Field
The present disclosure is generally related to a variable displacement vane pump for providing pressurized lubricant to a system. More specifically, this disclosure relates to using pressure and temperature in a variable displacement vane pump to control pump displacement and pressure levels within two control chambers.
Description of Related Art
Vane pumps are known for use for pumping fluids or lubricants, such as oil, to internal combustion engines. Some known systems may utilize a single control chamber for moving lubricant. U.S. patent application Ser. Nos. 2008/0069704, 2012/0183426, and 2013/0136641 illustrate examples of passively controlled variable vane pump having one control chamber, each of which is hereby incorporated in their entirety. Other types of pumps are disclosed in U.S. Pat. Nos. 8,047,822, 8,057,201, and 8,444,395, which are also incorporated herein in their entirety.
It is an aspect of this disclosure to provide a variable displacement vane pump for dispensing lubricant to a system. The pump includes: a housing; an inlet for inputting lubricant from a source into the housing; an outlet for delivering pressurized lubricant to the system from the housing; a control slide displaceable within the housing between a first slide position and a second slide position to adjust displacement of the pump through the outlet; a resilient structure biasing the control slide in the first slide position; a rotor with at least one vane mounted in the housing and configured for rotation within and relative to the control slide, the at least one vane configured for engagement with an inside surface of the control slide during rotation thereof; a first control chamber between the housing and the control slide and a second control chamber between the housing and the control slide for receiving pressurized lubricant; a thermally adjustable control valve, the thermally adjustable control valve configured for movement between a first valve position and a second valve position based on a temperature of the lubricant, the thermally adjustable control valve being in the first valve position for a temperature that is below a predetermined temperature and in the second valve position for a temperature that is at or above the predetermined temperature; a first port connected to the first control chamber and a second port connected to the second control chamber, the first and second ports configured for selective fluid communication to form a control pressure channel extending between the first control chamber and the second control chamber; a third port in the valve configured for selective fluid communication with the second port to form a vent channel between the second control chamber and the thermally adjustable control valve; and a vent port provided in the housing and configured for selective fluid communication with the second control chamber. In its first valve position, the thermally adjustable control valve is configured to control pressure in the second control chamber via fluid communication of the first port and the second port for delivery of pressurized lubricant through the control pressure channel into the second control chamber, thereby pressurizing the second control chamber. In its second valve position, the thermally adjustable control valve is configured to control pressure in the second control chamber via venting pressurized lubricant from the second control chamber via the vent channel by communicating the second port to the third port or via the vent port. The position of the control slide within the housing is further configured to aid in selectively controlling the venting of the pressurized lubricant through the vent channel or through the vent port during venting of the second control chamber
Another aspect provides a system that includes: an engine; a lubricant source containing lubricant and a variable displacement vane pump connected to the lubricant source for dispensing lubricant to the engine. The pump includes: a housing; an inlet for inputting lubricant from a source into the housing; an outlet for delivering pressurized lubricant to the system from the housing; a control slide displaceable within the housing between a first slide position and a second slide position to adjust displacement of the pump through the outlet; a resilient structure biasing the control slide in the first slide position; a rotor with at least one vane mounted in the housing and configured for rotation within and relative to the control slide, the at least one vane configured for engagement with an inside surface of the control slide during rotation thereof; a first control chamber between the housing and the control slide and a second control chamber between the housing and the control slide for receiving pressurized lubricant; a thermally adjustable control valve, the thermally adjustable control valve configured for movement between a first valve position and a second valve position based on a temperature of the lubricant, the thermally adjustable control valve being in the first valve position for a temperature that is below a predetermined temperature and in the second valve position for a temperature that is at or above the predetermined temperature; a first port connected to the first control chamber and a second port connected to the second control chamber, the first and second ports configured for selective fluid communication to form a control pressure channel extending between the first control chamber and the second control chamber; a third port in the valve configured for selective fluid communication with the second port to form a vent channel between the second control chamber and the thermally adjustable control valve; and a vent port provided in the housing and configured for selective fluid communication with the second control chamber. In its first valve position, the thermally adjustable control valve is configured to control pressure in the second control chamber via fluid communication of the first port and the second port for delivery of pressurized lubricant through the control pressure channel into the second control chamber, thereby pressurizing the second control chamber. In its second valve position, the thermally adjustable control valve is configured to control pressure in the second control chamber via venting pressurized lubricant from the second control chamber via the vent channel by communicating the second port to the third port or via the vent port. The position of the control slide within the housing is further configured to aid in selectively controlling the venting of the pressurized lubricant through the vent channel or through the vent port during venting of the second control chamber.
