An individual may have limited or impaired mobility such that utilizing a restroom is challenging or impossible. For example, the individual may have a condition, had a surgery, or a have disability that impairs mobility. Additionally, bodily fluid collection from the individual may be needed for monitoring purposes or clinical testing.
Bedpans and other common urine collection devices suffer from various drawbacks, such as difficulty of use, embarrassing visibility of urine in the device, and some devices cannot be worn at all times, thereby making spills and leakage a risk. Thus, users and manufacturers of patient care beds continue to seek new and improved devices, systems, and methods to prevent patient's clothing and beds from becoming soiled.
Embodiments disclosed herein are related to fluid collection devices, systems, and methods of collecting fluid from wearers, where the fluid collection devices include a retention means for maintaining the position of the fluid collection device with respect to the wearer
In an embodiment, a fluid collection device is disclosed. The fluid collection device includes a fluid impermeable barrier defining an interior chamber therein and an opening through which the interior chamber is accessible. The fluid collection device includes a porous material disposed in the interior chamber. The fluid collection device includes a conduit fluidly connected to the interior chamber. The fluid collection device includes a retention means for retaining positioning of the fluid collection device with respect to the wearer.
In an embodiment, a fluid collection system is disclosed. The fluid collection system includes a fluid storage container configured to hold a fluid. The fluid collection system includes a fluid collection device having a fluid impermeable barrier defining an interior chamber therein and an opening through which the interior chamber is accessible, a porous material disposed in the interior chamber, a conduit fluidly connected to the interior chamber, a retention means for retaining positioning of the fluid collection device with respect to the wearer. The fluid collection system includes at least one vacuum source fluidly coupled to the fluid storage container, the at least one vacuum source configured to draw fluid into the at least one fluid storage container from the fluid collection device via the conduit.
In an embodiment, a method for collecting fluid is disclosed. The method includes positioning a fluid collection device on a wearer, the fluid collection device including a fluid impermeable barrier defining an interior chamber therein and an opening through which the interior chamber is accessible, a porous material disposed in the interior chamber, a conduit fluidly connected to the interior chamber, and a retention means for retaining positioning of the fluid collection device with respect to the wearer. The method includes engaging the retention means of the fluid collection device. The method includes receiving fluid into the fluid collection device.
Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.
The drawings illustrate several embodiments of the present disclosure, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.
Embodiments disclosed herein are related to devices, systems, and methods for collecting fluid with fluid collection devices having means for retaining position with respect to a wearer. The devices, systems, and methods of disclosed herein include fluid collection devices having a fluid impermeable barrier defining an interior chamber therein, a porous material disposed at least partially within the interior chamber, and a conduit extending into the interior chamber to remove fluids collected within the interior chamber by the porous material. The retention means allow the porous material of the fluid collection device to remain positioned on or over the urethra of the wearer during use. The various retention means provide one or more of conformational rigidity, conformability to wearer anatomy, friction fit with wearer anatomy, or mucoadhesion with wearer anatomy.
In a first example, a fluid collection device includes a selectively deformable spine in or around the conduit to maintain a shape of the fluid collection device.
The fluid impermeable barrier 102 may be formed of any suitable fluid impermeable material(s), such as a fluid impermeable polymer (e.g., silicone, polypropylene, polyethylene, polyethylene terephthalate, thermoplastic elastomer(s), a polycarbonate, etc.), a metal film, natural rubber, another suitable material, or combinations thereof. As such, the fluid impermeable barrier 102 substantially prevents the fluid(s) from passing therethrough. The fluid impermeable barrier 102 at least partially defines the interior chamber (e.g., interior region) therein and the opening 106. For example, the inner surface(s) of the fluid impermeable barrier 102 at least partially defines the interior chamber within the fluid collection device 100. The fluid impermeable barrier 102 at least temporarily retains the fluid(s) in the interior chamber. One or more portions of at least the outer surface of the fluid impermeable barrier 102 may be formed from a soft and/or smooth material, thereby reducing chaffing.
The fluid impermeable barrier 102 may be tubular (ignoring the opening), such as substantially cylindrical (as shown), oblong, prismatic, flattened tube, or any other extruded shape (e.g., a tube having multiple flanges). The fluid impermeable barrier 102 may be sized to fit between the legs of a wearer. During use, the outer surface of the fluid impermeable barrier 102 may at least partially contact the wearer.
The opening 106 provides an ingress route for fluids to enter the interior chamber. The opening 106 may be defined by the fluid impermeable barrier 102, such as by an inner edge of the fluid impermeable barrier 102. For example, the opening 106 is formed in and extends through the fluid impermeable barrier 102, from the outer surface to the inner surface, thereby enabling fluid(s) to enter the interior chamber from outside of the fluid collection device 100. The opening 106 is located and shaped to be positioned adjacent to a wearer's urethra while the device is in use. At least a portion of porous material(s) 115 disposed in the interior may be exposed through the opening 106 to allow fluids to move inwardly into the interior chamber, such as via one or more of permeation, suction, or wicking.
The fluid collection device 100 may be positioned proximate to the urethra and urine may enter the interior chamber via the opening 106. When in use, the opening 106 may be elongated, extending from a first location below the urethra to a second location above the urethra (e.g., at or near the top of the vaginal opening or the pubic region). The opening 106 may exhibit an elongated shape because the space between the legs of a wearer is relatively narrow when the legs of the wearer are closed, thereby only permitting the flow of the fluid(s) along a path that corresponds to the elongated shape of the opening 106 (e.g., longitudinally extending opening). The opening 106 in the fluid impermeable barrier 102 may exhibit a length that is measured along the longitudinal axis of the fluid collection device 100 that may be at least about 10% of the length of the fluid collection device 100, such as about 10% to about 95% of the length of the fluid collection device 100. The opening 106 in the fluid impermeable barrier 102 may exhibit a width that is measured transverse to the longitudinal axis of the fluid collection device 100 and may be at least about 10% of the circumference of the fluid collection device 100, such as about 10% to about 75% of the circumference of the fluid collection device. The opening 406 may be longitudinally oriented (e.g., having a major axis parallel to the longitudinal axis of the device 100.
The fluid collection device 100 includes the porous material 115 disposed in the interior chamber.
The porous material 115 may include more than one material arranged concentrically within the interior chamber, such as gauze disposed over spun plastic fibers (e.g., spun nylon fibers). For example, the porous material 115 may include one or more of a fluid permeable membrane 118 or a fluid permeable support 120 disposed thereunder. The fluid permeable membrane 118 may include any porous material or a material that may wick the fluid. For example, the fluid permeable membrane 118 may include fabric, such as a gauze (e.g., a silk, linen, or cotton gauze), another soft fabric, or another smooth fabric. The fluid permeable membrane 118 may include spun plastic fibers (e.g., spun nylon fibers), such as a spun plastic mat or bed. Forming the fluid permeable membrane 118 from gauze, soft fabric, and/or smooth fabric may reduce chafing caused by the fluid collection device 100 against a wearer.
The fluid collection device 100 may include the fluid permeable membrane 118 disposed in the interior chamber. For example, the fluid permeable membrane 118 may cover at least a portion (e.g., all) of the opening 106.
The porous material 115 of the fluid collection device 100 may include the fluid permeable support 120 disposed in the interior chamber below the fluid permeable membrane 118. The fluid permeable support 120 may be composed to support the fluid permeable membrane 118 since the fluid permeable membrane 118 may be formed from a foldable, flimsy, or otherwise easily deformable material. For example, the fluid permeable support 120 may be positioned such that the fluid permeable membrane 118 is disposed between the fluid permeable support 120 and the fluid impermeable barrier 102. As such, the fluid permeable support 120 may support and maintain the position of the fluid permeable membrane 118 thereon. The fluid permeable support 120 may include any porous, fluid permeable material, such as a material that may wick the fluid. For example, the fluid permeable support 120 may include any of the fluid permeable membrane materials disclosed herein. The fluid permeable support 120 may be formed from any fluid porous material that is less deformable than the fluid permeable membrane 118, such as any of the materials disclosed herein for the fluid permeable membrane 118, in a more dense or rigid form. In some examples, the fluid permeable support 120 may include a porous polymer (e.g., nylon, polyester, polyurethane, polyethylene, polypropylene, etc.) structure, an open cell foam, or spun plastic fibers (e.g., nylon fibers). In some examples, the fluid permeable membrane 118 may include gauze and the fluid permeable support 120 may include spun nylon fibers. In some examples, the fluid permeable support 120 may be formed from fabric, felt, gauze, or combinations thereof. In some examples, the fluid permeable support 120 may be formed from a natural material, such as cotton, wool, silk, or combinations thereof. In such examples, the material may have a coating to prevent or limit absorption of fluid into the material, such as a water repellent coating. In some examples, the fluid permeable support 120 may be omitted from the fluid collection device 100. In some examples, the fluid permeable membrane 118 may be optional. For example, the porous material 115 may include only the fluid permeable support 120.
The fluid permeable support may have a greater permeability or a greater ability to wick fluids than the fluid permeable membrane 118, such as to move the fluid inwardly from the outer surface of the fluid collection device 100 through the permeable membrane 118 and into the fluid permeable support. In some examples, the permeability or the wicking ability of the fluid permeable support and the fluid permeable membrane 118 may be substantially the same.
The fluid impermeable barrier 102, the porous material 115 may be sized and shaped to have the conduit 108 at least partially disposed in the interior chamber. For example, at least one of the fluid permeable membrane 118 and the fluid permeable support 120 may be configured to form a space that accommodates the conduit 108. The fluid impermeable barrier 102 may define an aperture sized to receive the conduit 108 therethrough. The aperture may be sized and shaped to form an at least substantially fluid tight seal against the conduit 108 thereby substantially preventing the fluid(s) from escaping the interior chamber. The fluid collected in the fluid collection device 100 may be removed from the interior chamber via the conduit 108.
