This application claims the benefit of priority of Taiwan Application No. 101130231, filed Aug. 21, 2012, which is incorporated by reference herein in their entirety.
I. Field of the Invention
The present invention relates to a variable coupled inductor and, in particular, to a variable coupled inductor can improve efficiency in both light-load and heavy-load situations.
II. Description of the Prior Art
A coupled inductor has been developed for a period of time; however, it is not often used in the circuit board. As a more powerful microprocessor needs a high current in a small circuit board, a variable coupled inductor has been gradually used in the circuit board. A variable coupled inductor can be used to reduce the total space of the circuit board consumed by traditional coupled inductors. Currently, a coupled inductor can reduce the ripple current apparently, wherein a smaller capacitor can be used to save the space of the circuit board. As the DC resistance (direct current resistance, DCR) of the coupled inductor is low, efficiency is better in a heavy-load situation. However, as the flux generated by each of the dual conducting wires will be cancelled each other when the dual conducting wires are coupled, the inductance becomes low and the efficiency becomes worse in a light-load situation.
One objective of present invention is to provide a variable coupled inductor that can increase the efficiency in both heavy-load and light-load situations to solve the above-mentioned problem.
In one embodiment, a variable coupled inductor is provided, wherein variable coupled inductor comprises a first core comprising a first protrusion, a second protrusion, a third protrusion, a first conducting-wire groove and a second conducting-wire groove, wherein the second protrusion is disposed between the first protrusion and the third protrusion, the first conducting-wire groove is located between the first protrusion and the second protrusion, and the second conducting-wire groove is located between the second protrusion and the third protrusion; a first conducting wire disposed in the first conducting-wire groove; a second conducting wire disposed in the second conducting-wire groove; a second core disposed over the first core, wherein a first gap is formed between the first protrusion and the second core, a second gap is formed between the second protrusion and the second core and a third gap is formed between the third protrusion and the second core; and a magnetic structure disposed between the second protrusion and the second core, wherein the magnetic structure is symmetric with respect to the central line of the second protrusion.
The present invention proposes that the magnetic structure is disposed between the second projection in the middle of the first core and the second core, wherein the magnetic structure is symmetric with respect to the central line CL of the second protrusion 102. Therefore, the initial-inductance of the variable coupled inductor can be enhanced and light-load efficiency can be improved by means of the magnetic structure.
In one embodiment, the material of the variable coupled inductor of the present invention can be a ferrite material to achieve a high-saturation current, and copper sheet is used as an electrode to reduce the DC resistance, so that the efficiency in heavy-load is improved.
The foregoing aspects and many of the accompanying advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein:
Please refer to
As the second protrusion 102 is located in the middle portion of the first core 10 and the magnetic structure 16 is disposed between the second protrusion 102 and the second core 14, the magnetic structure 16 is located in the middle portion of the variable coupled inductor 1 after the variable coupled inductor 1 is fabricated. Furthermore, two ends of the magnetic structure 16 are respectively in full contact with the first core 10 and the second core 14. In this embodiment, magnetic structure 16 is, but not limit to, in a long-strip shape. In this embodiment, the material of the first core 10, the second core 14 and the magnetic structure 16 can be iron powder, ferrite, permanent magnet or other magnetic material. Because the first core 10 and the magnetic structure 16 are integrally formed, the material of the first core 10 is the same as that of the magnetic structure 16. In another embodiment, the magnetic structure 16 and the second core 14 are also formed integrally, in such case, the material of the second core 14 is the same as that of the magnetic structure 16. In another embodiment, the magnetic structure 16 can be also an independent device, in such case, the material of the magnetic structure 16 and the material of the first core 10, or the second core 14, can be the same or different. It should be noted that if the magnetic structure 16 is not in full contact with the first core 10 and the second core 14 due to manufacturing tolerance, magnetic glue can be filled in the gap (e.g., insulating resin and magnetic adhesive made of magnetic powder).
In this embodiment, the vertical distance D1 of the first gap G1 is smaller that the vertical distance D2 of the second gap G2. The first gap G1 can be an air gap, a magnetic gap and a non-magnetic gap, and the second gap G2 can be also an air gap, a magnetic gap and a non-magnetic gap. The first gap G1 and the second gap G2 can be designed according to the practical application. It should be noted that the air gap is a gap filled with air for isolating and it does not contain other material; because air has a larger magnetic reluctance, it can increase degree of saturation of the inductor. The magnetic gap is formed by filling the magnetic material in the gap to reduce the magnetic reluctance and to further increase the inductance; non-magnetic gap is formed by filling the non-magnetic material, except the air, in the gap to enhance the function that the air gap can not achieve, such as by filling a bonding glue to combine different magnetic materials. Preferably, the first gap G1 can be a non-magnetic gap, and the second gap G2 can be an air gap or a non-magnetic gap.
In this embodiment, the variable coupled inductor 1 has a total high H after the variable coupled inductor 1 is fabricated; the vertical distance D1 of the first gap G1 can be in a range between 0.0073H and 0.0492H and the vertical distance D2 of the second gap G2 can be in a range between 0.0196H and 0.1720H. Furthermore, as illustrated in
In this embodiment, the magnetic structure 16 has a first magnetic permeability μ1, the first gap G1 has a second magnetic permeability μ2, and the second gap G2 has a third magnetic permeability μ3, wherein the relationship between the first magnetic permeability μ1, the second magnetic permeability μ2 and the third magnetic permeability μ3 is μ1>μ2≧μ3. In general, magnetic permeability is inversely proportional to the magnetic reluctance (i.e. the greater the magnetic permeability, the smaller the magnetic reluctance). The first magnetic permeability μ1 of the magnetic structure 16 is larger than each of the second magnetic permeability μ2 of the first gap G1 and the third magnetic permeability μ3 of the second gap G2, wherein the first gap G1 and the second gap G2 are located in two sides of the magnetic structure 16, respectively. In other words, the magnetic reluctance of the magnetic structure 16 is smaller than that of the first gap G1; and the magnetic reluctance of the magnetic structure 16 is smaller than that of the second gap G2.
