The disclosed invention relates to radio-transmission and/or reception antennas and methods for manufacturing such antennas and its associated feeding networks, be it microstrip, stripline or other.
In a prior disclosure, the subject inventor has disclosed an antenna that utilizes variable dielectric constant (VDC) to control the characteristics of the antenna, thereby forming a software defined antenna. Details about that antenna can be found in U.S. Pat. No. 7,466,269, the entire disclosure of which is incorporated herein by reference. The antenna disclosed in the '269 patent proved to be operational and easy to manufactured by simply forming the radiating elements and feeding lines on top of an LCD screen. Therefore, further research has been done to further investigate different possibilities of improving the software defined antennas.
In the parent application the subject inventor has disclosed various embodiments of improved variable dielectric constant antennas. Much of the improvements in those embodiments (the description of which is included herein) reside in the fabrication of multi-layers, thereby separating the various signal paths. Regardless of the particular antenna design, as explained in the '269 patent, the software control of the antenna is done via signals applied to the individual VCD pixels. That means that the controller must be able to address each pixel individually. Also, for cost considerations, it is preferable to utilize a standard controller of an LCD screen, e.g., a controller of a flat panel television.
A conventional flat TV controller sends square-wave signal to the pixels to refresh the image on the screen according to the designed refresh rate. However, a conventional controller issues both a control signal and a ground signal to each pixel. That is, in a conventional TV, each pixel has two electrodes. The controller issues a common and a square wave signal, one applied to the input electrode and one to the ground or common electrode of the pixel. In this manner, the controller can issue these dual-signals serially to each pixel to refresh the entire screen. However, as described in the '269 patent and in the parent application, the ground plane is common to both all of the radiating elements and all of the VDC pixels. This prevents using a standard controller, since the standard controller issues a ground signal separately to each pixel. Therefore, a solution is needed that would enable using a conventional controller, which issues a separate ground signal to each VDC pixel, while maintaining the common ground for all of the radiating elements.
The following summary is included in order to provide a basic understanding of some aspects and features of the invention. This summary is not an extensive overview of the invention and as such it is not intended to particularly identify key or critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented below.
This disclosure provides various enhancements and advancement for the variable dielectric constant antenna. Embodiments disclosed herein provide an improved antenna array and method for manufacturing such an antenna array. Additionally, embodiments disclosed herein enable controlling the antenna using standard flat screen controllers to control the VDC pixels. Specifically, the embodiments provide a single ground plane having both common ground for the radiating elements and separate ground for the VDC pixels.
According to disclosed embodiments the ground plane is divided into rows on the DC aspect by forming DC breaks (e.g., by etching or scribing) between the rows. The controller is then energized to send the ground signal to the row of the pixel of interest. The controller is also energized to send the activation signal to the pixel of interest, but send a cancellation signal to the other pixels in that same row. The cancellation signal may be equal to the ground signal applied to that same row. In this manner, the controller can serially activate pixels in row after row. For each row, at each given cycle, only one pixel receives the activation signal while the remaining pixels in the row get the cancellation signal. In the next cycle the activation signal is applied to the next pixel in the row.
According to other embodiments the ground plane is divided into individual patches on the DC aspect. This embodiment can be compared to a chocolate bar—from the RF aspect, the entire bar is one connected piece, but from the DC aspect there are separate islands. According to this embodiment, the ground of each pixel can be addressed individually.
Various disclosed embodiments provide an antenna having split ground plane. The antenna comprises an insulating substrate; a plurality of radiating patches provided on top surface of the insulating substrate; a plurality of pixels of variable dielectric constant material; and a ground plane coupled to the plurality of radiating patches and to a pixel controller, the ground plane comprising a plurality of DC breaks dividing the ground plane into a plurality of DC island separated by DC break sized to enable capacitive coupling of RF signal among the DC islands. In one embodiment the DC breaks form rows or columns, while in another embodiment the DC breaks form both rows and columns, providing a separate DC ground for each radiating patch of the plurality of radiating patches. In one embodiment the DC breaks form rows of DC ground, each row being separately coupled to a ground signal of a pixel controller.