The porous material 115 may extend across at least a portion (e.g., all) of the opening 106. At least a portion of the porous material 115 may be exposed to an environment outside of the interior chamber through the opening 106. The fluid permeable membrane 118 and the fluid permeable support 120 may at least substantially completely fill the portions of the interior chamber that are not occupied by the conduit 108. In another example, the fluid permeable membrane 118 and the fluid permeable support 120 may not substantially completely fill the portions of the interior chamber that are not occupied by the conduit 108. In such an example, the fluid collection device 100 includes reservoir 122 in the interior chamber. The reservoir 122 is defined between the fluid impermeable barrier 102 and the porous material 115 in the interior chamber. The reservoir 122 may be located in a portion of the fluid collection device 100 expected to be positioned in a gravimetrically low point of thereof when worn by a user. While depicted in the second end region 127, the reservoir 122 may be located in any portion of the interior chamber such as the first end region 125.
As shown in
The conduit 108 includes an inlet at a first end region and an outlet at a second end region positioned downstream from the inlet. The conduit 108 may extend into the interior chamber to any point therein. For example, the conduit 108 may be inserted into the interior chamber at the first end region 125 of the fluid collection device 100 and extend therethrough to the second end region 127. The conduit 108 may extend into the fluid impermeable barrier 102 from the first end region 125 through to the second end region 127 to a point proximate to the reservoir 122 such that the inlet is in fluid communication with the reservoir 122. In some examples (not shown), the conduit 108 may enter the interior chamber in the second end region 127 and the inlet of the conduit 108 may be disposed in the second end region 127 (e.g., in the reservoir 122 or flush with fluid impermeable barrier 102). The fluid collected in the reservoir 122 may be removed from the interior chamber via the conduit 108. In some examples, the inlet may be disposed at the end of the porous material 115 in the second end region 127, such as flush with the end of the fluid permeable support 120. In some examples, the inlet of the conduit 108 may be disposed within the fluid permeable support 120 such between first end region 125 and the second end region 127.
Other examples of fluid impermeable barriers, porous materials, chambers, conduits and their shapes and configurations are disclosed in U.S. patent application Ser. No. 15/612,325 filed on Jun. 2, 2017; U.S. patent application Ser. No. 15/260,103 filed on Sep. 8, 2016; and U.S. Pat. No. 10,226,376 filed on Jun. 1, 2017, the disclosure of each of which is incorporated herein, in its entirety, by this reference.
The conduit 108 provides a selectively deformable spine within the fluid collection device 100. Upon manual manipulation, the conduit 108 may hold the fluid collection device 100 in a specific shape, such as the illustrated curved shape. For example, the fluid collection device 100 is able to deform to the curvature of the body between the glutes and the labia by manipulating the conduit 108. The reduction in tension along the spine of the fluid collection device 100 provided by the conduit 108 reduces the likelihood of detachment or misalignment of the fluid collection device 100 from the urethra (e.g., on top of the labia).
Disclosed below are examples for the conduit 108 to provide a selectively deformable spine in the fluid collection device 100.
As shown in
The gooseneck tubing 110 may or may not be fluid tight. Accordingly, the tubing 109 therearound may help retain fluids within the deformable conduit 108a. The tubing 109 may be relatively soft and flexible compared to conventional drainage tubing. The tubing 109 provides a cushion between the wearer and the gooseneck tubing 110. The tubing 109 may be constructed of a polymer such as a thermoplastic elastomer, polyvinyl chloride, ethylene vinyl acetate, polytetrafluoroethylene, etc., or combinations of any of the foregoing. In some examples, the tubing 109 may include silicone or latex. The tubing 109 may have a wall thickness of at least about 1 mm, such as about 1 mm to about 5 mm, or less than 10 mm. The deformable conduit 108a may include tubing 109 having a thickness that prevents wearers from feeling the gooseneck tubing 110 therebelow.
The diameter or greatest dimension of the gooseneck tubing 110 may be about 13 mm or less, such as about 5 mm to about 13 mm, about 5 mm to about 8 mm, about 8 mm to about 13 mm, or more than about 8 mm. In some examples, the diameter or greatest dimension of the deformable conduit 108a (including the outer dimensions of the tubing 109 disposed over the gooseneck tubing 110) may be about 13 mm or less, such as about 5 mm to about 13 mm, about 5 mm to about 8 mm, about 8 mm to about 13 mm, or more than about 8 mm. Fluid collection devices incorporating the deformable conduit 108a may include porous material having a thickness that prevents wearers from feeling the gooseneck tubing 110 of the deformable conduit 108a therebelow.
The gooseneck tubing 110 may extend only along a portion of the deformable conduit 108a, such as the portion inside of the interior chamber or from inside of the interior chamber to a distance outside of the first end region 125 of the fluid collection device containing the same, such as at least 1 cm past the aperture through which the conduit 108a is inserted into the fluid collection device. The deformable conduit 108a may be used in any of the examples of fluid collection devices disclosed herein.
Different deformable conduits may be utilized in fluid collection devices.
The tubing 109 may be as disclosed herein with respect to the deformable conduit 108a. The outer tube 112 may be similar or identical to the conduit 108 or the tubing 109, in one or more aspects. For example, the outer tubing 112 may including a polymer conduit, such as thermoplastic elastomer, polyvinyl chloride, ethylene vinyl acetate, polytetrafluoroethylene, silicone, latex, or combinations thereof.
The plurality of fibers 111, tubing 109, and outer tube may extend only along a portion of the deformable conduit 108b, such as the portion inside of the interior chamber or from inside of the interior chamber to a distance outside of the first end region of the fluid collection device containing the same, such as at least 1 cm past the aperture through which the conduit 108b is inserted into the fluid collection device. The deformable conduit 108b may be used in any of the examples of fluid collection devices disclosed herein.
The deformable conduits 108a and 108b may be sized and shaped to conform the fluid collection devices carrying the same to the anatomy of a wearer along the sagittal plane of the wearer, such as in the pelvic region. Such examples provide fluid collection devices that can be manipulated to a selected shape and may resist changing from the selected shape, such as from movement of the wearer.
In some examples, the fluid collection device may be at least partially held in place by a resiliently compressible design.
The porous material 215 includes a soft, resilient foam, such as a viscoelastic foam (e.g., memory foam or low-resilience polyurethane). Accordingly, the porous material 215 is compressible. The resilient foam of the porous material 215 is an open cell foam to allow fluids to pass therethrough. The porous material 215 may include one or more of the fluid permeable membrane or the fluid permeable support. The resilient foam of the porous material 215 may be used alone as a fluid permeable membrane or the fluid permeable support. In the latter case, a fluid permeable membrane, such as any of those disclosed herein (e.g., gauze) may be disposed over the resilient foam.
The fluid impermeable barrier 202 is a soft malleable material capable of being deformed and springing back to an original shape, either alone or as forced by the resilient foam of the porous material 215. The fluid impermeable barrier 202 may be similar or identical to the fluid impermeable barrier 102 in one or more aspects. The fluid impermeable barrier 202 may include silicone, rubber, or a polymer as disclosed herein. The fluid impermeable barrier 202 may be thin layer directly attached to the porous material 215, such as a coating thereon. For example, the fluid impermeable barrier may be a waterproof polyurethane laminate fabric or the like, which may be welded directly to the foam or wrapped therearound.
The conduit 108 may be made of a relatively malleable (compared to conventional medical drainage tubing), fluid-tight material. For example, the conduit 108 may be made of one or more of polyethylene, polyvinyl chloride, latex, silicone, or a mixture thereof. Higher amounts of silicone provide a softer, more malleable conduit 108. The conduit 108 is malleable responsive to pressure such that the fluid collection device 200 is not shaped by the stiffness of the conduit 108.
In use, the fluid collection device 200 is compressed and inserted or pressed against the anatomy of the wearer. As the fluid collection device 200 returns to an expanded shape, the fluid collection device 200 at least partially conforms to the anatomy of the wearer. Accordingly, the fluid collection device 200 provides an improved anatomical fit to increase comfort, maintain position on the wearer, and decrease leakage over less conformable materials and devices. The resiliently compressible components (e.g., the resilient foam of the porous material 215) provides a means of retaining the fluid collection device 200 in position on the wearer. The deformable conduits 108a and 108b may be used with the fluid collection device 200.
In some examples, the shape of the fluid collection device is generally preformed to the shape of labia and can be manipulated from a closed state to an open state by compression of a portion thereof.
The fluid impermeable barrier 302 includes an outer surface and an inner surface that defines an interior chamber therein. The fluid impermeable barrier 302 includes an opening 306. The fluid impermeable barrier 302 at least partially defines the labial flanges 303 and the lobes 356. The porous material 315 is at least partially disposed in the interior chamber and protrudes therefrom through the opening 306. The conduit 108 extends into the interior chamber via fluid impermeable barrier, such as into the porous material (e.g., to a reservoir in the interior chamber). The porous material 315 may be similar or identical to any of the porous material(s) disclosed herein, such as having a fluid permeable membrane and a fluid permeable support. The fluid impermeable barrier 302 is formed of a fluid impermeable material such as any of the fluid impermeable materials disclosed herein.
The labial flanges 303 are shaped with longitudinally extending valleys sized to at least partially accommodate labia majora therein. The labial flanges 303 may be at least partially rigid. The fluid impermeable barrier 302 converges to an apex 316 along the longitudinal axis in the first end region 325. The porous material 315 also includes an apex 316 along the longitudinal axis. Accordingly, the apex 316 may be positioned between the labia majora and the valleys accommodate the labia majora during use. The outer surfaces of the labial flanges 303 (e.g., on the wearer facing surface) may be textured or tacky for frictional engagement with the labia of the wearer. The longitudinal shape of the fluid collection device or portions thereof may be at least slightly arcuate to complement the shape of wearer anatomy.
On the back of the fluid collection device 300, the fluid impermeable barrier 302 defines the lobes 356. The lobes 356 have a valley therebetween. The lobes may longitudinally extend along at least a portion of the back side of the fluid collection device 300. The lobes 356 may be pinched inwardly, as shown in
In some examples, a fluid collection device may use a mucoadhesive to increase engagement with the wearer.
