The disclosure of Japanese Patent Application No. 2003-055605 filed on Mar. 3, 2003, including the specification, drawings and abstract are incorporated herein by reference in its entirety.
1. Field of Invention
The invention relates to a variable cycle engine that is switchable between a 4-cycle mode and a 2-cycle mode, and more particularly to a technology that is capable of switching the operation of the variable cycle engine smoothly between the 4-cycle mode and the 2-cycle mode.
2. Description of Related Art
An internal combustion engine having two operation modes, that is, a spark ignition mode where the fuel is combusted with spark ignition, and a self-ignition mode where the fuel is combusted with compressed self-ignition has been known as being disclosed in JP-A-11-280504 and other publications as listed below;
In the internal combustion engine of the aforementioned type, however, there has been a difficulty in a smooth switching of the mode between the spark ignition mode operation and the self-ignition mode operation.
It is an object of the invention to provide an internal combustion engine having a plurality of operation modes which allows a smooth switching of the operation mode.
In an engine with variable cycle switchable between a 4-cycle mode and a 2-cycle mode, a predetermined process is executed for a smooth switching of the operation mode. The engine is provided with a plurality of combustion chambers each including a cylinder, a piston, an intake valve and an exhaust valve provided in the cylinder, a fuel injection unit for injecting fuel into the cylinder, and an ignition unit for ignition of the fuel within the cylinder, and a control unit that controls an operation of the intake valve, the exhaust valve, the fuel injection unit, and the ignition unit.
The control unit of the engine executes a plurality of operation modes in accordance with a combination of one of the 4-cycle mode and the 2-cycle mode with one of a combustion ignition control and a self ignition priority control. The combustion ignition control performs an ignition with the ignition unit at a predetermined timing before top dead center of the piston, and the self ignition priority control performs one of the ignition without the ignition unit and the ignition with the ignition unit at a timing delayed from the predetermined timing under the combustion ignition control.
Preferably the control unit performs at least one transition cycle upon switching of an operation mode of the engine between a first operation mode and a second operation mode. The first operation mode is performed before the switching, the second operation mode is performed after the switching, and the transition cycle performs an operation of a same cycle type as the second operation mode under the combustion ignition control. It is also preferable that the transition cycle is different from the second operation mode in at least one of an intake valve opening timing, an intake valve closing timing, an exhaust valve opening timing, an exhaust valve closing timing, an injection quantity of the fuel, and an injection timing of the fuel.
Preferably the combustion ignition control is executed in one of the combustion chambers where a single cycle of the transition cycle is terminated until each of all the combustion chambers terminates a single cycle of the transition cycle irrespective of the second operation mode under one of the combustion ignition control and self ignition priority control. According to the embodiment, the transition cycle is performed between operations before and after the mode switching. This makes it possible to switch the operation mode smoothly without causing misfire or torque change.
In the case where the first operation mode is the 2-cycle mode, the second operation mode is the 4-cycle mode under the combustion ignition control, and each of the transition cycle and the second operation mode has an overlap period at which both the intake valve and the exhaust valve are opened, it is preferable to delay the intake valve opening timing in the transition cycle from that in the second operation mode.
In the engine operation in the 2-cycle mode, explosion occurs once at a full rotation of the crankshaft. In the engine operation in the 4-cycle mode, explosion occurs at two full rotations of the crankshaft. The temperature of the cylinder wall in the 2-cycle operation may become higher than that of the cylinder wall in the 4-cycle operation. Accordingly the temperature of the cylinder wall is kept high immediately after switching the operation mode from the 2-cycle mode to the 4-cycle mode, which may tend to cause knocking.
According to the embodiment of the invention, the timing for opening the intake valve is delayed such that the amount of the combusted fuel gas to be blown back into the intake pipe during the overlap period at which both the intake and the exhaust valves are opened becomes smaller than that in the second operation mode. As a result, the amount of the combusted fuel gas that resides in the combustion chamber can be reduced. This may decrease the temperature of the air fuel mixture within the combustion chamber, suppressing knocking.
It is preferable that the exhaust valve opening timing in the transition cycle is set to a predetermined timing that is close to the exhaust valve opening timing in the first operation mode. It is also preferable that the fuel is injected in the first operation mode upon a transition from the first operation mode to the transition cycle, and the exhaust valve is opened in the transition cycle after combustion of the fuel.
According to the embodiment, the combustion of the fuel injected in the first operation mode before start of the transition cycle may provide the same level of energy as the one obtained in the first operation mode. This may reduce the torque change upon transition to the switched operation mode.
In the case where the first operation mode is the 2-cycle mode, and the second operation mode is the 4-cycle mode, it is preferable to open the exhaust valve of one of the combustion chambers in the transition cycle subsequent to combustion of the fuel injected in the first operation mode upon transition from the first operation mode to the transition cycle, and open the exhaust valve of the other combustion chamber in the transition cycle at a timing 720°/N delayed from the timing at which the exhaust valve is opened in the transition cycle in the one of the combustion chambers where the transition cycle is started. This makes it possible to realize the engine operation in which the explosion stroke occurs at uniform interval in the respective combustion chambers.
In the case where the first operation mode is the 2-cycle mode under the self ignition priority control, and the second operation mode is the 4-cycle mode under the self ignition priority control, it is preferable to make an actual compression ratio in the transition cycle higher than that in the second operation mode.
In the case where the engine is operated in the 2-cycle mode and 4-cycle mode under the same ignition control (self ignition control or spark ignition control), the temperature of the combusted fuel gas in the 2-cycle mode is lower than the temperature in the 4-cycle mode. As the temperature of the combusted fuel gas is kept low immediately after switching of the operation mode from the 2-cycle mode to the 4-cycle mode, the misfire is likely to occur. However, the transition cycle at a higher actual compression ratio may prevent the misfire upon switching of the operation mode.
It is preferable to make the intake valve closing timing in the transition cycle is earlier than the valve closing timing in the second operation mode. According to the embodiment, the actual compression ratio can be increased, preventing the misfire.
In the case where the first operation mode is 2-cycle mode under the self ignition priority control, and the second operation mode is the 4-cycle mode under the self ignition priority control, it is preferable to make the exhaust valve closing timing in the transition cycle earlier than that in the second operation mode. This may increase the combusted fuel gas that resides in the combustion chamber. As a result, the temperature of the air fuel mixture within the combustion chamber may be increased, preventing the misfire.
In the case where each of the transition cycle and the second operation mode has a period at which the intake valve and the exhaust valve are kept closed from closing of the exhaust valve to opening of the intake valve, it is preferable that the intake valve opening timing in the transition cycle is delayed from that in the second operation mode.
