The present invention relates to an on-hoard actuation system for a viewing instrument, such as an endoscope. More specifically, the invention relates to an instrument with a variable direction of view having on-board actuators for causing the rotations necessary to provide the view vector with at least two degrees of freedom.
Viewing instruments, such as endoscopes, are generally well known in the art. Generally, an endoscope is a medical device for insertion into a body passageway or cavity that enables an operator to view and/or perform certain surgical procedures at a site inside a patient's body. As is known, endoscopes may be either rigid or flexible, and generally include a long tubular member equipped with, for example, some type of system for transmitting images to the user, and in some cases, a working channel for a surgical instrument. The endoscope has a proximal end that remains external to the patient, from which the operator can view the site and/or manipulate a surgical instrument, and a distal end having an endoscope tip for insertion into the body cavity of the patient.
Numerous variable direction of view endoscopes have been proposed, such as the swing prism designs disclosed in U.S. Pat. No. 3,856,000 to Chikama et al., U.S. Pat. No. 4,697,577 to Forkner, U.S. Pat. No. 6,371,909 to Hoeg, et al., U.S. Pat. No. 6,500,115 to Krattiger et al., and WIPO Publication No. WO 01/22865 by Ramsbottom, as well as the pan-tilt videoendoscope design, such as is disclosed in U.S. Pat. No. 5,762,603 to Thompson. These designs rely on two mechanical degrees of freedom for changing the endoscopic line of sight, as is further explained below.
The operating principles of such a scope are illustrated schematically in
Referring to
As endoscopes have become more sophisticated, they have increasingly begun to include more on-board instrumentation, such as sensors and actuators. For example, in addition to image sensors, endoscopes have been proposed that include thermal sensors and pressure sensors. Pneumatic, piezoelectric, or electromagnetic actuators are also being incorporated into endoscopes for various purposes, such as mechanical zooming, automated scope insertion, retraction, rotation, and gravity camera stabilization, such as is disclosed in U.S. Pat. No. 6,097,423 to Mattsson-Boze et al.
Actuators can also be used to change the viewing direction of a variable direction of view instrument, as is further explained herein. As endoscopes gradually become more integrated with computers, automated actuation becomes more interesting because the computers can be used to control the endoscopic viewing direction, such as in the system disclosed in U.S. Pat. No. 6,663,559 to Hale et al. Accordingly, the changing endoscopic line of sight in such variable direction of view instruments is suitable for computer control through appropriately integrated actuators.
What is desired, therefore, is an actuation system that can control motion through at least two degrees of freedom in a variable direction of view instrument. What is further desired is an actuation system that does not require a lot of space or complex construction and assembly. What is also desired is an actuation system that limits transmission backlash and the need for unnecessary support bearings.
Accordingly, it is an object of the present invention to provide an instrument with a variable direction of view where multiple degrees of freedom can be controlled by an on-board system.
It is a further object of the present invention to provide an instrument with a variable direction of view that is compact.
It is yet another object of the present invention to provide an instrument with a variable direction of view providing simple construction and assembly.
In order to overcome the deficiencies of the prior art and to achieve at least some of the objects and advantages listed, the invention comprises a viewing instrument with a variable direction of view, including a proximal portion, an outer shaft extending out from the proximal portion, the shaft having a distal end and a first longitudinal axis, a view changing element arranged at the distal end of the outer shaft, an inner shaft at least partly disposed in the outer shaft that moves the view changing element, the inner shaft having a second longitudinal axis, first and second actuators arranged in the proximal portion, wherein the outer shaft is rotated about the first longitudinal axis by the first actuator and the inner shaft is rotated about the second longitudinal axis by the second actuator.
In another embodiment, the invention comprises a viewing instrument with a variable direction of view, including an outer shaft having a distal end, an inner shaft at least partly disposed in the outer shaft, a viewing element located at the distal end of the outer shaft and driven by the inner shaft, the viewing element having a variable view vector with first and second degrees of freedom, a first actuator coupled to the outer shaft for rotating the outer shaft such that the view vector pivots through the first degree of freedom, a second actuator coupled to the inner shaft for rotating the inner shaft such that the view vector pivots through the second degree of freedom.
In yet another embodiment, the invention comprises a viewing instrument with a variable direction of view, including an outer shaft having a distal end and a first longitudinal axis, an inner shaft at least partly disposed in the outer shaft, the inner shaft having a second longitudinal axis, a viewing element located at the distal end of the outer shaft, the viewing element having a rotational axis angularly offset from the first longitudinal axis and about which the viewing element is rotated by the inner shaft, a first actuator coupled to the outer shaft for rotating the outer shaft about the first longitudinal axis, a second actuator coupled to the inner shaft for rotating the inner shaft about the second longitudinal axis such that the viewing element rotates about the rotational axis.