The mucoadhesive in the region 419 adds a tackifier to the fluid impermeable barrier 102 which provides shear resistance with a nearly no impact on peel strength. The mucoadhesive may include a gum, a gel, a polymer, a tape, or combinations thereof. For example, the mucoadhesive gum may include a Tmarind/Xanthum gum or the like. The mucoadhesive in gel form may include a Gantrez/Sodium alginate gel or the like. In some examples, the mucoadhesive includes a tape having surface modifiers thereon, a low tack adhesive with a tackifying additive integrated to the fluid impermeable barrier. Other gums, gels, or polymers may be used. The mucoadhesive may be disposed on one or more portions of the fluid collection device 400, such as on the fluid impermeable barrier 102 in region 419 as shown in
As shown in
As shown in
The mucoadhesive included on the fluid collection device 400 provides and additional retention means to maintain the positioning of the fluid collection device 400 with respect to the wearer. By limiting the area that the mucoadhesive is disposed on, the wearer, the wearer's clothing, and bedding may be prevented from contamination by the mucoadhesive. Accordingly, the mucoadhesive retains the position of the fluid collection device on the wearer without introducing large amounts of adhesive onto the wearer.
During use, the fluid collection device(s) disclosed herein may be positioned such that the opening of the fluid collection device through which the porous material is exposed is disposed on or over the urethra of the wearer. The fluid collection device may receive bodily fluids (e.g., urine) from the urethra into the internal chamber. At least some of the bodily fluids may be removed from the urethra via the porous material (e.g., via wicking, absorptions, adsorption, etc.). The bodily fluids may flow towards the open end of the conduit in the reservoir (e.g., in the gravimetrically low point of the device) through the porous material in the interior chamber. The bodily fluids may be removed from the fluid collection device via the conduit. Suction force may be introduced into the interior chamber via the conduit responsive to suction (e.g., vacuum) force applied to the conduit by a vacuum source. The bodily fluids removed from the fluid collection device may be stored in the fluid storage container operably coupled to the vacuum source.
The fluid collection devices disclosed herein may be part of a fluid collection system.
The fluid collection device 501 may be similar or identical to any of the fluid collection devices disclosed herein. For example, the fluid collection device 501 may include a fluid impermeable barrier, a fluid permeable body, and any of the retention means disclosed herein. The fluid collection device 501 may include the conduit 108 including an inlet and an outlet as disclosed herein. The outlet may be fluidly coupled to the fluid storage container 519 and the inlet may be positioned in the fluid collection device 501.
The conduit 108 is coupled to and at least partially extends between one or more of the fluid storage container 519 and the vacuum source 529. Accordingly, the vacuum source 529 may be fluidly connected to the fluid storage container 519 via the conduit 108. In an example, the conduit 108 is directly connected to the vacuum source 529. In some examples, the conduit 108 may be indirectly connected to at least one of the fluid storage container 519 and the vacuum source 529. In some examples, the conduit 108 may be secured to a wearer's skin with a catheter securement device, such as a STATLOCK® catheter securement device available from C. R. Bard, Inc., including but not limited to those disclosed in U.S. Pat. Nos. 6,117,163; 6,123,398; and 8,211,063, the disclosures of which are all incorporated herein by reference in their entirety.
Fluid (e.g., urine or other bodily fluids) collected in the fluid collection device 501 may be removed from the fluid collection device 501 via the conduit(s) 108. Vacuum or suction force may be applied to remove fluid from the fluid collection device via the conduit either directly or indirectly. The vacuum force may be applied indirectly via the fluid storage container 519. For example, the second open end of the conduit 108 may be disposed within the fluid storage container 519 and an additional conduit 108 may extend from the fluid storage container 519 to the vacuum source 529. Accordingly, the vacuum source 529 may indirectly apply vacuum or suction force into the fluid collection device 501 (e.g., chamber therein) via the fluid storage container 519 and conduit(s) 108. As the fluid is drained from the interior chamber of the fluid collection device 501, the fluid may travel through the first section of conduit 108 to the fluid storage container 519 where it may be retained.
The fluid storage container 519 is constructed to store fluids therein. The fluid storage container may include a bag (e.g., drainage bag), a rigid bottle or cup (e.g., collection jar), or any other enclosed container for storing bodily fluids. The fluid storage container(s) may be fluidly connected to the vacuum source(s) 529, such as via a portion of conduit 108. The vacuum source(s) 529 provides a vacuum for pulling fluids from one or more of the fluid collection device 501 into the fluid storage container 519 via the conduit 108. The fluid collected in the fluid collection device 501 is moved through the conduit into the fluid storage container. By having a separate connection to the vacuum source 529 on the fluid storage container 519, the fluids removed from the fluid collection device 501 may be prevented from entering the vacuum source 529.
The vacuum source may include one or more of a manual vacuum pump, an electric vacuum pump, a diaphragm pump, a centrifugal pump, a displacement pump, a magnetically driven pump, a peristaltic pump, or any pump configured to produce a vacuum. The vacuum source may include a wall mounted suction line, such as found in a hospital room. In examples, the vacuum source may be powered by one or more of a power cord (e.g., connected to a power socket), one or more batteries, or even manual power (e.g., a hand operated vacuum pump). The vacuum source may include one or more of a switch, a button, a plug, a remote, or any other actuator suitable to activate the vacuum source. The vacuum source may be selectively operated by a user (e.g., medical personnel, the wearer, or a caretaker).
Any of the fluid collection devices and systems disclosed herein may be utilized to collect fluid, such as urine, from a wearer of the fluid collection device.
Any of the fluid collection devices disclosed herein may be used in the method 600. For example, the act 610 may include positioning any of the fluid collection devices disclosed herein on a wearer in a position to collect urine therefrom. The fluid collection device includes a fluid impermeable barrier defining an interior chamber therein and an opening through which the interior chamber is accessible, a porous material disposed in the interior chamber, a conduit fluidly connected to the interior chamber, and a retention means for retaining positioning of the fluid collection device with respect to the wearer. The retention means of the fluid collection device may include one or more of any of the retention means disclosed herein.
The act 610 of positioning a fluid collection devices on a wearer may include positioning the opening of the fluid collection device over, near, or on the urethra of the wearer. Positioning the fluid collection device on a wearer may include positioning the opening on, around, or over the labia or vulva of the wearer. Positioning the fluid collection device on a wearer (e.g., positioning the opening adjacent to a urethra of a wearer) may include positioning the second end region of the fluid collection device against or near the perineal region of the wearer with the first end region against or near the pubic region of the wearer.
The act 620 of engaging the retention means may include engaging any of the retention means disclosed herein. The act 620 of engaging the retention means may include manipulating the retention means to engage with anatomical features of the wearer to retain the fluid collection device on the wearer. For example, engaging the retention means may include manipulating the retention means to cause at least a portion of the fluid collection device to complement the shape of the anatomy of the wearer, such as the shape in the sagittal plane from the perineal region to the pubic region of the wearer, the shape of the labia of the wearer, the space between the legs of the wearer, or the like.
In examples where the retention means includes a deformable conduit (
Where the deformable conduit includes gooseneck tubing having tubing disposed thereover, engaging the retention means may include manually manipulating the gooseneck tubing into a selected shape such as an arcuate shape to conform to the shape of the wearer along the sagittal plane from the pubic region to the perineal region of the wearer. In such examples, the opening of the fluid collection device is located over the urethra of the wearer and maintained there at least in part due to the shape of the fluid collection device that is maintained by the gooseneck tubing (which includes a fit and dimension between sections of the gooseneck tubing that allows the gooseneck tubing to maintain a shape unless a force of a selected magnitude is applied thereto).
In examples, where the deformable conduit includes a plurality of fibers disposed between an inner tubing and an outer tube, engaging the retention means may include bending the deformable conduit to a selected shape. The deformable conduit with a plurality of fibers therein may be bent into a selected shape such as an arcuate shape to conform to the shape of the wearer along the sagittal plane from the pubic region to the perineal region of the wearer. In such examples, the opening of the fluid collection device is located over the urethra of the wearer and maintained there at least in part due to the shape of the fluid collection device that is maintained by the plurality of fibers. For example, as the deformable conduit is bent, the plurality of fibers may move past each other and the friction therebetween may hold them in the new position to prevent spring back.
In some examples, the retention means is at least partially defined by the porous material and the porous material includes a resilient foam that is compressible (
In some examples, engaging the retention means includes manipulating the fluid collection device to pinch or bias against a portion of the anatomy of the wearer. In such examples, the retention means may be at least partially defined by the fluid impermeable barrier. For example, the fluid impermeable barrier defines labial flanges and lobes extending therefrom (
In some examples, engaging the retention means may include adhering a portion of the fluid collection device to the wearer. For example, the retention means may include a mucoadhesive disposed on an outer surface of the fluid impermeable barrier in one or more regions thereon (
In some examples, a combination of any of the retention means disclosed herein may be used together. In such examples, the engaging the retention means may include engaging multiple retention means as disclosed herein.
Receiving fluid in the fluid collection device may include receiving urine or any other fluid discharged from the wearer into the fluid collection device. The urine may be received by the porous material (such as passing from the fluid permeable membrane to the fluid permeable support). For example, receiving fluid into the fluid collection device includes receiving urine from a urethra of the wearer into the interior chamber, such as into the porous material through the opening. Receiving the fluid may include receiving the fluid into a reservoir of the fluid collection device. The fluid may be removed from the interior chamber, such as from the reservoir via the conduit therein.
The devices, systems, and methods disclosed herein provide for retention of the position of fluid collection devices with respect to the anatomy (e.g., urethra) of the wearer, thereby preventing spills of bodily fluids and soiling of beds and clothing. Such improved retention of position limits the amount of monitoring of immobile or bedbound patients to ensure the fluid collection device is in position. Such improvements limit the time that care or medical professionals need to devote for ensuring urine is not contaminating the patient, undergarments, clothing, bedding, or the like.
The method 600 may include removing the fluid from the fluid collection device via the conduit. Removing the fluid from the fluid collection device via the conduit may include applying a vacuum in the interior chamber, such as into the reservoir via the conduit. Removing the fluid from the fluid collection device via the conduit may include allowing fluid to be removed from interior chamber via gravity. Removing the fluid from the fluid collection device via the conduit may include removing the fluid into a fluid storage container, such as via vacuum or gravity feed.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiment disclosed herein are for purposes of illustration and are not intended to be limiting. Features from any of the disclosed embodiments may be used in combination with one another, without limitation.