According to the embodiment, in the case where the engine is operated in the 4-cycle mode for the period at which both the intake and the exhaust valves are closed until the intake valve opens, when the exhaust valve closing timing is advanced, the piston work with respect to the gas within the combustion chamber may be increased. According to the embodiment, the intake valve opening timing may be delayed so as to collect more energy derived from the piston work with respect to the gas as the downward movement of the piston, that is, rotating motion of the crankshaft. This makes it possible to increase the engine operation efficiency.
In the case where the first operation mode is the 4-cycle mode, and the second operation mode is the 2-cycle mode, it is preferable that the injection quantity of the fuel in the transition cycle is in a range between ½ and ⅔ of the injection quantity of the fuel injected by the fuel injection unit in the first operation mode, and the period from opening of the exhaust valve to opening of the intake valve in the transition cycle is shorter than the period in the second operation mode.
In the transition cycle as aforementioned, the intake valve opens at the high pressure within the combustion chamber. This may allow larger amount of the combusted fuel gas into the intake pipe so as to be returned to the combustion chamber compared with the second operation mode. As a result, the amount of the combusted fuel gas that resides in the combustion chamber can be increased such that air to be newly introduced into the combustion chamber may be reduced. This may prevent misfire resulting from the combustion in a substantially fuel lean state even if the fuel injection quantity is decreased for reducing the torque change.
In the case where the first operation mode is the 4-cycle mode under the self ignition priority control, and the second operation mode is the 2-cycle mode under the self ignition priority control, it is preferable that a period taken from opening of the intake valve to closing of the exhaust valve in the transition cycle is longer than the period in the second operation mode.
The temperature of the combusted fuel gas in the 4 cycle operation under the ignition control either in the self ignition or spark ignition is higher than that in the 2-cycle operation under the same ignition control. The temperature of the combusted fuel gas may be kept higher immediately after switching of the engine operation from the 4-cycle mode to the 2-cycle mode. This may cause the engine to perform the self ignition before the piston moves up to reach the sufficient level. According to the embodiment, the combusted fuel gas that resides in the combustion chamber is reduced to decrease the temperature of the air fuel mixture within the combustion chamber so as to prevent the self ignition at an earlier stage.
In the case where the first operation mode is the 4-cycle mode under the self ignition priority control, and the second operation mode is the 2-cycle mode, it is preferable that an actual compression ratio in the transition cycle is lower than the actual compression ratio in the second operation mode. This makes it possible to prevent the self ignition at an earlier stage.
In the case where the first operation mode is the 4-cycle mode under the combustion ignition control, and the second operation mode is the 4-cycle mode under the self ignition priority control, it is preferable that the exhaust valve closing timing in the transition cycle is delayed from that in the second operation mode.
In the engine operation either in the 2-cycle mode or 4-cycle mode, the temperature of the combusted fuel gas under the spark ignition control may tend to become higher than that under the self ignition control. The spark ignition combustion can be performed only in the case where the degree of the fuel lean state is relatively low, that is, in the fuel rich state. As the temperature of the combusted fuel gas is kept higher immediately after switching from the spark ignition control to the self ignition control, knocking is likely to occur.
According to the embodiment, exhaust valve closing timing is delayed such that the combusted fuel gas that resides in the combustion chamber is less than that in the second operation mode. As a result, the temperature of the air fuel mixture within the combustion chamber becomes lower than that in the second operation mode, preventing knocking.
In the case where the first operation mode is the 4-cycle mode under the combustion ignition control, and the second operation mode is the 4-cycle mode under the self ignition priority control, it is preferable that an actual compression ratio in the transition cycle is lower than that in the second operation mode. The embodiment makes it possible to prevent knocking.
In the case where the first operation mode is the 4-cycle mode under the self ignition priority control, and the second operation mode is the 4-cycle mode under the combustion ignition control, it is preferable that an actual compression ratio in the transition cycle is higher than that in the second operation mode.
In the cycle immediately after switching from the self ignition control to the spark ignition control, the temperature of the combusted fuel gas has been kept low, resulting in misfire. In the aforementioned embodiment, however, a high actual compression ratio makes it possible to prevent the misfire upon switching of the operation mode.
In an engine with variable cycle switchable between a 4-cycle mode and a 2-cycle mode, an area defined by a required load and an engine speed is divided into a first area where the required load is higher than a predetermined value, a second area where the required load is lower than the predetermined value, a third area between the first area and the second area, where the engine speed is lower than a predetermined value, and a fourth area between the first area and the second area, where the engine speed is higher than the predetermined value.
It is preferable that the engine executes a first operation mode performed in the first area and the second area, and the engine is operated in the 4-cycle mode under a combustion ignition control with an ignition unit at a predetermined timing before top dead center of a piston of the engine, a second operation mode performed in the third area, and the engine is operated in the 2-cycle mode under a self ignition priority control that executes one of the ignition without the ignition unit and the ignition with the ignition unit at a timing delayed from the timing under the combustion ignition control, and a third operation mode performed in the fourth area, and the engine is operated in the 4-cycle mode under the self ignition priority control. The embodiment makes it possible to perform efficient operation with reduced NOx emission.
It is to be understood that the invention may be modified in various forms, for example, it may be applied in the form of, for example, a variable cycle engine, a vehicle or a mobile object using such engine, an operation mode switching method, an operation mode switching device, a computer program for realizing the switching device or functions of the switching method, a recording medium that stores the computer program, data signals containing the computer program in the carrier wave, and the like.
Embodiments of the invention will be described in accordance with the following order such that the operation and effect of the invention can be further clarified.
A. First Embodiment:
The piston 144 is connected to a crankshaft 148 via a connecting rod 146. The piston 144 slidably moves up and down within the cylinder 142 accompanied with a rotating motion of the crankshaft 148.
The cylinder head 130 includes an intake passage 12 that admits intake air into the combustion chamber 150, a spark plug 136 for ignition of air fuel mixture within the combustion chamber 150, and an exhaust passage 16 through which combustion gas generated within the combustion chamber 150 is discharged. Oxygen containing air that has passed through the intake passage 12 flows into the combustion chamber 150 via an intake port 12o formed in the ceiling portion 130r of the cylinder head 130. The combusted fuel gas within the combustion chamber 150 is discharged from the exhaust passage 16 via an exhaust port 16o formed in the ceiling portion 130r.
The cylinder head 130 is provided with an intake valve 132 and an exhaust valve 134. The intake valve 132 and the exhaust valve 134 are driven by electric actuators 162, 164 respectively at appropriate timings such that the intake port 12o and the exhaust port 16o are operated synchronously with the movement of the piston 144.
