The present invention generally relates to controls for hydraulics.
A hydraulic drive system can be a drive system that uses pressurized hydraulic fluid to drive hydraulic machinery. A hydraulic drive system includes of three parts: a generator, such as a hydraulic pump; plumbing; and an actuating device, such as hydraulic motor or cylinder, to drive the machinery. The hydraulic system is often used by machinery, such as an industrial tractor. The machinery may include an interface that receives an attachment tool. For example, an industrial tractor may have an arm with an interface for receiving attachment tools, such as drills, shovels, mulching heads, snow blowers, mowers and jackhammers.
A system is provided in which a control module may include a user interface configurable to receive input and display hydraulic control settings, wherein the hydraulic control settings include at least a hydraulic pressure setting and a hydraulic flow setting. The control module may also include a processor executable to convert the hydraulic control settings to corresponding electrical currents, wherein the electrical currents correspond to at least the hydraulic pressure setting and the hydraulic flow setting. The control module may also include one or more communication interfaces coupled to the processor configurable to output the electrical currents to the hydraulic circuit to control hydraulics that operate one or more attachments of a machine.
The hydraulic circuit may control the hydraulics by communicating with a pressure control solenoid and a flow control solenoid. The pressure control solenoid may control a pressure limiting valve manifold of the hydraulics. The flow control solenoid and the pressure limiting valve manifold may control a hydraulic pump of the hydraulics.
Described herein is a system that provides a hydraulic flow and pressure control solution that automates adjustments of hydraulic circuits for machines, such as automating adjustments of attachment hydraulic circuits for industrial tractor attachments. The system may include a control module that may include a user interface that provides fields for adjusting the hydraulic circuit without needing make manual adjustments. By making adjustments via a user interface, such as a graphical user interface (GUI), there may be a significant reduction in the time required to change attachments, which in turn increases the productivity of the machine. Increased machine productivity has significant marketability. Additionally, the attachment circuit can be adjusted to accommodate a wide variety of attachments, further increasing a machine's marketability.
The system may include modules and sub-modules that provide functions associated with automation of hydraulic circuit adjustments. Blocks representing functions or modules depicted in the drawings may be implemented in physically separate devices or a single physical device. Such device(s) may include hardware, software, or firmware, for example. Such device(s) may include communication interfaces for communicating with each other and devices external to the system. Such communications may occur via wired or wireless communication paths. Information received from such communications may be stored, processed, and coordinated by many of the modules of the system. Given this, the modules may have corresponding processors and memory devices that may be communicatively coupled with each other and the corresponding communication interfaces.
With reference to
At 106, the user interface receives a control setting inputted from the user. The inputted control setting may include a new hydraulic pressure, new hydraulic flow, and/or new ramp control setting. The inputted control setting(s) may be entered when switching between attachments of a mechanism, such as attachments controlled by hydraulics of a tractor. The user may also enter a control setting if the user interface is outputting an insufficient or excessive attachment operation speed, such as displaying insufficient or excessive amount of RPM.
At 108, the control module compares the inputted control setting(s) to corresponding stored control setting(s). The stored control setting(s) may be stored in a memory device included and/or associated with the control module. Included in or associated with the control module, a processor communicatively coupled to the memory device, such as central processing unit, may execute the comparison and other functions performed by the control module. Where the inputted control setting does not match the stored control setting, the control module may provide a warning notification to the user at 110. Where the inputted control setting does match the stored setting, the settings outputted will remain the same at 104.
At 110, the user interface may provide a warning to the user of potential risks to the attachment associated with the new inputted setting(s). A warning may be provided to the user to assist in preventing the user from inadvertently entering a control setting that could damage the attachment.
At 112, the user may be provided, via the user interface, the option to confirm the control setting change. If the user does not confirm the new control setting(s), the method returns to 104 where user interface outputs the stored control setting(s). If the user confirms the inputted control setting(s), the inputted control setting(s) may be stored in the memory device, replacing the previously stored setting(s). The stored setting(s) may be the settings used by the control module to control the hydraulic circuit.
At 114, the control module and/or an expansion module converts the control setting(s) to one or more electrical signals for communication to electromechanical components of the mechanisms associated with the hydraulic circuit, such as solenoid valves that can convert the electrical signal(s) into mechanical signal(s).
In one example of the system, the control module may communicate a control setting to the expansion module. The expansion module may convert the control setting, represented by a digital signal to an analog electric signal. Also, the flow setting represented by binary code may be converted to an electrical current that corresponds to the flow setting. The corresponding electrical current may be used to manipulate a flow control solenoid on the hydraulic pump. Similarly, a pressure setting may be converted to an electrical current that corresponds to the pressure setting. The electrical current corresponding to the pressure setting may be used to manipulate a pressure control solenoid valve on a pressure limiting valve manifold of a hydraulic system.
Further, the current control setting(s) may be increased or decreased over time based on the ramp setting. Upon converting the setting(s) to the corresponding electrical signal(s), the user interface may output the new setting(s), such as the new setting(s) for the current hydraulic pressure and hydraulic flow.