This application is a U.S. Nationalization of PCT International Application No. PCT/US2022/012794 filed on Jan. 18, 2022, which claims priority to U.S. Provisional Patent Application No. 63/138,878 filed on 19 Jan. 2021, the disclosure of each of which is incorporated herein, in its entirety, by this references.
Number | Name | Date | Kind |
---|---|---|---|
670602 | Baker | Mar 1901 | A |
1032841 | Koenig | Jul 1912 | A |
1178644 | Johnson | Apr 1916 | A |
1742080 | Jones | Dec 1929 | A |
1979899 | O'Brien et al. | Nov 1934 | A |
2262772 | Peder | Nov 1941 | A |
2326881 | Packer | Aug 1943 | A |
2379346 | Farrell | Jun 1945 | A |
2613670 | Edward | Oct 1952 | A |
2616426 | Adele | Nov 1952 | A |
2644234 | Earl | Jul 1953 | A |
2859786 | Tupper | Nov 1958 | A |
2968046 | Duke | Jan 1961 | A |
2971512 | Reinhardt | Feb 1961 | A |
3032038 | Swinn | May 1962 | A |
3077883 | Hill | Feb 1963 | A |
3087938 | Hans et al. | Apr 1963 | A |
3194238 | Breece | Jul 1965 | A |
3198994 | Hildebrandt et al. | Aug 1965 | A |
3221742 | Egon | Dec 1965 | A |
3312981 | McGuire et al. | Apr 1967 | A |
3349768 | Keane | Oct 1967 | A |
3362590 | Gene | Jan 1968 | A |
3366116 | Huck | Jan 1968 | A |
3398848 | Donovan | Aug 1968 | A |
3400717 | Bruce et al. | Sep 1968 | A |
3406688 | Bruce | Oct 1968 | A |
3424163 | Gravdahl | Jan 1969 | A |
3425471 | Yates | Feb 1969 | A |
3511241 | Lee | May 1970 | A |
3512185 | Ellis | May 1970 | A |
3520300 | Flower | Jul 1970 | A |
3528423 | Lee | Sep 1970 | A |
3613123 | Langstrom | Oct 1971 | A |
3648700 | Warner | Mar 1972 | A |
3651810 | Ormerod | Mar 1972 | A |
3661155 | Lindan | May 1972 | A |
3699815 | Holbrook | Oct 1972 | A |
3726277 | Hirschman | Apr 1973 | A |
3742952 | Magers et al. | Jul 1973 | A |
3757355 | Allen et al. | Sep 1973 | A |
3788324 | Lim | Jan 1974 | A |
3843016 | Bornhorst et al. | Oct 1974 | A |
3863638 | Rogers et al. | Feb 1975 | A |
3863798 | Kurihara et al. | Feb 1975 | A |
3864759 | Horiuchi | Feb 1975 | A |
3881486 | Fenton | May 1975 | A |
3915189 | Holbrook et al. | Oct 1975 | A |
3998228 | Poidomani | Dec 1976 | A |
3999550 | Martin | Dec 1976 | A |
4015604 | Csillag | Apr 1977 | A |
4020843 | Kanall | May 1977 | A |
4022213 | Stein | May 1977 | A |
4027776 | Douglas | Jun 1977 | A |
4116197 | Bermingham | Sep 1978 | A |
4180178 | Turner | Dec 1979 | A |
4187953 | Turner | Feb 1980 | A |
4194508 | Anderson | Mar 1980 | A |
4200102 | Duhamel | Apr 1980 | A |
4202058 | Anderson | May 1980 | A |
4233025 | Larson et al. | Nov 1980 | A |
4233978 | Hickey | Nov 1980 | A |
4246901 | Frosch et al. | Jan 1981 | A |
4257418 | Hessner | Mar 1981 | A |
4270539 | Frosch | Jun 1981 | A |
4281655 | Terauchi | Aug 1981 | A |
4292916 | Bradley et al. | Oct 1981 | A |
4352356 | Tong | Oct 1982 | A |
4360933 | Kimura et al. | Nov 1982 | A |
4365363 | Windauer | Dec 1982 | A |
4387726 | Denard | Jun 1983 | A |
4425130 | Desmarais | Jan 1984 | A |
4446986 | Bowen et al. | May 1984 | A |
4453938 | Brendling | Jun 1984 | A |
4457314 | Knowles | Jul 1984 | A |
4476879 | Jackson | Oct 1984 | A |
4526688 | Schmidt et al. | Jul 1985 | A |
4528703 | Kraus | Jul 1985 | A |
D280438 | Wendt | Sep 1985 | S |
4551141 | McNeil | Nov 1985 | A |
4553968 | Komis | Nov 1985 | A |
4581026 | Schneider | Apr 1986 | A |
4610675 | Triunfol | Sep 1986 | A |
4620333 | Ritter | Nov 1986 | A |
4626250 | Schneider | Dec 1986 | A |
4627846 | Ternstroem | Dec 1986 | A |
4631061 | Martin | Dec 1986 | A |
4650477 | Johnson | Mar 1987 | A |
4656675 | Fajnsztajn | Apr 1987 | A |
4681570 | Dalton | Jul 1987 | A |
4692160 | Nussbaumer | Sep 1987 | A |
4707864 | Ikematsu et al. | Nov 1987 | A |
4713066 | Komis | Dec 1987 | A |
4747166 | Kuntz | May 1988 | A |
4752944 | Conrads et al. | Jun 1988 | A |
4769215 | Ehrenkranz | Sep 1988 | A |
4772280 | Rooyakkers | Sep 1988 | A |
4790830 | Hamacher | Dec 1988 | A |
4790835 | Elias | Dec 1988 | A |
4791686 | Taniguchi et al. | Dec 1988 | A |
4795449 | Schneider | Jan 1989 | A |
4798603 | Meyer et al. | Jan 1989 | A |
4799928 | Crowley | Jan 1989 | A |
4804377 | Hanifl et al. | Feb 1989 | A |
4812053 | Bhattacharjee | Mar 1989 | A |
4820297 | Kaufman et al. | Apr 1989 | A |
4846818 | Keldahl et al. | Jul 1989 | A |
4846909 | Klug et al. | Jul 1989 | A |
4865595 | Heyden | Sep 1989 | A |
4882794 | Stewart | Nov 1989 | A |
4883465 | Brennan | Nov 1989 | A |
4886508 | Washington | Dec 1989 | A |
4886509 | Mattsson | Dec 1989 | A |
4889532 | Metz et al. | Dec 1989 | A |
4889533 | Beecher | Dec 1989 | A |
4903254 | Haas | Feb 1990 | A |
4905692 | More | Mar 1990 | A |
4936838 | Cross et al. | Jun 1990 | A |
4955922 | Terauchi | Sep 1990 | A |
4957487 | Gerow | Sep 1990 | A |
4965460 | Tanaka et al. | Oct 1990 | A |
4987849 | Sherman | Jan 1991 | A |
5002541 | Conkling et al. | Mar 1991 | A |
5004463 | Nigay | Apr 1991 | A |
5031248 | Kemper | Jul 1991 | A |
5045077 | Blake | Sep 1991 | A |
5045283 | Patel | Sep 1991 | A |
5049144 | Payton | Sep 1991 | A |
5053339 | Patel | Oct 1991 | A |
5058088 | Haas et al. | Oct 1991 | A |
5071347 | McGuire | Dec 1991 | A |
5078707 | Peter | Jan 1992 | A |
5084037 | Barnett | Jan 1992 | A |
5100396 | Zamierowski | Mar 1992 | A |
5147301 | Ruvio | Sep 1992 | A |
5195997 | Carns | Mar 1993 | A |
5203699 | McGuire | Apr 1993 | A |
5244458 | Takasu | Sep 1993 | A |
5246454 | Peterson | Sep 1993 | A |
5267988 | Farkas | Dec 1993 | A |
5275307 | Freese | Jan 1994 | A |
5294983 | Ersoz et al. | Mar 1994 | A |
5295983 | Kubo | Mar 1994 | A |
5300052 | Kubo | Apr 1994 | A |
5312383 | Kubalak | May 1994 | A |
5318550 | Cermak et al. | Jun 1994 | A |
5340840 | Park et al. | Aug 1994 | A |
5382244 | Telang | Jan 1995 | A |
5423784 | Metz | Jun 1995 | A |
5466229 | Elson | Nov 1995 | A |
5478334 | Bernstein | Dec 1995 | A |
5499977 | Marx | Mar 1996 | A |
5543042 | Filan et al. | Aug 1996 | A |
D373928 | Green | Sep 1996 | S |
5605161 | Cross | Feb 1997 | A |
5618277 | Goulter | Apr 1997 | A |
5628735 | Skow | May 1997 | A |
5636643 | Argenta et al. | Jun 1997 | A |
5637104 | Ball et al. | Jun 1997 | A |
5674212 | Osborn, III | Oct 1997 | A |
5678564 | Lawrence | Oct 1997 | A |
5678654 | Uzawa | Oct 1997 | A |
5687429 | Rahlff | Nov 1997 | A |
5695485 | Duperret et al. | Dec 1997 | A |
5752944 | Dann et al. | May 1998 | A |
5772644 | Bark et al. | Jun 1998 | A |
5792132 | Garcia | Aug 1998 | A |
5827243 | Palestrant | Oct 1998 | A |
5827247 | Kay | Oct 1998 | A |
5827250 | Fujioka et al. | Oct 1998 | A |
5827257 | Fujioka et al. | Oct 1998 | A |
D401699 | Herchenbach et al. | Nov 1998 | S |
5865378 | Hollinshead et al. | Feb 1999 | A |
5887291 | Bellizzi | Mar 1999 | A |
5894608 | Birbara | Apr 1999 | A |
D409303 | Oepping | May 1999 | S |
5911222 | Lawrence | Jun 1999 | A |