Other aspects and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
As detailed herein, a variable displacement vane pump has a control slide displaceable within its housing, and a first control chamber and a second control chamber each between the housing and the control slide for receiving pressurized lubricant. A thermally adjustable control valve is provided in the housing for adjusting pump displacement based on a temperature of the lubricant. In addition to fluid communication channels in the control chambers, a vent port is provided in the housing, e.g., associated with or in the second chamber. The thermally adjustable control valve is configured to control pressure and fluid communication between the chambers, channels, and vent port. The control valve can thus reduce the pump displacement at lower temperatures. At higher temperatures, the second control chamber can be vented through the thermally adjustable control valve and/or the vent port, depending on the position of the control slide, e.g., depending on the pressure levels or the pump displacement.
As understood by one of ordinary skill in the art, “pump displacement” or “displacement” as used throughout this disclosure refers to a volume of liquid (lubricant) a pump is capable of moving during a specified period of time, i.e., a flow rate.
The housing 20 may be made of any material, and may be formed by aluminum die cast, powdered metal forming, forging, or any other desired manufacturing technique. The housing 20 encloses internal chambers, also referred to herein as first control chamber 34 and second control chamber 36. In the drawings, the main shell of the housing 20 is shown. Walls define axial sides of the internal chambers and a peripheral wall 23 extends around to surround the internal chambers peripherally. A cover 19 (e.g., shown in
The housing 20 and cover 19 includes various surfaces for accommodating movement and sealing engagement of the control slide 12, which will be described in further detail below.
The control slide 12 is displaceable within the housing 20 and relative to the cover 19 between a first slide position and a second slide position to adjust displacement of the pump 10 through the outlet 40. In accordance with an embodiment, the control slide 12 is pivotally mounted and configured for pivotal displacement within the housing 20 between the first and second slide positions. The first slide position is defined as a home position for maximum displacement.
Specifically, in an embodiment wherein the control slide 12 pivots, a pivot pin 28 or similar feature may be provided to control the pivoting action of the control slide 12. The pivot pin 28 can be mounted to the housing 20. The configuration of the pivotal connection of the control slide 12 in the housing 20 should not be limited.
The control slide 12 has an inside or inner surface 13 (e.g., see
The rotor 14 is rotatably mounted in the housing 20 within the rotor receiving space 35 of the control slide 12. The rotor 14 is configured for rotation within and relative to the control slide 12. The rotor 14 has a central axis that is typically eccentric to a central axis of the control slide 12 (and/or rotor receiving space 35). The rotor 14 is connected to a drive input in a conventional manner, such as a drive pulley, drive shaft, engine crank, or gear. As shown in
The rotor 14 has at least one radially extending vane 18 mounted to the rotor 14 for radial movement. Specifically, each vane 18 is mounted at a proximal end in a radial slot in the central ring or hub 15 of the rotor 14 in a manner that allows them to slide radially. Centrifugal force may force the vane(s) 18 radially outwardly to engage and/or maintain engagement between distal end(s) of the vane(s) and the inside or inner surface 13 of the control slide 12 during rotation thereof. This type of mounting is conventional and well known. Other variations may be used, such as springs or other resilient structures in the slots for biasing the vanes radially outwardly, and this example is not limiting. Thus, the vane(s) 18 can be sealingly engaged with the inner surface 13 of the control slide 12 such that rotating the rotor 14 draws fluid in through the inlet 30 by negative intake pressure and outputs the fluid out through the outlet 40 by positive discharge pressure. Because of the eccentric relationship between the control slide 12 and the rotor 14, a high pressure volume of the fluid is created on the side where the outlet 40 is located, and a low pressure volume of the fluid is created on the side where the inlet 30 is located (which in the art are referred to as the high pressure and low pressure sides of the pump). Hence, this causes the intake of the fluid through the inlet 30 and the discharge of the fluid through the outlet 40. This functionality of the pump is well known, and need not be detailed further.
