that they both can be appropriately phased (e.g., one lagging and one leading) relative to the two camshafts. (4) Two camshafts, two crankshafts, and three phasers; with one phaser on one of the crankshafts (e.g., the master crankshaft) and the remaining two phasers on each of the two camshafts, respectively.
One way that intake valve timing can be used with the opposed-piston engines described herein can be referred to as Late Intake Valve Closing or “LIVC.” If the intake valve is left slightly open while the cylinder volume begins to decrease on the compression stroke, some of the intake charge may be pushed back into the inlet manifold. Although this may limit power out of the engine, it can have the positive effect of reducing the work required to draw the air (or the air/fuel mixture) across a throttle body upstream of the intake port. This characteristic can be useful for improving engine efficiencies at light loads. This valve timing arrangement can also result in reduced effective compression ratios and higher relative expansion ratios. Moreover, these effects can be combined with the crankshaft phasing compression ratio control systems and methods described above.
Late Exhaust Valve Closing (“LEVC”) can be used to draw a portion of exhaust gas from the exhaust port back into the combustion chamber at the start of the intake stroke. This technique can provide a simplified exhaust gas recirculation system to improve emissions control and fuel efficiency.
Another example of a crankshaft/camshaft phasing configuration in accordance with the present technology includes: One or two camshafts, two crankshafts, and one phaser. In this example, the single phaser can be mounted on the master crankshaft to cause it to lead the slave crankshaft at low compression ratios. At these compression ratios, the camshaft can be configured for conventional opening and closing timings. At high compression ratios, the valve timing relative to the master crankshaft will result in an LIVC intake event and a similar late exhaust valve closing (LEVC). As a result, the late intake valve closing will effectively reduce the compression ratio while maintaining a relatively longer expansion ratio for engine efficiency. Moreover, late exhaust valve timing can ensure a long expansion ratio and that some of the exhaust gas is pulled back into the combustion chamber before the intake valve starts to open.
Certain details are set forth in the following description and in
Many of the details, relative dimensions, angles and other features shown in the Figures are merely illustrative of particular embodiments of the technology. Accordingly, other embodiments can have other details, dimensions, angles and features without departing from the spirit or scope of the present invention. In addition, those of ordinary skill in the art will appreciate that further embodiments of the invention can be practiced without several of the details described below.
In the Figures, identical reference numbers identify identical, or at least generally similar, elements. To facilitate the discussion of any particular element, the most significant digit or digits of any reference number refers to the Figure in which that element is first introduced. For example, element 130 is first introduced and discussed with reference to
In operation, the pistons 102 and 104 reciprocate toward and away from each other in coaxially aligned cylinders formed by corresponding sleeve valves. More specifically, the left piston 102 reciprocates back and forth in a left or exhaust sleeve valve 114, while the right piston 104 reciprocates back and forth in a corresponding right or intake sleeve valve 116. As described in greater detail below, the sleeve valves 114, 116 can also reciprocate back and forth to open and close a corresponding inlet port 130 and a corresponding exhaust port 132, respectively, at appropriate times during the engine cycle.
In the illustrated embodiment, the left crankshaft 122 is operably coupled (e.g., synchronously coupled) to the right crankshaft 124 by a series of gears that synchronize or otherwise control piston motion. More specifically, in this embodiment the left crankshaft 122 is operably coupled to the right crankshaft 124 by a first camshaft gear 142a that operably engages the teeth on a second camshaft gear 142b. The camshaft gears 142 can fixedly coupled to corresponding central shafts 150a, b to drive one or more camshafts (not shown) for operation of the sleeve valves 114, 116. Various types of camshaft and/or valve actuation systems can be employed with the engine 100, including one or more of the positive control systems disclosed in U.S. Provisional Patent Application No. 61/498,481, filed Jun. 17, 2011, and entitled “POSITIVE CONTROL (DESMODROMIC) VALVE SYSTEMS FOR INTERNAL COMBUSTION ENGINES,” which is incorporated herein in its entirety by reference. The camshaft gears 142 can include twice as many gear teeth as the corresponding crankshaft gears 140, so that the camshafts turn at half engine speed as is typical for four stroke engine operation.
In the illustrated embodiment, the crankshafts 122 and 124 are phased so that the pistons 102 and 104 arrive at their top dead center (TDC) positions at the same time. Moreover, each of the crankshaft gears 140 is suitably meshed with the corresponding camshaft gear 142 to provide appropriate sleeve valve timing during engine operation. As described in greater detail below, however, the phasing of one or both of the crankshafts 122 and 124, and/or one or both of the camshafts 150 can be changed to alter a number of different operating parameters of the engine 100. For example, the crankshaft phasing and/or the valve phasing can be suitably changed to alter the compression ratio of the engine 100 as a function of load and/or other operating conditions.