The control module 202 may include a GUI, which may be attached to a structure inside an industrial tractor cabin. The GUI may be mounted in the tractor cabin at an accessible location to an operator of the tractor. A computer program may be stored in a memory device included in or associated with the control module. The control module may include a data communication interface communicatively coupled to a source of the computer program. The interface may receive the computer program or associated data via a wired or wireless medium. Alternatively or additionally, the computer program, or at least part of the program, may be embedded in a circuit of the control module. The user interface associated with the control module may facilitate modifying the computer program.
The control module 202 may be programmed to output, via a user interface, indications of current hydraulic pressure and hydraulic flow settings. Also, the output to the user may include an attachment operation attribute, such as a rotation speed. In such an example, a tachometer 216 may be communicatively coupled to the control module. The computer program may provide logic to control electronic displacement associated with the hydraulic pump and proportional electronic displacement associated with the relief valve in a hydraulic pressure limiting valve manifold. Controlling such displacement may correspond to regulating hydraulic flow or hydraulic pressure adjustment ranges. Control of electronic displacement associated with the hydraulic pump allows the control module to manipulate hydraulic flow. The electronic displacement control may be, may include, or may be associated with a solenoid 210, which may manipulate hydraulic flow based on an electrical current provided to the solenoid by the expansion module 204. The proportional relief valve may also be, include, or be associated with a solenoid 206, which may manipulate hydraulic pressure based on an electrical current provided to the solenoid by the expansion module 204.
Sensor feedback system 214 may provide feedback to the control module and such feedback may be indicated by the GUI, for example. The feedback may also facilitate the control of the hydraulic circuit. Additionally or alternatively, a computer program may calibrated by the hydraulic circuit and its parts by mechanical and/or electrical activation. Also, as the mechanical and electrical components wear, calibration setting(s) may be adjusted so that hydraulic flow and hydraulic pressure can be maintained at a determined safe level. Sensor feedback 214, such as a dedicated flow meter and/or pressure transducer can close a control loop of the system and provide for possible enhancements to the performance of the attachment via closed loop regulation of hydraulic flow and hydraulic pressure. The sensor feedback 214 allows the control module to monitor hydraulic pressure, hydraulic flow, and ramp rate. Where the measured values do not match the control settings, the control module can adjust the corresponding electrical current(s) to account for the disparity.
Expansion module 204 may include hardware, software, and/or firmware to convert the control settings to corresponding electrical current signals. Wiring harnesses may be included in the expansion module that communicatively couples the expansion module to an electronic displacement control module of the hydraulic pump 212 and an electronic displacement control module of the proportional relief valve of the hydraulic pressure limiting valve manifold 208. Additionally or alternatively, the wiring harnesses may be replaced with communicatively coupled wireless transceivers.
The maximum flow of the hydraulic circuit may be controlled by regulating a pump flow control signal at a respective control signal module 314 coupled to the flow control solenoid module 316 associated with the hydraulic pump module 318. The user may select the desired maximum flow by adjusting the pump flow input at a respective input module 306 of the control module 202. The control module 202, via a user interface, may output a flow setting warning for display to a user depending on comparisons performed at a respective module 308. The module 308 may perform the operation at 108 in
A maximum pressure of the hydraulic circuit may be controlled at a pump pressure control signal module 328, where the module 328 may receive instructions from the control module 202 to communicate with the pressure control solenoid module 330. Where the solenoid module 330 may be connect with the proportional relief valve of hydraulic pressure limiting valve manifold module 332. The hydraulic pressure limiting manifold module 332 is coupled with the attachment hydrostatic hydraulic circuit to regulate hydraulic pressure. The user may select the desired maximum operating pressure by adjusting pump pressure at a respect input module 320 of the control module 202. The control module 202 may display a pressure set warning to the user via a warning module 322. Where the user confirms the new pump pressure input via a respective module 320, the pump pressure input may be stored at a pressure value stored module 324. If the pump enabled module 302 indicates that the hydraulic pump module 318 is enabled, pump pressure conversion module 326 converts the pressure value stored and/or coordinated at respective module 324 into the corresponding pump pressure control signal regulated at a respective module 328. The pump pressure control signal module 328 may output a signal that can manipulate the pressure control solenoid module 330 that can be connected to the proportional relief solenoid of the hydraulic pressure limiting valve manifold module 332. The proportional relief solenoid varies the control pressure sent to the hydraulic pump module 318, limiting the maximum pressure accordingly. The maximum pressure can be adjusted to any flow setting in an operable range of the pressure control solenoid module 330 of the proportional relief valve in the hydraulic pressure limiting valve manifold module 332.
In
Where the user selects “adjust flow” in
Where the user selects “Attachment Pump Flow FP” in
Where the user selects “adjust pressure” in
Where the user selects “Attachment Pump Pressure FP” shown in
In one example, the user may select presets and/or set profiles based on the attachment being used. Such presets or profiles may be loaded to the control module or to a corresponding sub-module, such as the modules depicted in
While particular elements, embodiments, and applications of the present invention have been shown and described, it is understood that the invention is not limited thereto because modifications may be made by those skilled in the art, particularly in light of the foregoing teaching. It is therefore contemplated by the appended claims to cover such modifications and incorporate those features which come within the spirit and scope of the invention.