Disclosed embodiment provide a multi-layer antenna comprising: a radiating layer comprising a plurality of radiating patch provided on a top surface of the insulating spacer and arranged in an array of row and columns; a transmission layer comprising a plurality of delay lines arranged in an array of row and columns, each delay line being coupled to a corresponding on of the radiating patches; a control layer comprising a variable dielectric constant (VDC) plate; an RF coupling arrangement for coupling RF signal to each of the radiating patches; and, a ground layer comprising a plurality of conductive ground patches, each conductive ground patch separated from a neighboring conductive ground patch by a distance not larger than a tenth of the wavelength of the RF signal. Each of the conductive ground patches may be aligned below a row of the delay lines or below a single one of the delay lines. Each of the conductive ground patches is separately coupled to a common signal output of a controller, and all of the conductive ground patches cooperatively form a common ground for the RF signal. Each of the conductive ground patches may further comprise at least one aperture aligned below one of the conductive delay lines
Various disclosed embodiments provide an antenna having capacitively coupled feed line and other means to connect the feeding network to the radiating elements, such as vias and proximity coupling. The antenna comprises an insulating substrate; a conductive patch provided on top surface of the insulating substrate; a ground plane provided on bottom surface of the insulating substrate, the ground plane comprising an aperture therein, the aperture being registered to be aligned below the conductive patch; a feed line having terminative end thereof registered to be aligned below the aperture, so as to capacitively transmit RF signal to the conductive patch through the aperture. Other configurations are feasible as well and the following example is set to provide an optional solution and provide an insight on how to implement the system most effectively.
Embodiments of the invention provide a software defined antenna by using a variable dielectric to control a delay line, thereby generating a phase and/or frequency shift. The phase shift may be used, e.g., for spatial orientation of the antenna or for polarization control. Disclosed embodiments decouple the antenna and the corporate feed design so as to avoid signal interference between them. Disclosed embodiments further decouple the RF and DC potentials. The various elements of the antenna, such as the radiator, the corporate feed, the variable dielectric, the phase shift control lines, etc., are provided in different layers of a multi-layered antenna design, thus decoupling the design and avoiding cross-talk.
Various disclosed features include a novel arrangement for coupling the RF signal between the radiating element and the feed line; an arrangement for controlling frequency and phase of the signal; a multi-layered antenna; and methods of manufacturing the antenna.
The accompanying drawings, which are incorporated in and constitute a part of this specification, exemplify the embodiments of the present invention and, together with the description, serve to explain and illustrate principles of the invention. The drawings are intended to illustrate major features of the exemplary embodiments in a diagrammatic manner. The drawings are not intended to depict every feature of actual embodiments nor relative dimensions of the depicted elements, and are not drawn to scale.
Embodiments of the inventive antenna will now be described with reference to the drawings. Different embodiments or their combinations may be used for different applications or to achieve different benefits. Depending on the outcome sought to be achieved, different features disclosed herein may be utilized partially or to their fullest, alone or in combination with other features, balancing advantages with requirements and constraints. Therefore, certain benefits will be highlighted with reference to different embodiments, but are not limited to the disclosed embodiments. That is, the features disclosed herein are not limited to the embodiment within which they are described, but may be “mixed and matched” with other features and incorporated in other embodiments.
As with all RF antennas, reception and transmission are symmetrical, such that a description of one equally applies to the other. In this description it may be easier to explain transmission, but reception would be the same, just in the opposite direction.
The various embodiments described herein provide a multi-layer antenna that can be controlled by a standard or a specially designed flat panel display controller. The antennas include a radiation layer that includes radiating elements for radiating and receiving an RF signal; a transmission layer that includes delay lines for coupling the RF signal to the radiating elements; a control layer comprising a variable dielectric constant (VDC) plate; an RF coupling layer that includes arrangements for coupling RF signal to each of the delay lines; and, a ground layer that functions as ground for the RF signal. In some embodiments the ground layer also functions as ground for the VDC control signal. In embodiments wherein the ground plane functions as ground for the VDC control signal, the ground plane may comprise a plurality of conductive ground patches, each conductive ground patch separated from a neighboring conductive ground patch by a distance that appears as a break for a square wave signal of up to 400 Hz, but appears as a short for the RF signal. In those cases, it is beneficial to make the separation not larger than a tenth of the wavelength of the RF signal.