The control slide 12 can be moved (e.g., pivoted) to alter the position and motion of rotor 14 and its vane(s) relative to the inner surface 13 of the slide 12, and, thus, alter the displacement of the pump and distribution of lubricant through the outlet 40. The resilient structure 24 biases or urges the control slide 12 in its first slide position (or first pivotal direction or position, or a maximum displacement position). A pressure change in the housing 20 can result in the control slide 12 moving or pivoting (e.g., centering) relative to the rotor 14, adjusting (e.g., reducing or increasing) displacement of the pump. The first slide position is the position or direction that increases the eccentricity between the control slide 12 and rotor axes. As the eccentricity increases, the flow rate or displacement of the pump increases. Conversely, as the eccentricity decreases, the flow rate or displacement of the pump also drops. In some embodiments, there may be a position where the eccentricity is zero, meaning the rotor and ring axes are coaxial. In this position, the flow is zero, or very close to zero, because the high and low pressure sides have the same relative volumes. Accordingly, in an embodiment, the first slide position of the control slide 12 is the position or direction for maximum offset or displacement of the pump 10 (e.g., see
In the illustrated embodiment, the resilient structure 24 is a spring, such as a coil spring. In accordance with an embodiment, the resilient structure 24 is a spring for biasing and/or returning the control slide 12 to its default or biased position (first or home slide position for minimum eccentricity with the rotor 14). The control slide 12 can be moved against the spring or resilient structure to decrease eccentricity with the rotor 14 based on the pressure within the housing 20 to adjust displacement and hence output flow. The housing 12 may include a receiving portion 37 for the resilient structure 24, defined by portions of the peripheral wall 23, for example, to locate and support the structure (or spring). The receiving portion 37 may include one or more side walls 45 to restrain the structure 24 against lateral deflection or buckling, and a bearing surface against which one end of the spring is engaged. The control slide 12 includes a radially extending bearing structure 60 defining a bearing surface 61 against which the resilient structure 24 is engaged, for example. Other constructions or configurations may be used.
A plurality of seals such as seals 62, 64, such as shown in
As detailed above, pressure is used to control the distribution or delivery of lubricant by the pump 10. The control pressure can be, for example, the pump outlet pressure or the engine gallery feedback pressure. The control pressure may be used to control parts of the pump so that the desired amount of pressurized lubricant is delivered to the system, e.g., engine. Generally, however, at lower temperatures (e.g., 20° C.), a pump may reaches a control pressure level at low speed, so adjustment or control of the pump displacement is typically active. The pressure level at low speed is generally higher than needed for adequate engine performance when the control mechanism of the pump starts at low speed. At higher temperatures (e.g., 60° C. or above), the pressure level may increases up to a control pressure, then the displacement and pressure is reduced.
As disclosed herein, in addition to the control pressure, a temperature of the lubricant, e.g., via a temperature determined by a thermally reactive device, is used to control a thermally adjustable control valve for directing the pressurized lubricant in the housing and varying displacement of the variable vane pump to the engine.
Referring now to
The first control chamber 34 is controlled in a traditional manner using passive control, e.g., it is outlet pressure controlled or gallery pressure controlled by pressure feedback. That is, a positive pressure of force from the pressurized lubricant can be applied to the first control chamber 34, and thus applied to control slide 12, to force the slide 12 into its second slide position (or second pivotal direction) where eccentricity is decreased.
As further detailed below, the second control chamber 36 is controlled via the first control chamber 34, the control slide 12, and the thermally adjustable control valve 44. A first port 50 and a second port 52 are provided in the housing 20 and configured for selective fluid communication to form a control pressure channel extending between the first control chamber 34 and the second control chamber 36. Accordingly, the chambers 34, 36 can be connected by a control pressure channel as defined by ports 50 and 52, under certain circumstances.
The thermally adjustable control valve 44 utilizes an on/off control based on at least a temperature of the lubricant to control the displacement or flow rate of the pump 10 (e.g., by directing the pressurized lubricant in the housing 20). The thermally adjustable control valve 44 is configured for movement between a first valve position and a second valve position based on a temperature of the lubricant. In an embodiment, the thermally adjustable control valve 44 is in the first valve position for a temperature that is below a predetermined temperature and in the second valve position for a temperature that is at or above the predetermined temperature.