5957904 | Holland | Sep 1999 | A |
5972505 | Phillips et al. | Oct 1999 | A |
6050983 | Moore et al. | Apr 2000 | A |
6059762 | Boyer et al. | May 2000 | A |
6063064 | Tuckey et al. | May 2000 | A |
6098625 | Winkler | Aug 2000 | A |
6105174 | Karlsten et al. | Aug 2000 | A |
6113582 | Dwork | Sep 2000 | A |
6117163 | Bierman | Sep 2000 | A |
6123398 | Arai | Sep 2000 | A |
6129718 | Wada et al. | Oct 2000 | A |
6131964 | Sareshwala | Oct 2000 | A |
6152902 | Christian et al. | Nov 2000 | A |
6164569 | Hollinshead et al. | Dec 2000 | A |
6177606 | Etheredge et al. | Jan 2001 | B1 |
6209142 | Mattsson et al. | Apr 2001 | B1 |
6248096 | Dwork et al. | Jun 2001 | B1 |
6263887 | Dunn | Jul 2001 | B1 |
6311339 | Kraus | Nov 2001 | B1 |
6336919 | Davis et al. | Jan 2002 | B1 |
6338729 | Wada et al. | Jan 2002 | B1 |
6352525 | Wakabayashi | Mar 2002 | B1 |
6394988 | Hashimoto | May 2002 | B1 |
6406463 | Brown | Jun 2002 | B1 |
6409712 | Dutari et al. | Jun 2002 | B1 |
6416500 | Wada et al. | Jul 2002 | B1 |
6428521 | Droll | Aug 2002 | B1 |
6475198 | Lipman et al. | Nov 2002 | B1 |
6479726 | Cole et al. | Nov 2002 | B1 |
6491673 | Palumbo et al. | Dec 2002 | B1 |
6508794 | Palumbo et al. | Jan 2003 | B1 |
6540729 | Wada et al. | Apr 2003 | B1 |
6547771 | Robertson et al. | Apr 2003 | B2 |
6569133 | Cheng et al. | May 2003 | B2 |
D476518 | Doppelt | Jul 2003 | S |
6592560 | Snyder et al. | Jul 2003 | B2 |
6618868 | Minnick | Sep 2003 | B2 |
6620142 | Flueckiger | Sep 2003 | B1 |
6629651 | Male et al. | Oct 2003 | B1 |
6635038 | Scovel | Oct 2003 | B2 |
6652495 | Walker | Nov 2003 | B1 |
6685684 | Falconer | Feb 2004 | B1 |
6702793 | Sweetser et al. | Mar 2004 | B1 |
6706027 | Harvie | Mar 2004 | B2 |
6732384 | Scott | May 2004 | B2 |
6736977 | Hall et al. | May 2004 | B1 |
6740066 | Wolff | May 2004 | B2 |
6764477 | Chen et al. | Jul 2004 | B1 |
6783519 | Samuelsson | Aug 2004 | B2 |
6796974 | Palumbo et al. | Sep 2004 | B2 |
6814547 | Childers et al. | Nov 2004 | B2 |
6849065 | Schmidt et al. | Feb 2005 | B2 |
6857137 | Otto | Feb 2005 | B2 |
6885690 | Aggerstam et al. | Apr 2005 | B2 |
6888044 | Fell et al. | May 2005 | B2 |
6893425 | Dunn et al. | May 2005 | B2 |
6912737 | Ernest et al. | Jul 2005 | B2 |
6918899 | Harvie | Jul 2005 | B2 |
6979324 | Bybordi et al. | Dec 2005 | B2 |
7018366 | Easter | Mar 2006 | B2 |
7066411 | Male et al. | Jun 2006 | B2 |
7122023 | Hinoki | Oct 2006 | B1 |
7125399 | Miskie | Oct 2006 | B2 |
7131964 | Harvie | Nov 2006 | B2 |
7135012 | Harvie | Nov 2006 | B2 |
7141043 | Harvie | Nov 2006 | B2 |
D533972 | La Luzerne | Dec 2006 | S |
7160273 | Greter et al. | Jan 2007 | B2 |
7171699 | Ernest et al. | Feb 2007 | B2 |
7171871 | Kozak | Feb 2007 | B2 |
7179951 | Krishnaswamy-Mirle et al. | Feb 2007 | B2 |
7181781 | Trabold | Feb 2007 | B1 |
7186245 | Cheng et al. | Mar 2007 | B1 |
7192424 | Cooper | Mar 2007 | B2 |
7220250 | Suzuki | May 2007 | B2 |
D562975 | Otto | Feb 2008 | S |
7335189 | Harvie | Feb 2008 | B2 |
7358282 | Krueger et al. | Apr 2008 | B2 |
7390320 | Machida | Jun 2008 | B2 |
7438706 | Koizumi et al. | Oct 2008 | B2 |
7488310 | Yang | Feb 2009 | B2 |
7491194 | Oliwa | Feb 2009 | B1 |
D591106 | Dominique et al. | Apr 2009 | S |
7513381 | Heng et al. | Apr 2009 | B2 |
7520872 | Biggie et al. | Apr 2009 | B2 |
D593801 | Wilson et al. | Jun 2009 | S |
7540364 | Sanderson | Jun 2009 | B2 |
7585293 | Vermaak | Sep 2009 | B2 |
7588560 | Dunlop | Sep 2009 | B1 |
7665359 | Barber | Feb 2010 | B2 |
7682347 | Parks et al. | Mar 2010 | B2 |
7687004 | Allen | Mar 2010 | B2 |
7695459 | Gilbert et al. | Apr 2010 | B2 |
7695460 | Wada et al. | Apr 2010 | B2 |
7699818 | Gilbert | Apr 2010 | B2 |
7699831 | Bengtson | Apr 2010 | B2 |
7722584 | Tanaka et al. | May 2010 | B2 |
7727206 | Gorres | Jun 2010 | B2 |
7740620 | Gilbert et al. | Jun 2010 | B2 |
7749205 | Tazoe | Jul 2010 | B2 |
7755497 | Wada | Jul 2010 | B2 |
7766887 | Burns et al. | Aug 2010 | B2 |
D625407 | Koizumi et al. | Oct 2010 | S |
7806879 | Brooks et al. | Oct 2010 | B2 |
7811272 | Lindsay et al. | Oct 2010 | B2 |
7815067 | Matsumoto et al. | Oct 2010 | B2 |
7833169 | Hannon | Nov 2010 | B2 |
7857806 | Karpowicz et al. | Dec 2010 | B2 |
7866942 | Harvie | Jan 2011 | B2 |
7871385 | Levinson et al. | Jan 2011 | B2 |
7875010 | Frazier et al. | Jan 2011 | B2 |
7901389 | Mombrinie | Mar 2011 | B2 |
7927320 | Goldwasser et al. | Apr 2011 | B2 |
7927321 | Marland | Apr 2011 | B2 |
7931634 | Swiecicki et al. | Apr 2011 | B2 |
7939706 | Okabe et al. | May 2011 | B2 |
7946443 | Stull et al. | May 2011 | B2 |
7947025 | Buglino et al. | May 2011 | B2 |
7963419 | Burney et al. | Jun 2011 | B2 |
7976519 | Bubb et al. | Jul 2011 | B2 |
7993318 | Olsson et al. | Aug 2011 | B2 |
8015627 | Baker et al. | Sep 2011 | B2 |
8028460 | Williams | Oct 2011 | B2 |
8047398 | Dimartino et al. | Nov 2011 | B2 |
8083094 | Caulfield et al. | Dec 2011 | B2 |
8128608 | Thevenin | Mar 2012 | B2 |
8181651 | Pinel | May 2012 | B2 |
8181819 | Burney et al. | May 2012 | B2 |
8211063 | Bierman | Jul 2012 | B2 |
8221369 | Parks et al. | Jul 2012 | B2 |
8241262 | Mahnensmith | Aug 2012 | B2 |
8277426 | Wilcox et al. | Oct 2012 | B2 |
8287508 | Sanchez | Oct 2012 | B1 |
8303554 | Tsai et al. | Nov 2012 | B2 |
8322565 | Caulfield et al. | Dec 2012 | B2 |
8337477 | Parks et al. | Dec 2012 | B2 |
D674241 | Bickert et al. | Jan 2013 | S |
8343122 | Gorres | Jan 2013 | B2 |
8353074 | Krebs | Jan 2013 | B2 |
8353886 | Bester et al. | Jan 2013 | B2 |
D676241 | Merrill | Feb 2013 | S |
8388588 | Wada et al. | Mar 2013 | B2 |
D679807 | Burgess et al. | Apr 2013 | S |
8425482 | Khoubnazar | Apr 2013 | B2 |
8449510 | Martini et al. | May 2013 | B2 |
D684260 | Lund et al. | Jun 2013 | S |
8470230 | Caulfield et al. | Jun 2013 | B2 |
8479941 | Matsumoto et al. | Jul 2013 | B2 |
8479949 | Henkel | Jul 2013 | B2 |
8512301 | Ma | Aug 2013 | B2 |
8529530 | Koch et al. | Sep 2013 | B2 |
8535284 | Joder et al. | Sep 2013 | B2 |
8546639 | Wada | Oct 2013 | B2 |
8551075 | Bengtson | Oct 2013 | B2 |
8568376 | Delattre et al. | Oct 2013 | B2 |
D694404 | Burgess et al. | Nov 2013 | S |
8585683 | Bengtson | Nov 2013 | B2 |
8586583 | Hamblin et al. | Nov 2013 | B2 |
8652112 | Johannison et al. | Feb 2014 | B2 |
D702973 | Norland et al. | Apr 2014 | S |
8703032 | Menon et al. | Apr 2014 | B2 |
D704330 | Cicatelli | May 2014 | S |
D704510 | Mason et al. | May 2014 | S |
D705423 | Walsh Cutler | May 2014 | S |
D705926 | Burgess et al. | May 2014 | S |
8714394 | Wulf | May 2014 | B2 |
8715267 | Bengtson et al. | May 2014 | B2 |
8757425 | Copeland | Jun 2014 | B2 |
8777032 | Biesecker et al. | Jul 2014 | B2 |
8808260 | Koch et al. | Aug 2014 | B2 |
8864730 | Conway et al. | Oct 2014 | B2 |