In the illustrated embodiment, the pistons 302, 304 are at their TDC positions or “upper-most” positions on the exhaust stroke, and an exhaust sleeve valve 314 is nearing the closed position to seal off a corresponding exhaust port 332. In contrast, an intake sleeve valve 316 has been closed and sealing off an intake passage or port 330 that is in fluid communication with the combustion chamber for a substantial portion of the exhaust stroke. In this embodiment, the crankshafts 322, 324 are essentially “in phase,” meaning that the pistons 302 and 304 both arrive at their respective TDC positions at the same time, or at least at approximately the same time.
As described in greater detail below, in some embodiments of the present technology the compression ratio can be varied by changing the phases of the crankshafts 322, 324 relative to each other. For example, the phase of the master crankshaft (i.e., the crankshaft that imparts the higher torque loads to the engine output shaft), can be shifted so that it leads the slave crankshaft (i.e., the crankshaft that transfers less torque to the output shaft), thereby reducing the torque transferred from one crankshaft to the other during engine operation. Reducing the torque transfer in this manner can minimize or at least reduce the power transmission losses as well as torque peaks that may need to be dampened to prevent resonance in the crankshaft connections.
In the illustrated embodiment, however, the engine 400 includes a first phaser (not shown) associated with the first crankshaft 422 and a second phaser (also not shown) associated with the second crankshaft 424 to adjust the phasing (e.g., by retarding and advancing, respectively) of the respective crankshafts. For example, the second crankshaft 424 can be defined as the master crankshaft and is advanced from its TDC position by an angle A. The second crankshaft 422 can be defined as the slave crankshaft 422 and is retarded from its TDC position by an amount equal to, or at least approximately equal to, the angle A. As a result, the master crankshaft 424 leads the slave crankshaft 422 by a total phase angle of 2×A (e.g., if A is 30 degrees, then the master crankshaft 424 leads the slave crankshaft 422 by 60 degrees). In the foregoing example, the slave crankshaft 422 is associated with the exhaust valve 414, while the master crankshaft 424 is associated with the intake sleeve valve 416. In other embodiments of the present technology, however, the slave crankshaft 422 can be associated with the intake valve 416 and the master crankshaft 424 can be associated with the exhaust valve 414. Moreover, in many embodiments the valves 414 and 416 (or, more specifically, the associated camshaft or camshafts) can be phased independently and/or differently than the crankshafts 422 and 424.
Accordingly, the engine 400 includes a first phaser associated with the first crankshaft 422 and a second phaser associated with the second crankshaft 424 to individually adjust the phasing of the two crankshafts. In contrast, if only one phaser were included for adjusting the phase of a single crankshaft while the other crankshaft phase remained unchanged, then the valve timing would also have to be adjusted to maintain constant valve timing. For example, if only the master crankshaft was adjusted by, for example, being advanced 20 degrees relative to the slave crankshaft to reduce the compression ratio, then the minimum combustion chamber volume (e.g., the “effective TDC” for the engine cycle) would occur when the slave crankshaft was at 10 degrees before the top of its stroke and the master crankshaft was at 10 degrees after the top of its stroke. Accordingly, if the intake valve were expected to start opening at the effective TDC, then the timing of the intake valve would have to be changed relative to both crankshafts. More specifically, the timing of the intake valve (and, for that matter, the exhaust valve) would have to be advanced by 10 degrees to maintain the same valve timing that occurred prior to advancing the master crankshaft by 20 degrees.