In accordance with an embodiment, the thermally adjustable control valve 44 can react to a temperature determined by a thermally reactive device, for example. In an embodiment, the thermally adjustable control valve 44 can be mounted to casing 38 via a connector or plug 47 and a resilient device 46, such as a spring. The connector or plug 47 is provided at an end of the casing 38 and keeps or locks a first end of the resilient device 46 in its position within the casing 38. The spring 46 may be used for activating movement of the control valve 44 between the first valve position and the second valve position.
In an embodiment, the thermally reactive device used or associated with the thermally adjustable control valve 44 is a thermostat 42. The thermostat 42 can be connected to the control valve 44 (e.g., via a shaft) and secured within the casing 38, as shown in
In an embodiment, the thermostat 42 is configured for control over a temperature curve or range between approximately 40 degrees and approximately 80 degrees (Celsius). In an embodiment, the temperature curve and/or range may be adjusted to tune the pump 10 and its output according to parameters so desired by the user. For example, the temperature(s) at which the thermostat 42 is configured to react and/or move can be tuned geometrically so as to control the movement of the control valve 44, and, therefore, control the pump displacement.
As previously explained, the thermally adjustable control valve 44 is designed to reduce pump displacement at lower temperatures and reduce high pressure levels at low engine speeds that are not needed for engine performance based on a temperature of the lubricant (oil). Accordingly, the thermostat 42 and control valve 44 are used as a controller of the pump 10. To provide pressure adjustments in the housing 20 and chambers, the pump 10 includes a third port 48 that is configured for selective fluid communication with the second port 52 to form a vent channel between the second control chamber 36 and the thermally adjustable control valve 44. The position and/or movement of the control valve 44 can control the use and communication between the third port 48 and second port 52, i.e., the vent channel. The third port 48 is connected to/outlets to a surrounding environment of the pump, e.g., to the engine oil sump. As explained below, the third port 48 is configured to be selectively connected to the second control chamber 36, depending on a position of the control valve 44, to vent the second control chamber 36. In an embodiment, the third port 48 is provided in the casing 38 that contains the control valve 44 (e.g., see
In addition to the casing 38 for the control valve 44, the cover 19 and/or housing 20 also includes a vent port 54 provided therein (see, e.g.,
In an embodiment, the vent port 54 is provided in the housing 20. In another embodiment, the vent port 54 is provided in the cover 19.
As detailed below, in an embodiment, at lower temperatures and higher speeds, the vent port 54 can be opened to vent the second control chamber 36, via movement of the control slide 12. In accordance with one embodiment, the control valve 44 is configured to pressurize the second control chamber 36 (e.g., at cold conditions), and when the slide moves further to a second slide position (e.g., to a minimum displacement position), vent port 54 opens up. In an embodiment, at higher temperatures with lower pressure, the second control chamber 36 can be vented via the vent channel (fluid communication through ports 48 and 52). When connected, the vent port 54 enables and connects the flow of lubricant through the vent channel from the second chamber 36 to the oil sump of the engine.
The control slide 12 movement may be either driven by the first control chamber 34 that adjusts the pump displacement to pressure level over engine speed (e.g., in hot conditions, the control valve 44 is positioned as shown in
The position of the control valve 44 is controlled based on the temperature of the lubricant within the pump 10.
The control slide 12 and control valve 44 are independently controlled. For example, the control valve 44 can be positioned in either its first valve position or its second valve position, or moved between such positions, no matter the position of the control slide 12 (e.g., in a first slide position, in a second slide position, in a maximum displacement position, in a minimum displacement position, or in a second slide position that is between or close to such maximum and/or minimum positions of the slide). As detailed below, the position of the control valve 44 (as controlled by the thermostat 42) adjusts the connection/fluid communication between the ports 50, 52 and vents 48, 54.
As shown in
That is, pressurized lubricant may flow between the first control chamber 34 and the second control chamber 36, as schematically depicted in the diagram of
In accordance with an embodiment, near or at minimum displacement (or in a second slide position), as shown in
Typically, at lower temperatures (e.g., lower than 60 degrees Celsius) and lower engine speeds (e.g., lower than 2500 rpm), the pump 10 runs at high pressure. By controlling the hydraulic pressure within the chambers 34 and 36 and output via the outlet 40 using the thermally adjustable control valve 44, i.e., by positioning the valve 44 in a first valve position and allowing fluid communication between the chambers 34, 36, the position of the control slide 12 can be controlled by the flow pressure, which, in turn, reduces the pump displacement at low temperatures. As such, the pressure level or displacement also goes down. This reduced pressure level also reduces the pump drive torque. Accordingly, the overall engine friction and engine CO2 emissions can be improved (e.g., lowered) when utilizing both the control valve 44 and control slide 12 as disclosed herein.