The intake passage 12 is provided with a throttle valve 22 that is controlled to be opened at an appropriate degree by driving an electric actuator 24 so as to control the amount of air admitted into the combustion chamber 150.
The engine 10 is provided with a fuel injection unit 15 mounted on the cylinder head 130 such that gasoline is directly injected into the combustion chamber 150. The fuel injection unit 15 is capable of controlling quantity of the gasoline to be injected per unit of time by changing a pressure at which the gasoline is injected. The gasoline is stored in a gasoline tank (not shown) and pumped up by a fuel pump (not shown) so as to be supplied into the fuel injection unit 15.
An operation of the engine 10 is controlled by an electronic control unit (ECU) 30 for executing an engine control. The ECU 30 is formed as a known microcomputer including CPU, RAM, ROM, A/D converting element, D/A converting element, and the like which are connected with one another via bus. The ECU 30 detects an engine speed Ne or an accelerator opening degree θac, based on which the opening of the throttle valve 22 is controlled to an appropriate opening degree. The engine speed Ne can be detected by a crank angle sensor 32 mounted on a top end of the crankshaft 148. The accelerator opening degree θac can be detected by an accelerator opening sensor 34 that is built in the accelerator pedal. The ECU 30 executes a control operation for appropriately driving the fuel injection unit 15, a spark plug 136 and the like.
The ECU 30 detects the engine speed Ne or the accelerator opening degree θac, based on which the operation mode is switched among a plurality of operation modes including 4-cycle mode and 2-cycle mode. In the 4-cycle mode operation of the engine, a single cycle of intake, combustion, and discharge with respect to the air fuel mixture is performed during the period taken for the piston to reciprocate twice. In the 2-cycle mode operation of the engine, a single cycle of intake, combustion, and discharge with respect to the air fuel mixture is performed during the period taken for the piston to reciprocate once. Switching of the operation mode between 4-cycle mode and 2-cycle mode can be performed by changing the timing for operating the intake valve 132 and the exhaust valve 134 synchronously with the motion of the piston 144, and by changing the timing for driving the fuel injection unit 15, the spark plug 136 and the like.
More specifically, the ECU 30 sets the timing for operating the intake valve 132 and the exhaust valve 134 based on the engine speed Ne and the accelerator opening degree θac. The set timing for operating the intake valve 132 and the exhaust valve 134 is transmitted to a drive circuit 40 for an electromagnetically driven valve. The drive circuit 40 drives the electric actuators 162, 164 at an appropriate timing in accordance with the transmitted timing.
Although the combustion chamber unit 10a is only shown and described in
The pistons 144a to 144c of the combustion chamber units 10a to 10c are connected to a single crankshaft via connecting rods 146a to 146c each connected thereto. The crankshaft 148 includes crank arms 149a to 149c each having a different phase by 120°. The connecting rods 146a to 146c of the combustion chamber units 10a to 10c are connected to the respective crank arms 149a to 149c each having a different phase by 120°. Each of the connecting rods 146a to 146c of the combustion chamber units 10a to 10c is connected to the crank arms 149a to 149c having the different phase by 120°. Accordingly each of the pistons 144a to 144c reciprocates within the cylinder at a shifted phase by 120° so as to rotate the common crankshaft 148.
A-2. Operation in the Operation Mode in Accordance with Operation Area:
The ECU 30 serves to operate the engine in the 4-cycle mode under the spark ignition control where ignition is performed with the spark plug 136 when the engine operation is in a low load (area I) and a high load (area IV). The ECU 30 serves to operate the engine under the self ignition control that allows the fuel to be self ignited when the engine operation is in a medium load (areas II and III). The ECU 30 serves to operate the engine in 2-cycle mode under the self ignition control when the engine operation is in the medium load at a relatively lower engine speed (area II). The ECU 30 serves to operate the engine in 4-cycle mode under the self ignition mode when the engine is operated at a relatively higher engine speed (area III).
Upon the self ignition, the fuel combustion within the combustion chamber rapidly proceeds within a short period. Accordingly, unlike the generally performed combustion by the spark ignition, the combustion by the self ignition is not susceptible to the influence of the generally performed combustion by the spark ignition where the area at which the fuel is combusted at an initial stage is held at a high temperature for an extended period of time. Unlike the combustion by the spark ignition, the combustion by the self ignition allows the air fuel mixture to be combusted in a short period of time even in the fuel lean state. This may reduce quantity of generated NOx to a substantially lower level compared with the combustion by the spark ignition. As a result, it is preferable to perform the combustion under the self ignition control over an operation area as wide as possible.
In the operation area in the low required load L, quantity of air admitted into the combustion chamber and quantity of the fuel are small. Accordingly the pressure of the air fuel mixture within the combustion chamber upon start of compression is reduced. This may tend to interfere in the self ignition of the air fuel mixture even in the state of compression with the piston. Therefore, the engine is operated in the 4-cycle mode under the spark ignition control in the area in the low required load.
The combustion by the self ignition can proceed rapidly in a short period of time. The combustion by the self ignition in the area in the high required load, thus, may increase the combustion noise compared with the combustion by the spark ignition. Accordingly the engine is operated in 4-cycle mode under the spark ignition control in the area in the high required load.
The engine is operated under the self ignition control in the medium load area (areas II and III). In the area II at the relatively lower engine speed, the engine is operated in 2-cycle mode under self ignition control, and in the area III at the relatively higher engine speed, the engine is operated in 4-cycle mode under self ignition control. As the engine speed increases, the combusted fuel gas is sufficiently discharged during the scavenging period in 2-cycle mode, and it is, therefore, difficult to perform the intake stroke. The scavenging period represents the time at which the exhaust valve 134 and the intake valve 132 are both opened in the engine operation in 2-cycle mode.
The term “2-cycle mode under self ignition control” or “4-cycle mode under self ignition control” does not always represent the case where the combustion by self ignition always occurs in the aforementioned mode. That is, there may be the case where the combustion by spark ignition occurs even in 2-cycle mode under self ignition control or in 4-cycle mode under self ignition control.
A-3. Valve Operation Timing in each Operation Mode
Referring to
As shown in
The combustion of the fuel within the combustion chamber 150 by spark ignition forces the piston 144 down (explosion stroke). When the piston 144 reaches the timing BTDC 40°, the exhaust valve 134 is opened. When the piston 144 goes up again to reach the timing ATDC 5°, the exhaust valve 134 is closed. The combusted fuel gas is discharged from the exhaust passage 16 (exhaust stroke) while the exhaust valve 134 being opened and the piston 144 moving up.
The engine is operated repeatedly in the same cycle. The range for which the intake valve 132 is opened is represented by a circular arc IV with arrow ends. The range for which the exhaust valve 134 is opened is represented by a circular arc EV with both ends arrowed.