In still another embodiment, the invention comprises a viewing instrument with a variable direction of view, including an instrument shaft having a distal end and a first longitudinal axis, a view changing element arranged at the distal end of the shaft, a transmission shaft at least partly disposed in the instrument shaft and having a second longitudinal axis, wherein the transmission shaft is coupled to the view changing element such that rotation of the transmission shaft about the longitudinal axis moves the view changing element, a first on-board actuator coupled to the instrument shaft for rotating the instrument shaft about the first longitudinal axis, and a second on-board actuator coupled to the transmission shaft for rotating the transmission shaft about the second longitudinal axis.
In some of these embodiments, the inner and outer shafts are coaxial, such that the first and second longitudinal axes are generally coincident, and in some embodiments, the rotational axis of the viewing element is substantially perpendicular to these axes.
In certain embodiments, the first and second actuators are first and second motors. In some of these embodiments, the motors are coaxial with the outer shaft. In others of these embodiments, a first gear is coupled to the first motor and rotated thereby and a second gear is driven by the first gear and coupled to the outer shaft such that the outer shaft is rotated by rotation of the second gear, while a third gear is coupled to the second motor and rotated thereby and a fourth gear is driven by the third gear and coupled to the inner shaft such that the inner shaft is rotated by rotation of the fourth gear.
In some embodiments, the instrument comprises a generally tubular member and a support assembly disposed in the tubular member, and the motors are mounted to the support assembly.
The basic components of one embodiment of an on-board actuation system for an instrument with a variable direction of view in accordance with the invention are illustrated in
Referring first to
As shown in
As previously noted, the proximal end 12 comprises a generally tubular housing, and a support assembly is disposed therein. Referring to
The transmission drive gears 62, 63 are mounted on the motor shafts, which are structurally supported by bearings 78, 79. Both the endoscope shaft 10 and the drive shaft 46 have driven gears 64, 65 and are supported by two sets of bearings 80, 81 on either side of the gears 64, 65 for structural rigidity and robustness. Rotations through the first and second degrees of freedom 18, 20 are monitored by a set of encoders 82. The encoders 82 are mounted on the shafts 10, 46, rather than on the motor shafts, so that rotation can be monitored directly and not across the transmission gears 62, 63, 64, 65, which have backlash. An O-ring 83 seals the interface between the rotating endoscope shaft 10 and the stationary proximal housing 12.
Depending on the particular requirements of the application in which the invention is being implemented, it may also be desirable to employ other arrangements of the motors 52, 54. For example, direct-drive motors, which have hollow centers, may be used, as illustrated in
As shown in
It should be understood that the foregoing is illustrative and not limiting, and that obvious modifications may be made by those skilled in the art without departing from the spirit of the invention. Accordingly, reference should be made primarily to the accompanying claims, rather than the foregoing specification, to determine the scope of the invention.
This patent application claims the benefit of, under Title 35, United States Code, Section 119(e), U.S. Provisional Patent Application No. 60/652,984, filed Feb. 14, 2005.
Number | Name | Date | Kind |
---|---|---|---|
3773039 | Mori et al. | Nov 1973 | A |
3856000 | Chikama | Dec 1974 | A |
3880148 | Kanehira et al. | Apr 1975 | A |
4503842 | Takayama | Mar 1985 | A |
4697577 | Forkner | Oct 1987 | A |
5471988 | Fujio et al. | Dec 1995 | A |
5575754 | Konomura | Nov 1996 | A |
5762603 | Thompson | Jun 1998 | A |
5782752 | Lichtman et al. | Jul 1998 | A |
5935057 | Lichtman et al. | Aug 1999 | A |
6097423 | Mattsson-Boze et al. | Aug 2000 | A |
6371909 | Hoeg et al. | Apr 2002 | B1 |
6398725 | Thompson | Jun 2002 | B1 |
6428470 | Thompson | Aug 2002 | B1 |
6500115 | Krattiger et al. | Dec 2002 | B2 |
6648817 | Hale et al. | Nov 2003 | B2 |
6663559 | Hale et al. | Dec 2003 | B2 |
6797931 | Iizuka et al. | Sep 2004 | B2 |
7517314 | Hoeg et al. | Apr 2009 | B2 |
20010008952 | Takada | Jul 2001 | A1 |
20020040217 | Jinno | Apr 2002 | A1 |
20020099263 | Hale et al. | Jul 2002 | A1 |
20020103420 | Coleman et al. | Aug 2002 | A1 |
20020133077 | Edwardsen et al. | Sep 2002 | A1 |
20030032862 | Ota et al. | Feb 2003 | A1 |
20030092966 | Schara et al. | May 2003 | A1 |
20040015049 | Zaar | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
299 07 430 | Oct 1999 | EP |
1166710 | Jan 2002 | EP |
1 481 627 | Dec 2004 | EP |
2002000550 | Jan 2002 | JP |
WO 0122865 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20060206006 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60652984 | Feb 2005 | US |