At lower temperatures of the lubricant and at maximum displacement, the second control chamber 36 can be pressurized by the first control chamber 34 up to the point when the control slide 12 moves from its maximum allowable displacement position. As the control slide 12 moves away from its maximum allowable displacement position (e.g., away from the position as shown in
At lower temperatures and lower/minimum displacement position of the control slide 12, the control valve 44 can remain in its first position, such as shown in
At higher temperatures, however, the pressure level of the lubricant increases up to the control pressure. To control the pressure and pump displacement (e.g., reduce the pressure and displacement), the disclosed thermally adjustable control valve 44 may be activated.
As previously noted, to first control such pressure and displacement, the second control chamber 36 can be vented through the thermally adjustable control valve 44 and its casing 38, and/or the vent port 54. As previously noted, the control slide 12 may be moved to vent the second control chamber 36 and close off communication between the first and second control chambers 34, 36 based on the pressure of the flowing lubricant. Further still, the control valve 44 can be used to provide additional control of the pump 10 based on the temperature of the lubricant. Depending on the temperature and pressure of the lubricant, the second chamber 36 may be operated in a first venting mode or a second venting mode. For example,
The position of the control slide within the housing is further configured to aid in selectively controlling the venting of the pressurized lubricant through the vent channel or through the vent port 54 during venting of the second control chamber 36. Accordingly, the venting of the pressurized lubricant from the second control chamber 36 may change based on the position of the control slide 12 within the housing 20 and/or relative to the cover 19, between directing the pressurized lubricant through the vent channel (e.g., via placing second port 52 and third port 48 in fluid communication) and directing the pressurized lubricant through the vent port 54 provided in the second control chamber 36, which is depicted schematically in the diagram of
Specifically, in an embodiment, the control valve 44 is moved via the thermostat 42 and spring 46 to an extended position, as shown in
More specifically, in an embodiment, when the control slide 12 is positioned for higher displacement, or in a first venting mode, fluid or lubricant may be fed through the second port 52 and third port 48 of the casing 38. The control slide 12 may be positioned to close fluid communication through the control pressure channel when the control valve 44 is in the second valve position and the control slide 12 is positioned for higher displacement. As such, there may be no fluid communication between the first control chamber 34 and the second control chamber 36 and no pressurization of the second control chamber 36 via the control pressure channel.
As the control slide 12 is moved (e.g., counterclockwise) to lower displacement of the pump 10 (towards a second slide position), it may be moved to a second venting mode, opening up the vent port 54 so that vent port 54 is utilized for venting the second control chamber 36. Specifically, when the control slide 12 is moving (e.g., in reference to the Figures, when the control slide 12 is moving counterclockwise, or towards a position like that of
However, to avoid too low of a pressure level at higher engine speeds, the influence of the thermally adjustable control valve 44 on the pump displacement reduction is limited. The maximum displacement reduction is defined by the position of the vent port 54 in the second control chamber 36, as shown in
Thus, based on the position of the control slide 12 in the housing 20/relative to the cover 19, i.e., based off of the pressure and/or pressure change(s), and based on the position of the control valve 44 in its casing 38, i.e., based off of the temperature of the lubricant, the second control chamber 36 may be selectively vented either through the control valve 44 and casing 38 by the connection of second port 52 and the third port 48 (i.e., vent channel) or the vent port 54. Accordingly, the second control chamber 36 may be in a venting mode (e.g., either first venting mode or second venting mode), as opposed to being pressurized by the first control chamber 34, at higher lubricant temperatures. In either first venting mode or the second venting mode, the pump displacement is adjusted according to the engine's needs. Accordingly, it can be said that engine speed, pressure, and temperature are used to control the pump 10.