The spark ignition may be performed by the spark plug 136 even in the engine operation in 4-cycle mode under self ignition control. The ignition timing, however, becomes BTDC 10° which is different from that of the engine operation in 4-cycle mode under spark ignition control. As the spark ignition by the spark plug 136 can be performed at the aforementioned timing in the engine operation in 4-cycle mode under self ignition control, the misfire may be prevented even if no self ignition occurs.
In the engine operation in 4-cycle mode under self ignition control, the ignition is performed at the timing behind the spark ignition timing (see
When the piston 144 is forced down to reach the timing BBDC 40°, the exhaust valve 134 is opened. When the piston 144 moves up to reach the timing BTDC 45°, the exhaust valve 134 is closed. The combusted fuel gas is discharged from the exhaust passage 16 (exhaust stroke) while the piston 144 is moving up, and then, when the piston 144 exceeds over TDC to reach the timing ATDC 45°, the intake valve 132 is opened. The same cycle is repeatedly operated.
When the piston 144 moves up to reach the timing ABDC 40°, the exhaust valve 134 is closed. When the piston 144 is positioned between BBDC 50° and BBDC 40°, air is admitted from the intake passage 12 and at the same time, the combusted fuel gas is discharged from the exhaust passage 16 (scavenging). The fuel injection is performed at a predetermined timing during scavenging. It is assumed herein that the fuel injection is performed at a predetermined time interval at the timing close to the BDC.
When the piston 144 reaches the timing ABDC 50°, the intake valve 132 is closed. When the piston 144 is positioned between ABDC 40° and ABDC 50°, air is admitted from the intake passage 12. After closing the intake valve 132, the fuel injection is performed from the fuel injection unit 15 at a predetermined timing. Then when the piston 144 moves up to compress air and the fuel within the combustion chamber 150 (compression stroke), the fuel is self ignited at the timing close to the TDC. The piston 144 is then forced down (explosion stroke). The same operation cycle is repeatedly performed thereafter.
As shown in
A-4. Transition from 4-Cycle Mode under Spark Ignition Control to 2-Cycle Mode under Self Ignition Control
A transition T1 performed upon switching of the engine operation from 4-cycle mode under spark ignition control in the high load to 2-cycle mode under self ignition control in the medium load at low engine speed will be described hereinafter. The transition step of the operation mode is represented by an arrow T1 shown in
The transition T1 is performed just once between the engine operations in 4-cycle mode under spark ignition control and 2-cycle mode under self ignition control. More particularly, after the combustion is performed in accordance with the 4-cycle mode under spark ignition control prior to the switching operation, the exhaust valve 134 is opened at BBDC 40°, and the intake valve 132 is opened at BBDC 30° in accordance with the timing shown in
The transition T1 performed upon switching of the engine operation from 4-cycle mode under spark ignition control in the high load to 2-cycle mode under self ignition control in the medium load at low engine speed will be described in comparison with the engine operation in 4-cycle mode under spark ignition mode prior to the switching operation and the engine operation in 2-cycle mode under self ignition control subsequent to the switching operation.
(1) Exhaust Valve Opening Timing and Fuel Injection Quantity
In the transition T1, the timing for opening the exhaust valve 134 is set at BBDC 40°. This timing is the same as that for closing the exhaust valve 134 in the engine operation in 4-cycle mode under spark ignition control prior to the switching operation (see
In the transition T1, the timing for opening the exhaust valve 134 is behind the timing in the engine operation in 2-cycle mode under self ignition control after the switching operation by a crank angle of 30° (see
Quantity of the fuel to be injected in the transition T1 is set to a predetermined value between 50% and 60% of the quantity of the fuel to be injected in the engine operation in 4-cycle mode under spark ignition control before the switching operation.
In the 4 cycle engine operation, the fuel combustion is performed once during two reciprocating motions of the piston 144. In the 2 cycle engine operation, the fuel combustion is performed once during a single reciprocating motion of the piston 144. Assuming that the quantity of the fuel to be combusted at one time in the 4 cycle operation is set to the same value in the 2 cycle operation, the torque may be sharply increased upon switching from 4-cycle mode under spark ignition control to 2-cycle mode under self ignition control.
The fuel quantity to be injected in the transition T1 is in the range between 50% and 60% of the fuel quantity to be injected in the engine operation in 4-cycle mode under spark ignition control prior to the mode transition. When the fuel injected in the transition T1 is combusted, and the resultant energy is derived in the subsequent cycle of the engine operation in 2-cycle mode under self ignition control, such energy (torque) can be substantially the same as that derived from the engine operation in 4-cycle mode under spark ignition control per unit of time prior to the mode transition. Accordingly the operation mode can be switched by smoothly reducing the torque in accordance with the arrow T1 shown in
(2) Intake Valve Opening Timing and Ignition Timing
In the transition T1, the exhaust valve 134 is opened at BTDC 40°, and then the intake valve 132 is opened after the crankshaft 148 rotates at 10°, that is, at BTDC 30°. In the engine operation in 2-cycle mode under self ignition control after the mode transition, the exhaust valve 134 is opened at BTDC 70°, and then the intake valve 132 is opened after the crankshaft 148 rotates at 20°, that is, at BTDC 50° (see
In the engine operation in 4-cycle mode under spark ignition control prior to the mode transition, the exhaust valve 134 has been already closed as shown in
In the engine operation in 2-cycle mode under self ignition control after the mode transition, the exhaust valve 134 is closed at ABDC 40°, and then the intake valve 132 is closed at ABDC 50°. While the exhaust valve 134 is opened, the pressure within the combustion chamber 150 becomes close to the pressure within the exhaust passage 16, that is, close to the atmospheric pressure. The piston 144 goes up only to a small degree for the period taken from closing of the exhaust valve 134 to closing of the intake valve 132. Accordingly compression force applied to the gas within the intake passage 12 is relatively lower than that in the engine operation in 4-cycle mode under spark ignition control. The pressure within the intake passage 12 upon next opening of the intake valve 132 in the engine operation in 4-cycle mode under spark ignition control is higher than that in 2-cycle mode under self ignition control.
In the transition T1 immediately after the engine operation in 4-cycle mode under spark ignition control, if the engine operation is performed at the same valve operation timing as the one in 2-cycle mode under self ignition control, large amount of air is admitted from the intake passage 12 under high pressure into the combustion chamber 150. As a result, the amount of air becomes excessive with respect to the fuel, which may cause misfire.