8881923 | Higginson | Nov 2014 | B2 |
8936585 | Carson et al. | Jan 2015 | B2 |
D729581 | Boroski | May 2015 | S |
9028460 | Medeiros | May 2015 | B2 |
9056698 | Noer | Jun 2015 | B2 |
9078792 | Ruiz | Jul 2015 | B2 |
9173602 | Gilbert | Nov 2015 | B2 |
9173799 | Tanimoto | Nov 2015 | B2 |
9187220 | Biesecker et al. | Nov 2015 | B2 |
9199772 | Krippendorf | Dec 2015 | B2 |
9233020 | Matsumiya | Jan 2016 | B2 |
9248058 | Conway et al. | Feb 2016 | B2 |
9308118 | Dupree et al. | Apr 2016 | B1 |
9309029 | Incorvia et al. | Apr 2016 | B2 |
9333281 | Giezendanner et al. | May 2016 | B2 |
9382047 | Schmidtner et al. | Jul 2016 | B2 |
9456937 | Ellis | Oct 2016 | B2 |
9480595 | Baham et al. | Nov 2016 | B2 |
9517865 | Albers et al. | Dec 2016 | B2 |
D777941 | Piramoon | Jan 2017 | S |
9533806 | Ding et al. | Jan 2017 | B2 |
9550611 | Hodge | Jan 2017 | B2 |
9555930 | Campbell et al. | Jan 2017 | B2 |
D789522 | Burgess et al. | Jun 2017 | S |
9687849 | Bruno et al. | Jun 2017 | B2 |
9694949 | Hendricks et al. | Jul 2017 | B2 |
9788992 | Harvie | Oct 2017 | B2 |
D804907 | Sandoval | Dec 2017 | S |
9868564 | McGirr et al. | Jan 2018 | B2 |
D814239 | Arora | Apr 2018 | S |
D817484 | Lafond | May 2018 | S |
10037640 | Gordon | Jul 2018 | B2 |
10058470 | Phillips | Aug 2018 | B2 |
10098990 | Koch et al. | Oct 2018 | B2 |
D835264 | Mozzicato et al. | Dec 2018 | S |
D835779 | Mozzicato et al. | Dec 2018 | S |
D840533 | Mozzicato et al. | Feb 2019 | S |
D840534 | Mozzicato et al. | Feb 2019 | S |
10225376 | Perez Martinez | Mar 2019 | B2 |
10226376 | Sanchez | Mar 2019 | B2 |
D848612 | Mozzicato et al. | May 2019 | S |
10307305 | Hodges | Jun 2019 | B1 |
10335121 | Desai | Jul 2019 | B2 |
D856512 | Cowart et al. | Aug 2019 | S |
10376406 | Newton | Aug 2019 | B2 |
10376407 | Newton | Aug 2019 | B2 |
10390989 | Sanchez | Aug 2019 | B2 |
D858144 | Fu | Sep 2019 | S |
10406039 | Villarreal | Sep 2019 | B2 |
10407222 | Allen | Sep 2019 | B2 |
10478356 | Griffin | Nov 2019 | B2 |
10538366 | Pentelovitch et al. | Jan 2020 | B2 |
10569938 | Zhao et al. | Feb 2020 | B2 |
10577156 | Dagnelie et al. | Mar 2020 | B2 |
10618721 | Vazin | Apr 2020 | B2 |
D884390 | Wang | May 2020 | S |
10669079 | Freedman et al. | Jun 2020 | B2 |
D892315 | Airy | Aug 2020 | S |
10730672 | Bertram et al. | Aug 2020 | B2 |
10737848 | Philip et al. | Aug 2020 | B2 |
10765854 | Law et al. | Sep 2020 | B2 |
10766670 | Kittmann | Sep 2020 | B2 |
D901214 | Hu | Nov 2020 | S |
10857025 | Davis et al. | Dec 2020 | B2 |
10865017 | Cowart et al. | Dec 2020 | B1 |
10889412 | West et al. | Jan 2021 | B2 |
10913581 | Stahlecker | Feb 2021 | B2 |
D912244 | Rehm et al. | Mar 2021 | S |
10952889 | Newton | Mar 2021 | B2 |
10973678 | Newton | Apr 2021 | B2 |
10974874 | Ragias et al. | Apr 2021 | B2 |
11000401 | Ecklund et al. | May 2021 | B2 |
D923365 | Wang | Jun 2021 | S |
11026829 | Harvie | Jun 2021 | B2 |
11027900 | Liu | Jun 2021 | B2 |
11045346 | Argent et al. | Jun 2021 | B2 |
D928946 | Sanchez | Aug 2021 | S |
11179506 | Barr et al. | Nov 2021 | B2 |
11226376 | Yamauchi et al. | Jan 2022 | B2 |
11376152 | Sanchez | Jul 2022 | B2 |
11382786 | Sanchez | Jul 2022 | B2 |
11382788 | Hjorth et al. | Jul 2022 | B2 |
11426303 | Davis | Aug 2022 | B2 |
11529252 | Glithero et al. | Dec 2022 | B2 |
20010037097 | Cheng et al. | Nov 2001 | A1 |
20010054426 | Knudson et al. | Dec 2001 | A1 |
20020019614 | Woon | Feb 2002 | A1 |
20020026161 | Grundke | Feb 2002 | A1 |
20020087131 | Wolff | Jul 2002 | A1 |
20020091364 | Prabhakar | Jul 2002 | A1 |
20020189992 | Schmidt et al. | Dec 2002 | A1 |
20020193760 | Thompson | Dec 2002 | A1 |
20030004436 | Schmidt et al. | Jan 2003 | A1 |
20030120178 | Heki | Jun 2003 | A1 |
20030157859 | Ishikawa | Aug 2003 | A1 |
20030181880 | Schwartz | Sep 2003 | A1 |
20030195484 | Harvie | Oct 2003 | A1 |
20030233079 | Parks et al. | Dec 2003 | A1 |
20040006321 | Cheng et al. | Jan 2004 | A1 |
20040056122 | Male et al. | Mar 2004 | A1 |
20040084465 | Luburic | May 2004 | A1 |
20040127872 | Petryk | Jul 2004 | A1 |
20040128749 | Scott | Jul 2004 | A1 |
20040143229 | Easter | Jul 2004 | A1 |
20040147894 | Mizutani et al. | Jul 2004 | A1 |
20040158221 | Mizutani et al. | Aug 2004 | A1 |
20040176731 | Cheng et al. | Sep 2004 | A1 |
20040191919 | Unger et al. | Sep 2004 | A1 |
20040207530 | Nielsen | Oct 2004 | A1 |
20040236292 | Tazoe | Nov 2004 | A1 |
20040254547 | Okabe | Dec 2004 | A1 |
20050010182 | Parks et al. | Jan 2005 | A1 |
20050033248 | Machida | Feb 2005 | A1 |
20050070861 | Okabe | Mar 2005 | A1 |
20050070862 | Tazoe | Mar 2005 | A1 |
20050082300 | Modrell et al. | Apr 2005 | A1 |
20050097662 | Leimkuhler et al. | May 2005 | A1 |
20050101924 | Elson et al. | May 2005 | A1 |
20050137557 | Swiecicki et al. | Jun 2005 | A1 |
20050154360 | Harvie | Jul 2005 | A1 |
20050177070 | Levinson et al. | Aug 2005 | A1 |
20050197639 | Mombrinie | Sep 2005 | A1 |
20050273920 | Marinas | Dec 2005 | A1 |
20050277904 | Chase et al. | Dec 2005 | A1 |
20050279359 | Leblanc et al. | Dec 2005 | A1 |
20060004332 | Marx | Jan 2006 | A1 |
20060015080 | Mahnensmith | Jan 2006 | A1 |
20060015081 | Suzuki | Jan 2006 | A1 |
20060016778 | Park | Jan 2006 | A1 |
20060079854 | Kay et al. | Apr 2006 | A1 |
20060111648 | Vermaak | May 2006 | A1 |
20060155214 | Wightman | Jul 2006 | A1 |
20060200102 | Cooper | Sep 2006 | A1 |
20060229576 | Conway et al. | Oct 2006 | A1 |
20060231648 | Male et al. | Oct 2006 | A1 |
20060235359 | Marland | Oct 2006 | A1 |
20060277670 | Baker et al. | Dec 2006 | A1 |
20070006368 | Key et al. | Jan 2007 | A1 |
20070038194 | Wada | Feb 2007 | A1 |
20070055209 | Patel et al. | Mar 2007 | A1 |
20070073252 | Forgrave | Mar 2007 | A1 |
20070117880 | Elson et al. | May 2007 | A1 |
20070135786 | Schmidt et al. | Jun 2007 | A1 |
20070149935 | Dirico | Jun 2007 | A1 |
20070191804 | Coley | Aug 2007 | A1 |
20070214553 | Carromba | Sep 2007 | A1 |
20070225666 | Otto | Sep 2007 | A1 |
20070225668 | Otto | Sep 2007 | A1 |
20070266486 | Ramirez | Nov 2007 | A1 |
20070282309 | Bengtson et al. | Dec 2007 | A1 |
20080004576 | Tanaka et al. | Jan 2008 | A1 |
20080015526 | Reiner et al. | Jan 2008 | A1 |
20080015527 | House | Jan 2008 | A1 |
20080033386 | Okabe | Feb 2008 | A1 |
20080041869 | Backaert | Feb 2008 | A1 |
20080091153 | Harvie | Apr 2008 | A1 |
20080091158 | Yang | Apr 2008 | A1 |
20080183157 | Walters | Jul 2008 | A1 |
20080215031 | Belfort et al. | Sep 2008 | A1 |
20080234642 | Patterson et al. | Sep 2008 | A1 |
20080281282 | Finger et al. | Nov 2008 | A1 |
20080287894 | Van Den Heuvel | Nov 2008 | A1 |
20090025717 | Pinel | Jan 2009 | A1 |
20090048570 | Jensen | Feb 2009 | A1 |
20090056003 | Ivie et al. | Mar 2009 | A1 |
20090069761 | Vogel | Mar 2009 | A1 |