In contrast to a system in which only a single crankshaft phase is changed, by utilizing a phaser with each crankshaft as disclosed herein, the phaser associated with the master crankshaft can advance the master crankshaft 10 degrees ahead of the intake cam, and the phaser associated with the slave crankshaft can phase the slave crankshaft to lag the exhaust cam by 10 degrees. As a result, the timing of the intake cam and the exhaust cam would stay at a fixed relationship relative to each other and to the minimum chamber volume. By way of example, referring to the engine 100 described above with reference to
Referring next to
In
As shown in
As shown in
As shown in
The foregoing discussion illustrates one embodiment of crankshaft phasing to vary compression ratio in opposed-piston engines without having to alter valve timing. In other embodiments, however, valve timing can also be adjusted with compression ratio to provide desirable characteristics by implementing one or more phasers to control operation of one or more camshafts. Moreover, although
Turning next to
Increasing the phase angle between the crankshafts will accordingly decrease the effective compression ratio, as shown by the third graph 500c of
As illustrated by
In the illustrated embodiment, the phaser 700a includes a phasing head 762a that is operably coupled to a distal end of a crankshaft (e.g., the first or slave crankshaft 322 described above with reference to
To operate the phaser 700a, an actuator 764 is moved in a desired direction (e.g., in a forward direction F) to move the valve body 765 in the same direction. When the valve body 765 moves forward in the direction F a sufficient amount, the oil supply passage 767 aligns with the first oil passage 770. Oil from the oil supply 766 then flows through the first oil passage 770 and into the front side volume 774, driving the phasing head 762a in the direction F. As the phasing head 762a moves from right to left, oil in the back side volume 778 escapes via the second oil passage 772, which instead of being blocked by the valve body 765 is now in fluid communication with the first outflow passage 776a.
In the illustrated embodiment, an adjacent portion of a crankcase 768 and the valve body 765 and do not rotate with the crankshaft 322. However, the phasing head 762a and the crankshaft gear 740a do rotate with the crankshaft 322. As the phasing head 762a moves from right to left in the direction F, the relative motion between the left hand helical gear teeth 780 on the internal bore of the phasing head 762a and the engaging teeth 734 on the crankshaft 322 causes the crankshaft 322 to rotate relative to the phasing head 762a. Moreover, the relative motion between the right hand helical gear teeth 782 on the outer surface of the phasing head 762a and the engaging teeth 784 on the internal bore of the crankshaft gear 740a causes the crankshaft gear 740a to rotate in the opposite direction relative to the phasing head 762a and, accordingly, the crankshaft 322. As a result, movement of the phasing head 762a causes the operational angle between the crankshaft gear 740a and the crankshaft 322 to change in proportion to the movement of the phasing head 762a.
To reduce the phase angle in this example, the actuator 764 can be moved in the direction opposite to the direction F to slide the valve body 765 from left to right relative to the phasing head 762a. Doing so aligns the oil supply passage 767 with the second oil passage 772 in the phasing head 762, which directs pressurized oil into the back side volume 778. The pressurized oil flowing into this volume drives the phasing head 762 from left to right in the direction opposite to the direction F, thereby reducing the phase angle between the crankshaft gear 740a and the crankshaft 322. As the phasing head 762a moves from left to right, the oil in the front side volume 774 escapes through the phasing head 762a via the first passage 770 which is now aligned with the second outflow passage 776b. In the embodiment described above with reference to
In the illustrated embodiment, however, a crankshaft drive member, such as a toothed pulley 740b is fixedly attached to a distal end of a phasing head 762b by one or more fasteners (e.g. bolts) 786. Accordingly, the pulley 740b moves with the phasing head 762b as the phasing head 762b moves back and forth horizontally relative to the crankcase 768. Moreover, in this embodiment the pulley 740b is operably coupled to, e.g., a corresponding camshaft (not shown) by means of a toothed belt 788. To accommodate the horizontal movement of the pulley 740b, belt guides 790a and 790b are positioned on opposite sides of the belt 788 to restrict lateral movement of the belt as the pulley 740b moves horizontally. In the foregoing manner, movement of the phasing head 762b in the direction F can functionally increase (or decrease) the phase angle between the crankshaft 322 and the corresponding valve/camshaft arrangement, while movement of the phasing head 762b in the opposite direction can reduce (or increase) the phase angle between the crankshaft 322 and the camshaft/valve.
As mentioned above, the various systems and methods described above for changing the compression ratio and/or the valve timing in opposed-piston engines can be implemented using a wide variety of different phasers.
The various embodiments and aspects of the invention described above can incorporate or otherwise employ or include the systems, functions, components, methods, concepts and/or other features disclosed in the various references incorporated herein by reference to provide yet further implementations of the invention.
The teachings of the invention provided herein can be applied to other systems, not necessarily the systems described above. The elements and functions of the various examples described above can be combined to provide further implementations of the invention. Some alternative implementations of the invention may include not only additional elements to those implementations noted above, but also may include fewer elements. Further, any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the various embodiments of the invention. Further, while various advantages associated with certain embodiments of the invention have been described above in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited, except as by the appended claims.