In the transition T1, the intake valve 132 is opened after an elapse of a relatively short period after opening of the exhaust valve 134. In the transition T1, the pressure within the combustion chamber 150 at a timing where the intake valve 132 is opened cannot be sufficiently decreased to the predetermined level owing to discharge of the exhaust gas into the exhaust passage 16. As a result, the pressure within the combustion chamber 150 is higher than that obtained in the engine operation in 2-cycle mode under self ignition control after the mode transition. As a result, in the transition T1, larger quantity of the combusted fuel gas is blown back into the intake passage 12 compared with the engine operation in 2-cycle mode under self ignition control after the mode transition during scavenging in the transition cycle T1.
The combusted fuel gas that has been returned to the intake passage 12 is further blown into the combustion chamber together with new air. In the transition T1, larger quantity of the combusted fuel gas flows between the combustion chamber 150 and the intake passage 12 compared with the engine operation in 2-cycle mode under self ignition control after the mode transition. As a result, amount of air admitted into the combustion chamber 150 becomes smaller than that in the case where the valves are operated at the same timing as that in the engine operation in 2-cycle mode under self ignition control after the mode transfer.
In the transition T1, the aforementioned operation may reduce quantity of new air to be admitted into the combustion chamber 150. This makes it possible to prevent the excessive increase in the amount of air with respect to the fuel. In the transition T1, the fuel injection quantity becomes smaller than that in the engine operation in 4-cycle mode under spark ignition control prior to the mode transition. This may prevent the misfire even if the pressure in the intake passage 12 becomes higher than that in the engine operation in 2-cycle mode under self ignition control after the mode transition.
In the transition T1, the spark plug 136 is operated for ignition at BTDC 20°. The combustion becomes unstable upon switching of the operation mode. However, in the transition T1, the spark ignition at BTDC 20° may prevent the misfire.
(3) Timing for Closing Intake Valve and Exhaust Valve
In the transition T1, the timing for closing both the exhaust valve 134 and the intake valve 132 is set to ABDC 65°. In the engine operation in 2-cycle mode under self ignition control after the mode transition, the exhaust valve 134 is closed at the timing ABDC 40°, and the intake valve 132 is closed at the timing ABDC 50°. Accordingly the timing for closing both the exhaust valve 134 and intake valve 132 can be set to the timing ABDC 50° (see
In the engine operation under spark ignition control, the air fuel mixture at excess air ratio of 1 is combusted. That is, the air fuel mixture contains air and fuel in the rate so as to be combusted appropriately. The term “excess air ratio” is an index that indicates how may times the quantity of air actually contained in the air fuel ratio is larger than the optimum quantity of air as being sufficient to be combusted with the fuel. If the excess air ratio is set to 2, the quantity of air is twice the optimum quantity of air as being sufficient to be combusted with the fuel. In the engine operation under self ignition control, the air fuel mixture contains air with the excess air ratio of 1 or greater. In the engine operation under spark ignition control, the temperature of the combusted fuel gas is higher than that under the self ignition control. Upon switching of the operation mode from the spark ignition control into the self ignition control, the temperature of the residual combusted fuel gas in the cycle immediately after the switching is held high. In the aforementioned case, the temperature of the air fuel mixture within the combustion chamber 150 is increased. This may cause self ignition before the piston 144 reaches the position to the sufficiently high level.
In the transition T1, the actual compression ratio is lower than that in the engine operation in 2-cycle mode under self ignition control after the mode transition. The possibility of the self ignition before the piston 144 reaches the position to the sufficiently high level becomes low.
In the transition T1, a larger quantity of the combusted fuel gas is allowed to flow between the combustion chamber 150 and the intake passage 12 compared with that of the combusted fuel gas in the engine operation in 2-cycle mode under self ignition control so as to increase the quantity of the residual combusted fuel gas within the combustion chamber 150. If the quantity of the residual combusted fuel gas becomes excessive, the temperature of the air fuel mixture within the combustion chamber 150 may be increased. In the transition T1, however, the wall portion of the intake passage 12 at the temperature lower than that of the cylinder wall serves to draw heat from the combusted fuel gas that has been returned into the intake passage 12. The resultant temperature of the combusted fuel gas, thus, is lowered. In the transition T1, in spite of increase in the quantity of the residual combusted fuel gas in the combustion chamber 150, the excessive increase in the temperature of the air fuel mixture within the combustion chamber 150 can be suppressed. This makes it possible to prevent self ignition at an earlier stage owing to the increase in the quantity of the residual combusted fuel gas.
The transition T1 as described above is performed upon transition from 4-cycle mode under spark ignition control in the high load to 2-cycle mode under self ignition control in the medium load at low engine speed. The transition T1L may be performed upon transition from 4-cycle mode under spark ignition control in the low load to 2-cycle mode under self ignition control in the medium load at low engine speed (see
A-5. Transition from 2-Cycle Mode under Self Ignition Control to 4-Cycle Mode under Spark Ignition Control
A transition T2 to be performed upon transition from 2-cycle mode under self ignition control in the medium load at low engine speed to 4-cycle mode under spark ignition control in the high load will be described hereinafter. The transition of the operation mode is represented by an arrow T2 as shown in
The transition T2 is performed only once between 2-cycle mode under self ignition control and 4-cycle mode under spark ignition control. More specifically, the engine is operated in 2-cycle mode under self ignition control prior to the transition. Thereafter, according to the timing shown in
(1) Exhaust Valve Opening Timing and Fuel Injection Quantity
Referring to
In the transition cycle T2, the fuel is injected into the combustion chamber 150 from the fuel injection unit 15 at the timing close to ATDC 30°. The quantity of the injected fuel in the transition T2 is a predetermined value in the range between 150% and 200% of the quantity of the injected fuel in 2-cycle mode under self ignition control prior to the mode transition. The torque can be smoothly increased in accordance with the arrow T2 shown in
(2) Intake Valve Operation Timing
In the transition cycle T2, the timing for closing the intake valve 132 is set to ABDC 100°. That is, the aforementioned timing is delayed from the timing in 4-cycle mode under spark ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the 4-cycle mode engine operation, the combustion is performed once per two reciprocations of the piston 144. While in the 2-cycle mode engine operation, the combustion is performed once per single reciprocation of the piston 144. At a time when the fuel is combusted in each cycle, the temperature of the cylinder wall in the 2-cycle mode engine operation tends to become higher than that in the 4-cycle mode engine operation. In such a case, the temperature of the cylinder wall may be held high in several cycles immediately after completion of the 2-cycle mode engine operation upon switching of the operation mode from 2 cycle to 4 cycle. In this case, if the engine is operated in 4-cycle mode under spark ignition control subsequent to the 2-cycle mode under self ignition control, knocking may occur. In the transition cycle T2, however, the actual compression ratio is lower than that in the 4-cycle mode under spark ignition control. This makes it possible to reduce occurrence of knocking.