As such, this disclosure describes a thermally adjustable control valve 44 used along with a control slide 12 in a variable vane, multi-chamber pump 10. The pump 10 is controlled via temperature and pressure and adjusts pressure in at least the second chamber 36 based on the positions of the control valve 44 and control slide 12. In its first valve position (see
In accordance with an embodiment, the selective venting of the pressurized lubricant from the second control chamber may be either through the vent channel or through the vent port, despite the position of the control slide.
Although not shown, seals can be provided in the housing 20 and/or cover 19. In the illustrated embodiment, two chambers are shown; however, in some embodiments more chambers could be used for finer control over pressure regulation. Similarly, any number of additional seals could be used.
Since the herein disclosed thermostat 42 is used as a controller for directing the lubricant in the pump 10, the use of an ECU (engine control unit) controller is not required (since the ECU function typically includes a similar function as the thermostat 42 in the overall pump control map). However, it should be understood that a controller like an ECU, may, in some embodiments, be associated and/or connected to the pump 10 and/or engine 32 to actively control one or more features of the pump as defined by a system map for the engine, e.g., based on engine operating speed, load on the engine, etc.
Also, the type of thermally reactive device used to control the valve 44 itself is not intended to be limited to a thermostat, like thermostat 42, in this disclosure. Rather, an alternative and/or additional mechanical device, such as a thermally reactive spring, can be used to control the control valve 44.
While the principles of the disclosure have been made clear in the illustrative embodiments set forth above, it will be apparent to those skilled in the art that various modifications may be made to the structure, arrangement, proportion, elements, materials, and components used in the practice of the disclosure.
It will thus be seen that the features of this disclosure have been fully and effectively accomplished. It will be realized, however, that the foregoing preferred specific embodiments have been shown and described for the purpose of illustrating the functional and structural principles of this disclosure and are subject to change without departure from such principles. Therefore, this disclosure includes all modifications encompassed within the spirit and scope of the following claims.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 14/477,620, filed Sep. 4, 2014, issued under U.S. Pat. No. 9,771,935 on Sep. 26, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4510962 | Mott | Apr 1985 | A |
4678412 | Dantigraber | Jul 1987 | A |
6309193 | Repple et al. | Oct 2001 | B1 |
6481458 | Hirano et al. | Nov 2002 | B2 |
6499963 | Repple et al. | Dec 2002 | B2 |
7794217 | Williamson et al. | Sep 2010 | B2 |
8047822 | Shulver et al. | Jan 2011 | B2 |
8057201 | Shulver et al. | Nov 2011 | B2 |
8202061 | Shulver et al. | Jun 2012 | B2 |
8444395 | Tanasuca et al. | May 2013 | B2 |
8602748 | Armenio et al. | Dec 2013 | B2 |
8684702 | Watanabe et al. | Apr 2014 | B2 |
8720849 | Williamson | May 2014 | B2 |
RE46294 | Watanabe et al. | Jan 2017 | E |
9534519 | Valkenberg | Jan 2017 | B2 |
20100226799 | Watanabe et al. | Sep 2010 | A1 |
20130164162 | Saga | Jun 2013 | A1 |
20140072456 | Watanabe | Mar 2014 | A1 |
20140182541 | Yi | Mar 2014 | A1 |
20160186752 | Valkenberg | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
103119300 | May 2013 | CN |
103174644 | Jun 2013 | CN |
103672353 | Mar 2014 | CN |
102009039776 | Mar 2011 | DE |
102013114268 | Mar 2014 | DE |
102012016683 | May 2014 | DE |
2264318 | Dec 2010 | EP |
2008025423 | Feb 2008 | JP |
WO 2012013232 | Feb 2012 | WO |
Entry |
---|
Office Action issued in corresponding Chinese Patent Application No. 201580003509.4 dated May 11, 2018 w/English translation. |
Communication pursuant to Article 94(3) EPC EP Application No. 15838091.5 dated Jan. 26, 2018. |
International Preliminary Report on Patentability dated Mar. 16, 2017 in International Patent Application PCT/IB2015/056723. |
International Search Report & Written Opinion dated Nov. 26, 2015 for Appln. No. PCT/IB2015/056723. |
Extended European Search Report dated Apr. 24, 2017 in European Application No. 15838091.5. |
Number | Date | Country | |
---|---|---|---|
20180010605 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14477620 | Sep 2014 | US |
Child | 15712312 | US |