For example, the magnetic structure 16 can be manufactured by LTCC (low temperature co-fired ceramic, LTCC) printing; in such case, the first magnetic permeability μ1 of the magnetic structure 16 is about between 50 and 200, and each of the second magnetic permeability μ2 of the first gap G1 and the third magnetic permeability μ3 of the second gap G2 is about 1. Because the first magnetic permeability μ1 of the magnetic structure 16 is larger than each of the second magnetic permeability μ2 of the first gap G1 and the third magnetic permeability μ3 of the second gap G2, the initial flux will passes through the magnetic structure 16 when a current passes through variable coupled inductor 1. It should be noted that the first magnetic permeability μ1 of the magnetic structure 16 is larger than each of the second magnetic permeability μ2 of the first gap G1 and the third magnetic permeability μ3 of the second gap G2 to achieve the effect of the variable inductance coupling regardless of the material of the first core 10 and the second core 14 (i.e. regardless of the magnetic permeability of the first core 10 and the second core 14).
Furthermore, the first core 10 has a fourth magnetic permeability μ4, and the second core 14 has a fifth magnetic permeability μ5. For example, in another embodiment, when the magnetic structure 16, the first core 10 and the second core 14 are all made of ferrite material, the first magnetic permeability μ1, the fourth magnetic permeability μ4 and the fifth magnetic permeability μ5 are the same. When the material of the magnetic structure 16 is ferrite material, the initial-inductance characteristic of the variable coupled inductor 1 can be enhanced and the efficiency of the variable coupled inductor 1 in a light-load situation can be improved as well. It should be noted that the relationship between the first magnetic permeability μ1, the second magnetic permeability μ2, the third magnetic permeability μ3, the fourth magnetic permeability μ4 and the fifth magnetic permeability μ5 is: μ1≧μ4>μ2≧μ3 and μ1≧μ5>μ2≧μ3, regardless of the material of the magnetic structure 16, the first core 10 and the second core 14.
In summary, the present invention proposes that the magnetic structure 16 having a high magnetic permeability (i.e. the first magnetic permeability μ1 described above) is disposed between the second projection 102 in the middle of the first core 10 and the second core 14, and the magnetic structure 16 is symmetric with respect to the central line CL of the second protrusion 102. Therefore, by using the magnetic structure 16, the initial-inductance of the variable coupled inductor 1 can be enhanced and efficiency can be improved in a light-load situation.
Please refer to
In this embodiment, the magnetic structure 16 has a first surface area A1, and the second protrusion 102 has a second surface area A2. As illustrated in
It should be noted that the first current I1 can be defined as follows. A third inductance L3 is measured when the first current I1 plus 1 amp is applied and 5.5 nH≧L1-L3≧4.5 nH. For example, the first current I1 of this embodiment is 10A, and the corresponding first inductance L1 is 159.35 nH; the first current I1 plus 1 equals 11A, and the corresponding third inductance L3 is 154.38 nH, wherein L1-L3=4.97 nH is obtained and 5.5 nH≧4.97 nH≧4.5 nH is satisfied. As defined above, when the current passes through the variable coupled inductor 1 in accordance with present invention, the corresponding current (i.e. the first current I1 described above) at point A in
Please refer to
Please refer to
Please refer to
In other words, the number of the segments and appearance of the magnetic structure can be designed in many ways as long as the same surface area is maintained. The magnetic structure is symmetric with respect to the central line CL of the second protrusion 102 regardless of the number of the segments and appearance of the magnetic structure
In conclusion, the present invention proposes that the magnetic structure is disposed between the second projection 102 in the middle of the first core 10 and the second core, and the magnetic structure is symmetric with respect to the central line CL of the second protrusion 102. Therefore, the initial-inductance of the variable coupled inductor can be enhanced and light-load efficiency can be improved by means of the magnetic structure. Furthermore, the material of the variable coupled inductor of the present invention can be a ferrite material to achieve a high-saturation current, and copper sheet is used as an electrode to reduce the DC resistance, so efficiency is better in heavy-load. In other words, the variable coupled inductor of the present invention can improve efficiency in both light-load and heavy-load situations.
The above disclosure is related to the detailed technical contents and inventive features thereof. People skilled in this field may proceed with a variety of modifications and replacements based on the disclosures and suggestions of the invention as described without departing from the characteristics thereof. Nevertheless, although such modifications and replacements are not fully disclosed in the above descriptions, they have substantially been covered in the following claims as appended.
Number | Date | Country | Kind |
---|---|---|---|
101130231 A | Aug 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4728918 | Neusser et al. | Mar 1988 | A |
5440225 | Kojima | Aug 1995 | A |
5847518 | Ishiwaki | Dec 1998 | A |
6510109 | Ohmori | Jan 2003 | B2 |
6774758 | Gokhale et al. | Aug 2004 | B2 |
6965290 | Gokhale et al. | Nov 2005 | B2 |
7772955 | Li et al. | Aug 2010 | B1 |
20050151614 | Dadafshar | Jul 2005 | A1 |
20050258927 | Lu | Nov 2005 | A1 |
20080303624 | Yamada et al. | Dec 2008 | A1 |
20100085138 | Vail | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20140055226 A1 | Feb 2014 | US |