In the transition cycle T2, the timing for opening the intake valve 132 is set at ATDC 5°. The aforementioned timing is delayed from the timing in 4-cycle mode under spark ignition control after transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the transient cycle T2, the timing for opening the intake valve 132 is delayed, and the intake valve 132 is further opened at a timing when the piston 144 starts moving down upon passing the TDC. This makes it possible to further reduce the quantity of the combusted fuel gas returned into the intake passage 12.
(2) Exhaust Valve Closing Timing and Ignition Timing
In the transition cycle T2, the timing for closing the exhaust valve 134 is set at ATDC 15°. That is, it is delayed from the timing in 4-cycle mode under spark ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the transition cycle T2, the spark plug 136 is operated for ignition at the timing BTDC 20°, thus preventing misfire.
In this embodiment, the transition T2 is performed upon transition from 2-cycle mode under self ignition control in the medium load at high engine speed to 4-cycle mode under spark ignition control in the high load. The transition cycle T2L may be performed upon transition from 2-cycle self ignition mode in the medium load at low engine speed to 4-cycle spark ignition mode in the low load (see
B. Second Embodiment
In a second embodiment, switching of the operation mode between 2-cycle mode under self ignition control in the medium load at low engine speed and 4-cycle mode under self ignition control in the medium load at high engine speed will be described. The transition from 2-cycle mode under self ignition control to 4-cycle mode under self ignition control is represented by an arrow T3 as shown in
B-1 Transition from 2-Cycle Mode under Self Ignition Control to 4-Cycle Mode under Self Ignition Control
In the transient cycle T3, the timing for opening the exhaust valve 134 is set to BBDC 70° as being the same as in 2-cycle mode under self ignition control before the mode transition (see
The quantity of the injected fuel in the transition cycle T3 is a predetermined value in the range between 150% and 200% of the quantity of the injected fuel in 2-cycle mode under self ignition control before the mode transition. This makes it possible to smoothly switch the operation mode in accordance with the arrow T3 shown in
In the transient cycle T3, the timing for closing the exhaust valve 134 is set to BTDC 55°. That is, the set timing is earlier than the timing in 4-cycle mode under self ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the engine operation in 2-cycle mode under self ignition control, the temperature of the combusted fuel gas is lower than that in the engine operation in 4-cycle mode under self ignition control. The quantity of the injected fuel in the 2-cycle mode is reduced to be in the range between 50% and 60% of the quantity of the injected fuel in the 4-cycle mode so as to make each engine torque substantially the same in the area close to the boundary at which the operation mode is switched. The temperature of the combusted fuel gas is low immediately after switching of the operation mode from 2-cycle mode under self ignition control to 4-cycle mode under self ignition control, resulting in misfire. In the transition cycle T3, the temperature of the air fuel mixture within the combustion chamber is made higher by performing the aforementioned operation. This makes it possible to prevent the misfire even in the engine operation in the 4-cycle mode under self ignition control after switching of the operation mode.
In the transition cycle T3, the timing for closing the intake valve 132 is set to ABDC 30°. That is, such timing is made earlier than the timing in 4-cycle mode under self ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft (see
In the transition cycle T3, the spark plug 136 is operated for spark ignition at a timing BTDC 20°, preventing the misfire.
In the transition cycle T3, the timing for opening the intake valve 132 is set to ATDC 55°. That is, such timing is delayed from the timing in 4-cycle mode under self ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crank shaft 148.
In the engine operation within the period at which both the exhaust valve 134 and the intake valve 132 are closed (between BTDC 45° and ATDC 45° as shown in
B-2. Transition from 4-Cycle Mode under Self Ignition Control to 2-Cycle Mode Self Ignition Control
The timing for operating the intake valve 132 and the exhaust valve 134 in the transition cycle T4 (see
In the transition cycle T4, the timing for opening the exhaust valve 134 is set to BBDC 40° in the same manner as in the 4-cycle mode under self ignition control before the mode transition as shown in
The quantity of the injected fuel in the transition cycle T4 is a predetermined value in the range between 50% and 60% of the quantity of the injected fuel in the operation in 4-cycle mode under self ignition control before the mode transition. This makes it possible to smoothly switch the operation mode in accordance with the arrow T4 shown in
In the transition cycle T4, the timing for opening the intake valve 132 is set to BBDC 30°. That is, the period taken from opening of the exhaust valve 134 to opening of the intake valve 132 is shorter than the period in the operation in 2-cycle mode under self ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the transition cycle T4, the spark plug 136 is operated at a timing BTDC 20°, thus preventing misfire.
In the transition cycle T4, the timing for closing the exhaust valve 134 and the intake valve 132 is set to ABDC 65°. That is, the timing is delayed from that in the 2-cycle mode under self ignition control after the mode transition by values each corresponding to 25° and 15°, respectively as the rotating angle of the crankshaft 148 (see
C. Third Embodiment
In a third embodiment, switching of the operation mode between 4-cycle mode under spark ignition control in the high load and 4-cycle mode under self ignition control will be described. The transition from the 4-cycle mode under spark ignition control in the high load to the 4-cycle mode under self ignition control is represented by arrow T5. The transition from the 4-cycle mode under self ignition control to the 4-cycle mode under spark ignition control in the high load is represented by arrow T6 . The structure of the engine 10 and each operation of the respective modes are the same as those described in the first embodiment.
C-1. Transition from 4-Cycle Mode under Spark Ignition Control to 4-Cycle Mode under Self Ignition Control
The quantity of the injected fuel in the transition cycle T5 is decreased from that of the injected fuel in the 4-cycle mode under spark ignition control before the mode transition. This makes it possible to smoothly switch the operation mode in accordance with, for example, the arrow T5 shown in
In the transition cycle T5, the timing for closing the exhaust valve 134 is set to BTDC 35°. That is, it is delayed from the timing in the 4-cycle mode under self ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the transition cycle T5, the timing for closing the intake valve 132 is set to ABDC 50°. That is, it is delayed from the timing in the 4-cycle mode under self ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In this embodiment, the transition cycle T5 is performed upon transition of the operation mode from 4-cycle mode under spark ignition control in the high load to 4-cycle mode under self ignition control in the medium load at high engine speed. However, the transition cycle T5L may be performed upon transition of the operation mode from 4-cycle mode under spark ignition control in the low load to 4-cycle mode under self ignition control in the medium load at high engine speed as well (see
C-2. Transition from 4-Cycle Mode under Self Ignition Control to 4-Cycle Mode under Spark Ignition Control
The quantity of the injected fuel in the transition cycle T6 is increased from that of the injected fuel in the 4-cycle mode under spark ignition mode before the mode transition. This makes it possible to smoothly switch the operation mode in accordance with, for example, the arrow T6 shown in
In the transition cycle T6, the timing for closing the intake valve 132 is set at ABDC 80°. That is, it is made earlier than the timing in the 4-cycle mode under spark ignition control after the mode transition by the value corresponding to 10° as the rotating angle of the crankshaft 148 (see
In the operation in 4-cycle mode under self ignition control, the temperature of the cylinder wall is kept low. The temperature of the air fuel mixture within the combustion chamber is lowered immediately after switching of the operation mode from 4-cycle mode under self ignition control to 4-cycle mode under spark ignition control. As a result, misfire is likely to occur. Further the combustion tends to become slow as it proceeds to the latter stage, which is likely to increase HC. In the transition cycle T6, however, the actual compression ratio is made higher by performing the aforementioned operation. This may prevent misfire and increase in HC.