As illustrated in
In
The structure and operation of the antennas shown in
A top dielectric spacer 305 is generally in the form of a dielectric (insulating) plate or a dielectric sheet, and may be made of, e.g., glass, PET, etc. The radiating patch 310 is formed over the spacer by, e.g., adhering a conductive film, sputtering, printing, etc. At each patch location, a via is formed in the dielectric spacer 305 and is filled with conductive material, e.g., copper, to form contact 325, which connects physically and electrically to radiating patch 310. A delay line 315 is formed on the bottom surface of dielectric spacer 305 (or on top surface of upper binder 342), and is connected physically and electrically to contact 325. That is, there is a continuous DC electrical connection from the delay line 315 to radiating patch 310, through contact 325. As shown in
The delay in the delay line 315 is controlled by the variable dielectric constant (VDC) plate 340 having variable dielectric constant material 344. While any manner for constructing the VDC plate 340 may be suitable for use with the embodiments of the antenna, as a shorthand in the specific embodiments the VDC plate 340 is shown consisting of upper binder 342, (e.g., glass PET, etc.) variable dielectric constant material 344 (e.g., twisted nematic liquid crystal layer), and bottom binder 346. In other embodiments one or both of the binder layers 342 and 344 may be omitted. Alternatively, adhesive such as epoxy or glass beads may be used instead of the binder layers 342 and/or 344.
In some embodiments, e.g., when using twisted nematic liquid crystal layer, the VDC plate 340 also includes an alignment layer that may be deposited and/or glued onto the bottom of spacer 305, or be formed on the upper binder 342. The alignment layer may be a thin layer of material, such as polyimide-based PVA, that is being rubbed or cured with UV radiation in order to align the molecules of the LC at the edges of confining substrates.
The effective dielectric constant of VDC plate 340 can be controlled by applying DC potential across the VDC plate 340. For that purpose, electrodes are formed and are connected to controllable voltage potential. There are various arrangements to form the electrodes, and several examples will be shown in the disclosed embodiments. In the arrangement shown in
Thus, by changing the output voltage of variable potential 341 and/or variable potential 349, one can change the dielectric constant of the VDC material in the vicinity of the electrodes 343 and 347, and thereby change the RF signal traveling over delay line 315. Changing the output voltage of variable potential 341 and/or variable potential 349 can be done using a controller, Ctl, running software that causes the controller to output the appropriate control signal to set the appropriate output voltage of variable potential 341 and/or variable potential 349. Similarly, a conventional controller can be used to provide the control and common signals to control the characteristics of the antenna, as shown in
At this point it should be clarified that in the subject description the use of the term ground refers to both the generally acceptable ground potential, i.e., earth potential, and also to a common or reference potential, which may be a set potential or a floating potential. For example, conventional LCD display controllers output two signals per pixel, one of which is referred to as the ground or common signal. Similarly, while in the drawings the symbol for ground is used, it is used as shorthand to signify either an earth or a common potential, interchangeably. Thus, whenever the term ground is used herein, the term common or reference potential, which may be set or floating potential, is included therein.
In transmission mode the RF signal is applied to the feed patch 360 via connector 365 (e.g., a coaxial cable connector). As shown in
In one example the back plane insulator 350 is made of a Rogers® (FR-4 printed circuit board) and the feed patch 360 may be a conductive line formed on the Rogers. Rather than using Rogers, a PTFE (Polytetrafluoroethylene or Teflon®) or other low loss material may be used.
To further understand the RF short (also referred to as virtual choke) design of the disclosed embodiments, reference is made to
In
For efficient coupling of the RF signal, the length of the window 853, indicated as “L”, should be set to about half the wavelength of the RF signal traveling in the feed patch 860, i.e., λ/2. The width of the window, indicated as “W”, should be set to about a tenth of the wavelength, i.e., λ/10. Additionally, for efficient coupling of the RF signal, the feed patch 860 extends about a quarter wave, λ/4, beyond the edge of the window 853, as indicated by D. Similarly, the terminus end (the end opposite contact 825) of delay line 815 extends a quarter wave, λ/4, beyond the edge of the window 853, as indicated by E. Note that distance D is shown longer than distance E, since the RF signal traveling in feed patch 860 has a longer wavelength than the signal traveling in delay line 815.
It should be noted that in the disclosure, every reference to wavelength, λ, indicates the wavelength traveling in the related medium, as the wavelength may change as it travels in the various media of the antenna according to its design and the DC potential applied to variable dielectric matter within the antenna.