The present application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/511,521, filed Jul. 25, 2011, and entitled “VARIABLE COMPRESSION RATIO SYSTEMS FOR OPPOSED-PISTON AND OTHER INTERNAL COMBUSTION ENGINES, AND RELATED METHODS OF MANUFACTURE AND USE;” U.S. Provisional Patent Application No. 61/501,677, filed Jun. 27, 2011, and entitled “VARIABLE COMPRESSION RATIO SYSTEMS FOR OPPOSED-PISTON AND OTHER INTERNAL COMBUSTION ENGINES, AND RELATED METHODS OF MANUFACTURE AND USE;” and U.S. Provisional Patent Application No. 61/391,530, filed Oct. 8, 2010, and entitled “CONTROL OF INTERNAL COMBUSTION ENGINE COMBUSTION CONDITIONS AND EXHAUST EMISSIONS;” each of which is incorporated herein in its entirety by reference. U.S. Provisional Patent Application No. 61/391,476, filed Oct. 8, 2010, and entitled “INTERNAL COMBUSTION ENGINE VALVE ACTUATION AND ADJUSTABLE LIFT AND TIMING;” U.S. Provisional Patent Application No. 61/391,487, filed Oct. 8, 2010, and entitled “DIRECT INJECTION TECHNIQUES AND TANK ARCHITECTURES FOR INTERNAL COMBUSTION ENGINES USING PRESSURIZED FUELS;” U.S. Provisional Patent Application No. 61/391,502, filed Oct. 8, 2010, and entitled “CONTROL OF COMBUSTION MIXTURES AND VARIABILITY THEREOF WITH ENGINE LOAD;” U.S. Provisional Patent Application No. 61/391,519, filed Oct. 8, 2010, and entitled “IMPROVED INTERNAL COMBUSTION ENGINE VALVE SEALING;” U.S. Provisional Patent Application No. 61/391,525, filed Oct. 8, 2010, and entitled PISTON SLEEVE VALVE,” U.S. Provisional Patent Application No. 61/498,481, filed Jun. 17, 2011, and entitled “POSITIVE CONTROL (DESMODROMIC) VALVE SYSTEMS FOR INTERNAL COMBUSTION ENGINES;” U.S. Provisional Patent Application No. 61/501,462, filed Jun. 27, 2011, and entitled “SINGLE PISTON SLEEVE VALVE WITH OPTIONAL VARIABLE COMPRESSION RATIO;” U.S. Provisional Patent Application No. 61/501,594, filed Jun. 27, 2011, entitled “ENHANCED EFFICIENCY AND NOX CONTROL BY MULTI-VARIABLE CONTROL OF ENGINE OPERATION;” and U.S. Provisional Patent Application No. 61/501,654, filed Jun. 27, 2011, and entitled “HIGH EFFICIENCY INTERNAL COMBUSTION ENGINE;” are incorporated herein by reference in their entireties. U.S. Non-provisional patent application Ser. No. 13/271,096, filed Oct. 11, 2011, and entitled “ENGINE COMBUSTION CONDITION AND EMISSION CONTROLS;” U.S. Non-provisional patent application Ser. No. 12/478,622, filed Jun. 4, 2009, and entitled “INTERNAL COMBUSTION ENGINE;” U.S. Non-provisional patent application Ser. No. 12/624,276, filed Nov. 23, 2009, and entitled “INTERNAL COMBUSTION ENGINE WITH OPTIMAL BORE-TO-STROKE RATIO,” U.S. Non-provisional patent application Ser. No. 12/710,248, filed Feb. 22, 2010, and entitled “SLEEVE VALVE ASSEMBLY;” U.S. Non-provisional patent application Ser. No. 12/720,457, filed Mar. 9, 2010, and entitled “MULTI-MODE HIGH EFFICIENCY INTERNAL COMBUSTION ENGINE;” and U.S. Non-provisional patent application Ser. No. 12/860,061, filed Aug. 20, 2010, and entitled “HIGH SWIRL ENGINE;” are also incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2858816 | Prentice | Nov 1958 | A |
4856463 | Johnston | Aug 1989 | A |
4876992 | Sobotowski | Oct 1989 | A |
6039011 | Agalarov et al. | Mar 2000 | A |
7559298 | Cleeves | Jul 2009 | B2 |
20080115771 | Elsbett | May 2008 | A1 |
20090107139 | Berger | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
19813398 | Sep 1999 | DE |
746820 | Mar 1956 | GB |
WO-2007010186 | Jan 2007 | WO |
Entry |
---|
International Search Report and Written Opinion for corresponding PCT application No. PCT/US2011/055486. |
Number | Date | Country | |
---|---|---|---|
20120085302 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
61511521 | Jul 2011 | US | |
61501677 | Jun 2011 | US | |
61391530 | Oct 2010 | US |