In this embodiment, the transition cycle T6 is performed upon transition of the operation mode from 4-cycle mode under self ignition control in the medium load at high engine speed to 4-cycle mode under spark ignition control in the high load. However, the transition cycle T6L may be performed upon transition from 4-cycle mode under self ignition control in the medium load at high engine speed to 4-cycle mode under spark ignition control in the low load (see
D. Fourth Embodiment
In a fourth embodiment, the procedure for switching the operation mode in the engine between 4-cycle mode under spark ignition control in the high load and 2-cycle mode under self ignition control will be described.
D-1. Transition from 4-Cycle Mode under Spark Ignition Control to 2-Cycle Mode under Self Ignition Control
The horizontal line below each timing chart represents the rotating angle of the crankshaft 148 or crank angle. In the 4-cycle operation, a single cycle operation is performed while the crankshaft 148 is rotating twice. The portion of the horizontal line corresponding to the 4-cycle operation is designated with the angle ranging from 0 to 720°. While in the 2-cycle operation, a single cycle operation is performed while the crankshaft 148 is rotating once. The portion of the horizontal line corresponding to the 2-cycle operation is designated with the angle ranging from 0 to 360°. Each timing of 0, 360°, 720° designated on the horizontal line represents the timing TDC where the piston is at the top dead center. Each timing of 180° and 540° designated on the horizontal line represents the timing BDC where the piston is at the bottom dead center (see
The operation mode is shown on the upper portion of each of the timing charts. The reference (IV) represents 4-cycle mode under spark ignition control, and (II) represents 2-cycle mode under self ignition control. The numeral that represents the operation mode corresponds to the number of the area where each mode is performed as shown in
Each of the combustion chamber units is operated in 4-cycle mode under spark ignition control before switching of the operation mode in the order from the first combustion chamber unit 10a as the lowest one, the second combustion chamber unit 10b as the intermediate one, and the third combustion chamber unit 10c as the uppermost one, each phase of which is shifted by 240°. In the 4 cycle operation, a single cycle is performed while the crankshaft 148 is rotating twice (at 720°). Therefore, in the 3-cylinder engine, each of the combustion chamber units is operated by shifting each phase at 240° as the value obtained by dividing 720° by the number of cylinders, that is, 3. This may allow the interval of the explosion in each combustion chamber unit to be uniform, thus realizing smooth operation.
Each of the combustion chamber units is operated in 2-cycle mode under spark ignition control before switching of the operation mode in the order from the first combustion chamber unit 10a in the lower one, the second combustion chamber unit 10b as the intermediate stage, and the third combustion chamber unit 10c in the upper stage, each phase of which is shifted by 120°. In the 2 mode cycle operation, a single cycle is performed while the crankshaft 148 is rotating once. Therefore, in the 3-cylinder engine, each of the combustion chamber units is operated by shifting each phase at 120° as the value obtained by dividing 360° by the number of cylinders, that is, 3. This may allow the interval of the explosion in each combustion chamber unit to be uniform, thus realizing smooth operation.
Referring to
The process then proceeds to step S4 where the ECU 30 selects the combustion chamber unit assumed to have the exhaust valve 134 opened at the earliest timing on the assumption that the engine operation in 4-cycle mode under spark ignition control is subsequently performed in the respective combustion chamber units followed by the process in step S4. Referring to
In step S6, it is determined whether the cylinder counter CC is set to N, that is, whether the selected combustion chamber unit is the one having the mode transition first performed. When the cylinder counter CC is set to N, that is, Yes is obtained in step S6, the process proceeds to step S14 where the transition cycle is performed. In the combustion chamber unit, when the exhaust valve 134 is opened in the next cycle, the angle counter CA is reset to 0. In the example shown in
The process proceeds to step S16 where the cylinder counter CC is decremented by 1. In the example shown in
In step S18, it is determined whether the cylinder counter CC is set to 0, that is, the mode transition has been completed with respect to all the combustion chamber units. When it is determined that the cylinder counter CC is set to 0, that is, Yes is obtained in step S18, the process for the mode transition is terminated. When it is determined that the cylinder counter CC is not set to 0, that is, No is obtained in step S18, the process proceeds to step S20. In the example shown in
In step S20, the ECU 30 obtains the angle counter CA indicating the rotating angle of the crankshaft 148 from opening of the exhaust valve 134 in the combustion unit where the transition cycle is started, and the process returns to step S4. In the example shown in
In step S4, the ECU 30 selects the combustion chamber unit having the exhaust valve 134 opened at the earliest timing after process in step S4 as aforementioned. In the example shown in
Then in step S6, it is determined whether the cylinder counter CC is set to N, that is, the selected combustion chamber unit is the first one that allows the transition cycle to be performed. In the example shown in
Then in step S8, it is determined whether the combustion chamber unit selected in step S4 is the one having the operation mode already switched. When it is determined that the selected combustion chamber unit has the operation mode already switched, that is, Yes is obtained in step S8, the process proceeds to step S20 where the angle counter CA is obtained. When it is determined that the selected combustion chamber unit does not have the operation mode switched, that is, No is obtained in step S8, the process proceeds to step S10. In the example shown in
In step S10, the mode switching request is determined. The case in which the mode switching is required for transition from 2 cycle operation to 4 cycle operation will be described later. When the mode switching request is determined as the transition from 4 cycle operation to 2 cycle operation or from 4 cycle operation to 4 cycle operation, the process proceeds to step S14. If the mode switching request is determined as the transition cycles of T1, and T4 to T6, the process proceeds to step S14.