20090069765 | Wortham | Mar 2009 | A1 |
20090192482 | Dodge, II | Jul 2009 | A1 |
20090234312 | O'Toole et al. | Sep 2009 | A1 |
20090251510 | Noro et al. | Oct 2009 | A1 |
20090264840 | Virginio | Oct 2009 | A1 |
20090270822 | Medeiros | Oct 2009 | A1 |
20090281510 | Fisher | Nov 2009 | A1 |
20100004612 | Thevenin | Jan 2010 | A1 |
20100058660 | Williams | Mar 2010 | A1 |
20100121289 | Parks et al. | May 2010 | A1 |
20100158168 | Murthy et al. | Jun 2010 | A1 |
20100185168 | Graauw | Jul 2010 | A1 |
20100198172 | Wada et al. | Aug 2010 | A1 |
20100211032 | Tsai | Aug 2010 | A1 |
20100234820 | Tsai et al. | Sep 2010 | A1 |
20100241104 | Gilbert | Sep 2010 | A1 |
20100263113 | Shelton et al. | Oct 2010 | A1 |
20100310845 | Bond et al. | Dec 2010 | A1 |
20110028922 | Kay et al. | Feb 2011 | A1 |
20110034889 | Smith | Feb 2011 | A1 |
20110036837 | Shang | Feb 2011 | A1 |
20110040267 | Wada | Feb 2011 | A1 |
20110040271 | Rogers | Feb 2011 | A1 |
20110054426 | Stewart et al. | Mar 2011 | A1 |
20110060300 | Weig | Mar 2011 | A1 |
20110077495 | Gilbert | Mar 2011 | A1 |
20110077606 | Wilcox et al. | Mar 2011 | A1 |
20110087337 | Forsell | Apr 2011 | A1 |
20110137273 | Muellejans et al. | Jun 2011 | A1 |
20110145993 | Rader et al. | Jun 2011 | A1 |
20110152802 | DiCamillo et al. | Jun 2011 | A1 |
20110164147 | Takahashi et al. | Jul 2011 | A1 |
20110172620 | Khambatta | Jul 2011 | A1 |
20110172625 | Wada | Jul 2011 | A1 |
20110202024 | Cozzens | Aug 2011 | A1 |
20110238023 | Slayton | Sep 2011 | A1 |
20110240648 | Tucker | Oct 2011 | A1 |
20110251572 | Nishtala et al. | Oct 2011 | A1 |
20110265889 | Tanaka et al. | Nov 2011 | A1 |
20110276020 | Mitsui | Nov 2011 | A1 |
20120035577 | Tomes et al. | Feb 2012 | A1 |
20120041400 | Christensen | Feb 2012 | A1 |
20120059328 | Dikeman et al. | Mar 2012 | A1 |
20120066825 | Birbara et al. | Mar 2012 | A1 |
20120103347 | Wheaton | May 2012 | A1 |
20120137420 | Gordon et al. | Jun 2012 | A1 |
20120165768 | Sekiyama et al. | Jun 2012 | A1 |
20120165786 | Chappa et al. | Jun 2012 | A1 |
20120210503 | Anzivino, Sr. | Aug 2012 | A1 |
20120233761 | Huang | Sep 2012 | A1 |
20120245542 | Suzuki | Sep 2012 | A1 |
20120245547 | Wilcox et al. | Sep 2012 | A1 |
20120253303 | Suzuki | Oct 2012 | A1 |
20120271259 | Ulert | Oct 2012 | A1 |
20120296305 | Barraza Khaled et al. | Nov 2012 | A1 |
20120330256 | Wilcox et al. | Dec 2012 | A1 |
20130006206 | Wada | Jan 2013 | A1 |
20130045651 | Esteves et al. | Feb 2013 | A1 |
20130053804 | Soerensen et al. | Feb 2013 | A1 |
20130096523 | Chang et al. | Apr 2013 | A1 |
20130245496 | Wells et al. | Sep 2013 | A1 |
20130245586 | Jha | Sep 2013 | A1 |
20130292537 | Dirico | Nov 2013 | A1 |
20140031774 | Bengtson | Jan 2014 | A1 |
20140157499 | Suzuki et al. | Jun 2014 | A1 |
20140182051 | Tanimoto | Jul 2014 | A1 |
20140196189 | Lee et al. | Jul 2014 | A1 |
20140276501 | Cisko | Sep 2014 | A1 |
20140303582 | Wright et al. | Oct 2014 | A1 |
20140316381 | Reglin | Oct 2014 | A1 |
20140325746 | Block | Nov 2014 | A1 |
20140348139 | Gomez Martinez | Nov 2014 | A1 |
20140352050 | Yao et al. | Dec 2014 | A1 |
20140371628 | Desai | Dec 2014 | A1 |
20150045757 | Lee et al. | Feb 2015 | A1 |
20150047114 | Ramirez | Feb 2015 | A1 |
20150048089 | Robertson | Feb 2015 | A1 |
20150135423 | Sharpe et al. | May 2015 | A1 |
20150157300 | Ealovega et al. | Jun 2015 | A1 |
20150209194 | Heyman | Jul 2015 | A1 |
20150290425 | Macy et al. | Oct 2015 | A1 |
20150320583 | Harvie | Nov 2015 | A1 |
20150329255 | Rzepecki | Nov 2015 | A1 |
20150359660 | Harvie | Dec 2015 | A1 |
20150366699 | Nelson | Dec 2015 | A1 |
20160029998 | Brister et al. | Feb 2016 | A1 |
20160030228 | Jones | Feb 2016 | A1 |
20160038356 | Yao et al. | Feb 2016 | A1 |
20160058322 | Brister et al. | Mar 2016 | A1 |
20160060001 | Wada et al. | Mar 2016 | A1 |
20160100976 | Conway et al. | Apr 2016 | A1 |
20160106604 | Timm | Apr 2016 | A1 |
20160113809 | Kim | Apr 2016 | A1 |
20160183689 | Miner | Jun 2016 | A1 |
20160256022 | Le | Sep 2016 | A1 |
20160270982 | Raycheck et al. | Sep 2016 | A1 |
20160278662 | Brister et al. | Sep 2016 | A1 |
20160357400 | Penha et al. | Dec 2016 | A1 |
20160366699 | Zhang et al. | Dec 2016 | A1 |
20160367226 | Newton | Dec 2016 | A1 |
20160367411 | Justiz et al. | Dec 2016 | A1 |
20160367726 | Gratzer | Dec 2016 | A1 |
20160374848 | Sanchez | Dec 2016 | A1 |
20170007438 | Harvie | Jan 2017 | A1 |
20170100276 | Joh | Apr 2017 | A1 |
20170128638 | Giezendanner et al. | May 2017 | A1 |
20170143534 | Sanchez | May 2017 | A1 |
20170165405 | Muser et al. | Jun 2017 | A1 |
20170189225 | Voorhees et al. | Jul 2017 | A1 |
20170202692 | Laniado | Jul 2017 | A1 |
20170216081 | Accosta | Aug 2017 | A1 |
20170246026 | Laniado | Aug 2017 | A1 |
20170252014 | Siller Gonzalez et al. | Sep 2017 | A1 |
20170252202 | Sanchez et al. | Sep 2017 | A9 |
20170266031 | Sanchez | Sep 2017 | A1 |
20170266658 | Bruno et al. | Sep 2017 | A1 |
20170281399 | VanMiddendorp | Oct 2017 | A1 |
20170312116 | Laniado | Nov 2017 | A1 |
20170325788 | Ealovega et al. | Nov 2017 | A1 |
20170333244 | Laniado | Nov 2017 | A1 |
20170042748 | Griffin | Dec 2017 | A1 |
20170348139 | Newton | Dec 2017 | A1 |
20170354532 | Holt | Dec 2017 | A1 |
20170367873 | Grannum | Dec 2017 | A1 |
20180002075 | Lee | Jan 2018 | A1 |
20180008451 | Stroebech | Jan 2018 | A1 |
20180008804 | Laniado | Jan 2018 | A1 |
20180028349 | Newton | Feb 2018 | A1 |
20180037384 | Archeny et al. | Feb 2018 | A1 |
20180049910 | Newton | Feb 2018 | A1 |
20180064572 | Wiltshire | Mar 2018 | A1 |
20180104131 | Killian | Apr 2018 | A1 |
20180127187 | Sewell | May 2018 | A1 |
20180193215 | Davies et al. | Jul 2018 | A1 |
20180200101 | Su | Jul 2018 | A1 |
20180228642 | Davis | Aug 2018 | A1 |
20180256384 | Kasirye | Sep 2018 | A1 |
20180271694 | Fernandez et al. | Sep 2018 | A1 |
20190001030 | Braga et al. | Jan 2019 | A1 |
20190021899 | Vlet | Jan 2019 | A1 |
20190038451 | Harvie | Feb 2019 | A1 |
20190046102 | Kushnir et al. | Feb 2019 | A1 |
20190100362 | Meyers et al. | Apr 2019 | A1 |
20190133814 | Tammen et al. | May 2019 | A1 |
20190142624 | Sanchez | May 2019 | A1 |
20190224036 | Sanchez | Jul 2019 | A1 |
20190247222 | Ecklund et al. | Aug 2019 | A1 |
20190247223 | Brun et al. | Aug 2019 | A1 |
20190282391 | Johannes et al. | Sep 2019 | A1 |
20190314189 | Acosta | Oct 2019 | A1 |
20190314190 | Sanchez | Oct 2019 | A1 |
20190344934 | Faerber et al. | Nov 2019 | A1 |
20190365307 | Laing et al. | Dec 2019 | A1 |
20190365561 | Newton et al. | Dec 2019 | A1 |
20200030595 | Boukidjian et al. | Jan 2020 | A1 |
20200046544 | Godinez | Feb 2020 | A1 |
20200055638 | Lau et al. | Feb 2020 | A1 |
20200070392 | Huber et al. | Mar 2020 | A1 |
20200085610 | Cohn et al. | Mar 2020 | A1 |