As explained above, in the example of
Turning to
The embodiment of the ground plane 155 illustrated in
In general, the ground plane 155 may simply be a plate or a coating of a conductive material, such as copper. The conductive material may cover the entire area of the ground plane layer. Also, as described herein, when desiring to couple the RF signal capacitively, windows 153 may be formed in the ground plane, aligned with the delay lines 115. While for completeness the drawings include the windows 153, the split ground feature disclosed herein may be implemented with or without the coupling windows 153.
In order to utilize a standard controller, Ctl, which sends both a common signal and an activation signal, a split ground feature is implemented in the embodiment of
In this respect it should be noted that for each delay line and/or radiating patch there may be more than one pixel, and thus more than one electrode, requiring the applied activation signal. Nevertheless, all of these pixels, and therefore their corresponding electrodes, would be positioned above the strip that receives the common signal. Conversely, as will be described below, the activation signal may be applied to the delay line, thus activating all of the VDC pixels below the delay line simultaneously. It should also be noted that while in
A feature of the split ground is that it is accomplished using DC breaks sized to appear as continuity for the RF signal. That is, while the breaks 157 provide isolation for DC signal and for the relatively low frequency square wave of the controller (normally 50 Hz-400 Hz), it appears as a short for the high frequency RF signal. Consequently, the same ground plane can be used as ground for the RF signal and as common for the pixel control. To accomplish forming a DC break that appears as a short to the RF ground signal, the width of the DC break should not be more than λ/10, with respect to the wavelength of the RF signal traveling in the conductive material.
Thus, embodiments of the invention provide an antenna comprising: an insulating substrate; a plurality of conductive patches provided on top surface of the insulating substrate; a variable dielectric constant (VDC) plate; a plurality of conductive delay lines provided over the VDC plate, each of the delay lines coupling RF signal to one of the plurality of conductive patches; and a ground plane provided below the VDC plate, the ground plane comprising at least one DC break sized to form a short for ground path of the RF signal. The VDC plate may define a plurality of VDC pixels, and the antenna may further comprise at least one activation electrode corresponding to each of the plurality of VDC pixels. Each of the plurality of delay line may comprise activation signal input configured for receiving activation signal from a controller. Each radiating patch may include a conductive stub, each conductive stub being coupled to activation signal line of a controller. Each of the elongated rows is independently coupled to a common signal output of a controller.
The ground plane may comprise a plurality of elongated DC breaks dividing the ground plane to a plurality of ground strips. Similarly, the ground plane may comprise a plurality of DC breaks, each traversing the entire ground plane, thus dividing the ground plane into a plurality of physically separated ground patches. The width of the DC break is not more than λ/10 with respect to the wavelength of the RF signal. The ground plane may further comprise a plurality of apertures, each aperture being aligned below one of the conductive delay lines. The ground plane may comprise a plurality of DC breaks, each traversing the entire ground plane, thus dividing the ground plane into a plurality of elongated rows, each row being aligned below a row of conductive delay lines.
The split ground embodiment shown in
According to embodiments of the invention the split lines can be aligned between the radiating patch and a corresponding delay line. Such an example is illustrated in
Also, in the embodiment of
Moreover, in the embodiment of
Any of the embodiments of the split ground plane described herein may be fabricated by various methods. For example, the ground plane may be first fabricated as one large conductive coating, e.g., by sputtering or coating with copper or other conductive material. Thereafter the single coating may be etched, scribed, etc., to form the DC breaks. Conversely, the ground plane can be fabricated with the DC breaks, e.g., by using mask during sputtering or coating with copper or other conductor. Alternatively the ground plane may be fabricated as multiple ground patches that are separated from each other by no more than a tenth of the wavelength of the RF signal. The separation distance is configured to appear as a break for a square wave signal of frequency up to 400 Hz, but appear as a short for the RF frequencies of the antenna.