In step S14, execution of the transition cycle in the selected combustion chamber unit is required for the next cycle. The angle counter CA is set to 0 upon opening of the exhaust valve 134 in the designated combustion chamber unit. In the example shown in
In step S16, the cylinder counter CC is decremented by 1. In the example shown in
The operation mode is switched with respect to the third combustion chamber unit 10c in the upper stage shown in
As shown in
In the transition cycle upon switching of the operation to self ignition control, the ignition control that is different from the self ignition is performed. The ECU 30 executes not only the transition cycle but also the ignition control in the same manner as in the transition cycle for a predetermined period with respect to the respective combustion chamber units. In the example shown in
The aforementioned control makes it possible to realize stable operation without misfire even after switching of the operation mode. In the case where the spark ignition is performed at BTDC 20°, the white star mark shown in
In the section of the combustion chamber unit 10a in the lower stage, the valve operation timing in the transition T1 during the first cycle of the operation in 2-cycle mode under self ignition control is represented by the chain line such that the valve operation timing in 2-cycle mode under self ignition control is compared with that in the transition cycle T1.
D-2. Transition from 2-Cycle Mode under Self-Ignition Control to 4-Cycle Mode under Spark Ignition Control
The transition of the engine operation from 2-cycle mode under self ignition control to 4-cycle mode under spark ignition control will be described as well as each process executed in steps S10 and S12 in the flowchart of
The operation of each of the combustion chamber units in 2-cycle mode under self ignition control before switching of the operation mode is performed from the third combustion chamber unit 10c in the upper stage of
In an example shown in
When the exhaust valve is opened in the transition T2 in the first combustion chamber unit 10a in the lower stage of
As the transition T2 has been already performed in the first combustion chamber unit 10a as shown in the lower stage of
In step S10, the mode switching request is determined as aforementioned. As the transition from 4-cycle mode under spark ignition control to 2-cycle mode under self ignition control described herein corresponds to the transition from 2 cycle operation mode to 4 cycle operation mode, the process proceeds to step S12.
In step S12, it is determined whether the angle counter CA is set to the value substantially equal to or greater than 720°/N. The term N represents the number of the combustion chamber units of the engine, that is, 3 in this embodiment. The angle counter CA indicates the rotating angle of the crankshaft 148 obtained from opening of the exhaust valve 134 in the cylinder where the transition cycle is started.
The value of the angle counter CA, that is, “substantially equal to or greater than 720°/N”, defined herein may be set in accordance with the range of the engine speed and the speed of the cycle in the flowchart shown in
In step S12, in the cylinder where the transition cycle is started, when the crankshaft 148 has rotated at the angle lower than 240° after opening the exhaust valve 134, that is, No is obtained, the value of the angle counter CA is obtained in step S20. The process then returns to step S4. The process is executed in steps S4 to S10, S12 and S20 repeatedly until the rotating angle of the crankshaft 149 becomes 240° in the cylinder where the transition cycle is started and the exhaust valve 134 is opened.
In step S12, in the cylinder where the transition cycle is started, when the crankshaft 148 rotates at the angle of 240° from opening of the exhaust valve 134, that is, Yes is obtained, the process proceeds to step S14 where the mode switching is performed.
In an example shown in
As the process is executed in steps S4 to S11, S12, and S20 repeatedly, the exhaust valve 134 is opened in 2-cycle mode under self ignition control before the mode transition in the third combustion chamber unit 10c as shown in the upper stage of
As the process is executed in steps S4 to S10, S12, and S20 repeatedly, the exhaust valve 134 is opened in the combustion chamber unit 10a where the transition cycle is started. The crankshaft 148 then rotates at the rotating angle of 240°. Accordingly Yes is obtained in step S12, and the process proceeds to step S14 where the mode switching is performed in the combustion chamber unit 10b. As has been described, subsequent to the switching of the operation mode, each of the combustion chamber units is operated at the shifted phase of 720°/N, that is, 240°. This makes it possible to make the interval of the explosion stroke uniform in each of the combustion chamber units after switching of the operation mode, resulting in the operation with reduced torque change.
In the combustion chamber unit having the cycle at TDC 720° within the period Pt2 taken from the mode switching request to completion of the transition T2 with respect to all the combustion chamber units, the spark plug 136 is operated for spark ignition at the timing BTDC 20° as well as the transition cycle T2.
In this embodiment, the procedure for transition from the operation in 2-cycle mode under self ignition control in the medium load at low engine speed to the operation in 4-cycle mode under spark ignition control has been described. However, the transition with respect to other operation modes (see
It is to be understood that the invention is not limited to the aforementioned embodiments, and can be modified into various forms without departing from the scope of the invention as described below.
The ignition timing in the operation in spark ignition control and transition cycle, and in the cycle in the operation mode immediately after switching of the mode may be different from one another. The ignition control at a predetermined timing before top dead center in the aforementioned cycle is referred to as the combustion ignition control herein.
Each of the timing for spark ignition in the respective cycles under the spark ignition control, and the timing for spark ignition in the transition cycle does not have to be constant. In other words, the ignition timing can be varied in accordance with the temperature of the cylinder wall or the combustion chamber, pressure in the combustion chamber, engine speed and the like.
In the operation in 4-cycle mode under self ignition control and 2-cycle mode under self ignition control, the ignition is performed at BTDC 10° as being delayed from the timing under the spark ignition control. The ignition, however, may be performed at the different timing so long as it is delayed from the timing under the spark ignition control.
In the embodiments, the valve opening timing in the transition cycle is different from that in the operation mode after the transition. In the transition cycle, the operation in the same cycle as that in the operation mode after the transition is performed. Therefore, it is possible to have at least one of the timing for operating one of the valves, the fuel injection quantity or the fuel injection timing in the transition cycle different from that in the operation in the mode after transition.
Number | Date | Country | Kind |
---|---|---|---|
2003-055605 | Mar 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4037412 | Jones | Jul 1977 | A |
4392459 | Chareire | Jul 1983 | A |
4765293 | Gonzalez | Aug 1988 | A |
4945870 | Richeson | Aug 1990 | A |
5191858 | McWhorter | Mar 1993 | A |
5517951 | Paul et al. | May 1996 | A |
6237562 | Awasaka et al. | May 2001 | B1 |
6615771 | Denger et al. | Sep 2003 | B2 |
6619241 | Otterspeer et al. | Sep 2003 | B2 |
Number | Date | Country |
---|---|---|
101 00 054 | Jul 2002 | DE |
1 234 960 | Aug 2002 | EP |
1 234 961 | Aug 2002 | EP |
2 669 377 | May 1992 | FR |
A 10-103092 | Apr 1998 | JP |
A 11-280504 | Oct 1999 | JP |
A 11-336647 | Dec 1999 | JP |
A 2000-192828 | Jul 2000 | JP |
A 2001-152919 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20040173166 A1 | Sep 2004 | US |