Another variation illustrated in
As can be understood from the disclosure of the embodiments, various antennas may be constructed having the common elements comprising: an insulating spacer; at least one radiating arrangement provided on the insulating spacer, wherein each radiating arrangement comprises a conductive patch provided on the top surface of the insulating spacer, a delay line provided on the bottom surface of the insulating spacer, and a contact made of conductive material and providing electrical DC connection between the conductive patch and the delay line via a window in the insulating spacer; a variable dielectric constant (VDC) plate; a back plane insulator; a back plane conductive ground provided over the top surface of the back plane insulator; and an RF coupling arrangement for each of the at least one radiating arrangement, the RF coupling arrangement comprising a window formed in the back plane conductive ground and a conductive RF feed patch provided over the bottom surface of the back plane insulator in an overlapping orientation to the window. In some embodiments electrodes are provided in order to control the dielectric constant at selected areas of the VDC plate, while in others the delay line is used for this purpose. In some embodiments the conductive patch is used to couple RF signal from the air, while in others it is used to couple RF energy to another, larger, patch which is used to couple RF signal from the air. The size of the patch is configured according to the desired RF wavelength. The RF wavelength can also be used to optimize the RF coupling by properly sizing the window, the delay line, and the feed patch.
The VDC plate may be segmented into individual pixels of VDC material. An LCD panel of a flat panel screen may be used for the VDC plate. VDC pixels may be grouped according to the area coverage of the electrodes or the delay lines. In other embodiments the VDC material is provided only in areas controlled by the electrodes or delay line.
Features disclosed herein may be implemented to form an antenna even when no change in phase and/or frequency is needed.
Various embodiments were described above, wherein each embodiment is described with respect to certain features and elements. However, it should be understood that features and elements from one embodiment may be used in conjunction with other features and elements of other embodiments, and the description is intended to cover such possibilities, albeit not all permutations are described explicitly so as to avoid clutter.
Generally, a multi-layer, software controlled antenna is provided. The antenna comprises a radiating patch over an insulator plate. A delay line is provided on the bottom of the insulator plate and has one end thereof RF coupled to the radiating patch. The electrical coupling may be by physical conductive contact or by proximity coupling without physical conductive connection therebetween. A variable dielectric constant (VDC) plate is provided below the delay line. A ground plane is provided on bottom of VDC plate, the ground plane comprising an aperture therein, the aperture being registered to be aligned below the radiating patch. A feed line having terminative end thereof registered to be aligned below the aperture is provided below the ground plane, so as to capacitively transmit RF signal to the conductive patch through the aperture. An electrical isolation is provided between the feed line and the ground plane. For example, a back plane dielectric plate may be provided between the feed line and the ground plane. In some embodiments a second feed line is provided, which may coupled RF signal to the delay line through another aperture provided in the ground plane, or through a second, separate ground plane.
To obtain an enhanced bandwidth, a resonant patch may be provided over the radiating patch, wherein in some embodiments an insulating spacer may be provided between the radiating patch and the resonant patch. In some embodiments electrodes are provided in the VDC plate. The electrodes are coupled to variable voltage potential source, which may be connected to a controller. In other embodiments the VDC plate is controlled by applying DC potential to the delay line. Applying a DC potential to the delay line may be implemented using a modified Biat-T, wherein the feed line, ground plate, VDC plate, and delay line form the RF leg of the Bias-T circuitry. The DC leg may be coupled to the delay line through an intermediate inductor (see
It should be understood that processes and techniques described herein are not inherently related to any particular apparatus and may be implemented by any suitable combination of components. Further, various types of general purpose devices may be used in accordance with the teachings described herein. The present invention has been described in relation to particular examples, which are intended in all respects to be illustrative rather than restrictive. Those skilled in the art will appreciate that many different combinations will be suitable for practicing the present invention.
Moreover, other implementations of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. Various aspects and/or components of the described embodiments may be used singly or in any combination. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
This Application is a Continuation-in-Part of U.S. patent application Ser. No. 15/654,643, filed on Jul. 19, 2017, which claims priority benefit from U.S. Provisional Application No. 62/431,393, filed on Dec. 7, 2016, U.S. Provisional Application No. 62/382,489, filed on Sep. 1, 2016, and U.S. Provisional Application No. 62/382,506, filed on Sep. 1, 2016, and is also related to U.S. patent application Ser. No. 15/421,388, filed on Jan. 31, 2017, the disclosures of all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62431393 | Dec 2016 | US | |
62382489 | Sep 2016 | US | |
62382506 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15654643 | Jul 2017 | US |
Child | 15885680 | US |