20200086090 | Von Weymarn-Schärli et al. | Mar 2020 | A1 |
20200129322 | Leuckel | Apr 2020 | A1 |
20200171217 | Braga et al. | Jun 2020 | A9 |
20200229964 | Staali et al. | Jul 2020 | A1 |
20200231343 | Freedman et al. | Jul 2020 | A1 |
20200232841 | Satish et al. | Jul 2020 | A1 |
20200255189 | Liu | Aug 2020 | A1 |
20200261280 | Heyman | Aug 2020 | A1 |
20200276046 | Staali et al. | Sep 2020 | A1 |
20200306075 | Newton et al. | Oct 2020 | A1 |
20200315838 | Eckert | Oct 2020 | A1 |
20200331672 | Bertram et al. | Oct 2020 | A1 |
20200345332 | Duval | Nov 2020 | A1 |
20200353135 | Gregory et al. | Nov 2020 | A1 |
20200367677 | Silsby et al. | Nov 2020 | A1 |
20200369444 | Silsby et al. | Nov 2020 | A1 |
20200375781 | Staali et al. | Dec 2020 | A1 |
20200385179 | McCourt | Dec 2020 | A1 |
20200390591 | Glithero et al. | Dec 2020 | A1 |
20200390592 | Merrill | Dec 2020 | A1 |
20200405521 | Glasroe | Dec 2020 | A1 |
20210008771 | Huber et al. | Jan 2021 | A1 |
20210009323 | Markarian et al. | Jan 2021 | A1 |
20210061523 | Bytheway | Mar 2021 | A1 |
20210069005 | Sanchez | Mar 2021 | A1 |
20210069008 | Blabas et al. | Mar 2021 | A1 |
20210113749 | Radl et al. | Apr 2021 | A1 |
20210121318 | Pinlac | Apr 2021 | A1 |
20210137724 | Ecklund et al. | May 2021 | A1 |
20210154055 | Villarreal | May 2021 | A1 |
20210170079 | Radl et al. | Jun 2021 | A1 |
20210220162 | Jamison | Jul 2021 | A1 |
20210220163 | Mayrand | Jul 2021 | A1 |
20210228400 | Glithero | Jul 2021 | A1 |
20210228401 | Becker et al. | Jul 2021 | A1 |
20210228795 | Hughett | Jul 2021 | A1 |
20210229877 | Ragias et al. | Jul 2021 | A1 |
20210236323 | Austermann | Aug 2021 | A1 |
20210267787 | Nazemi | Sep 2021 | A1 |
20210315727 | Jiang | Oct 2021 | A1 |
20210353450 | Sharma et al. | Nov 2021 | A1 |
20210361469 | Liu et al. | Nov 2021 | A1 |
20210369495 | Cheng | Dec 2021 | A1 |
20210386925 | Hartwell et al. | Dec 2021 | A1 |
20210393433 | Godinez et al. | Dec 2021 | A1 |
20220023091 | Ecklund et al. | Jan 2022 | A1 |
20220047410 | Walthall | Feb 2022 | A1 |
20220062027 | Mitchell et al. | Mar 2022 | A1 |
20220062029 | Johannes | Mar 2022 | A1 |
20220066825 | Saraf et al. | Mar 2022 | A1 |
20220071811 | Cheng et al. | Mar 2022 | A1 |
20220104965 | Vaninetti et al. | Apr 2022 | A1 |
20220104981 | Jones | Apr 2022 | A1 |
20220117774 | Meyer et al. | Apr 2022 | A1 |
20220117775 | Jones | Apr 2022 | A1 |
20220133524 | Davis | May 2022 | A1 |
20220151817 | Mann | May 2022 | A1 |
20220218510 | Metzger et al. | Jul 2022 | A1 |
20220229053 | Levin et al. | Jul 2022 | A1 |
20220248836 | Cagle et al. | Aug 2022 | A1 |
20220257407 | Johannes | Aug 2022 | A1 |
20220265462 | Alder | Aug 2022 | A1 |
20220273482 | Johannes et al. | Sep 2022 | A1 |
20220280357 | Jagannathan | Sep 2022 | A1 |
20220313474 | Kriscovich et al. | Oct 2022 | A1 |
20220354685 | Davis et al. | Nov 2022 | A1 |
20220370231 | Wang et al. | Nov 2022 | A1 |
20220370234 | Hughett | Nov 2022 | A1 |
20220370237 | Parmar et al. | Nov 2022 | A1 |
20220387001 | Askenazi et al. | Dec 2022 | A1 |
20220395391 | Saunders | Dec 2022 | A1 |
20230018845 | Lee | Jan 2023 | A1 |
20230020563 | Sharma et al. | Jan 2023 | A1 |
20230037159 | Brennan | Feb 2023 | A1 |
20230062944 | Vollenberg et al. | Mar 2023 | A1 |
20230062994 | Ecklund et al. | Mar 2023 | A1 |
20230089032 | Hughett | Mar 2023 | A1 |
20230105001 | Whittome et al. | Apr 2023 | A1 |
20230138269 | Abdelal | May 2023 | A1 |
20230145365 | Martin et al. | May 2023 | A1 |
Number | Date | Country |
---|---|---|
2018216821 | Aug 2019 | AU |
2165286 | Sep 1999 | CA |
2354132 | Jun 2000 | CA |
2488867 | Aug 2007 | CA |
3050918 | Aug 2018 | CA |
3098571 | Nov 2019 | CA |
2269203 | Dec 1997 | CN |
1332620 | Jan 2002 | CN |
1533755 | Oct 2004 | CN |
1602825 | Apr 2005 | CN |
1720888 | Jan 2006 | CN |
2936204 | Aug 2007 | CN |
101262836 | Sep 2008 | CN |
102159159 | Aug 2011 | CN |
202184840 | Apr 2012 | CN |
102481441 | May 2012 | CN |
103533968 | Jan 2014 | CN |
103717180 | Apr 2014 | CN |
204562697 | Aug 2015 | CN |
105451693 | Mar 2016 | CN |
205849719 | Jan 2017 | CN |
107847384 | Mar 2018 | CN |
107920912 | Apr 2018 | CN |
209285902 | Aug 2019 | CN |
211198839 | Aug 2020 | CN |
116096332 | May 2023 | CN |
79818 | Oct 1893 | DE |
1516466 | Jun 1969 | DE |
2721330 | Nov 1977 | DE |
2742298 | Mar 1978 | DE |
9407554.9 | May 1995 | DE |
4443710 | Jun 1995 | DE |
19619597 | Nov 1997 | DE |
102011103783 | Dec 2012 | DE |
202015104597 | Jul 2016 | DE |
9600118 | Nov 1996 | DK |
0032138 | Jul 1981 | EP |
0066070 | Dec 1982 | EP |
0119143 | Nov 1988 | EP |
0610638 | Aug 1994 | EP |
0613355 | Sep 1994 | EP |
0613355 | Jan 1997 | EP |
0966936 | Dec 1999 | EP |
0987293 | Mar 2000 | EP |
1063953 | Jan 2001 | EP |
0653928 | Oct 2002 | EP |
1332738 | Aug 2003 | EP |
1382318 | Jan 2004 | EP |
1089684 | Oct 2004 | EP |
1616542 | Jan 2006 | EP |
1382318 | May 2006 | EP |
1063953 | Jan 2007 | EP |
1872752 | Jan 2008 | EP |
2180907 | May 2010 | EP |
2380532 | Oct 2011 | EP |
2389908 | Nov 2011 | EP |
2601916 | Jun 2013 | EP |
2676643 | Dec 2013 | EP |
2997950 | Mar 2016 | EP |
2879534 | Mar 2017 | EP |
3424471 | Jan 2019 | EP |
3169292 | Nov 2019 | EP |
3788992 | Mar 2021 | EP |
3576689 | Mar 2022 | EP |
3752110 | Mar 2022 | EP |
4025163 | Jul 2022 | EP |
1011517 | Dec 1965 | GB |
1467144 | Mar 1977 | GB |
2106395 | Apr 1983 | GB |
2106784 | Apr 1983 | GB |
2148126 | May 1985 | GB |
2171315 | Aug 1986 | GB |
2148126 | Jul 1987 | GB |
2191095 | Dec 1987 | GB |
2199750 | Jul 1988 | GB |
2260907 | May 1993 | GB |
2462267 | Feb 2010 | GB |
2469496 | Oct 2010 | GB |
2490327 | Oct 2012 | GB |
2507318 | Apr 2014 | GB |
201800009129 | Apr 2020 | IT |
S5410596 | Jan 1979 | JP |
S5410596 | May 1979 | JP |
S55155618 | Dec 1980 | JP |
S5888596 | Jun 1983 | JP |
S63107780 | Jul 1988 | JP |
H0267530 | Mar 1990 | JP |
H02103871 | Apr 1990 | JP |
H02131422 | May 1990 | JP |
H0460220 | Feb 1992 | JP |
H05123349 | May 1993 | JP |
H05123350 | May 1993 | JP |
3087938 | Oct 1995 | JP |
H085630 | Jan 1996 | JP |
H1040141 | Feb 1998 | JP |
H10225430 | Aug 1998 | JP |
H11113946 | Apr 1999 | JP |
H11290365 | Oct 1999 | JP |
2000116690 | Apr 2000 | JP |
2000185068 | Jul 2000 | JP |
2001054531 | Feb 2001 | JP |
2001070331 | Mar 2001 | JP |
2001276107 | Oct 2001 | JP |
2001276108 | Oct 2001 | JP |
2002028173 | Jan 2002 | JP |
2003505152 | Feb 2003 | JP |
2003180722 | Jul 2003 | JP |
2004130056 | Apr 2004 | JP |
2004267530 | Sep 2004 | JP |
2005066011 | Mar 2005 | JP |
2005066325 | Mar 2005 | JP |
2005518237 | Jun 2005 | JP |
3749097 | Dec 2005 | JP |
2006026108 | Feb 2006 | JP |
3123547 | Jun 2006 | JP |
2006136492 | Jun 2006 | JP |
2006204868 | Aug 2006 | JP |
3132659 | May 2007 | JP |
4039641 | Nov 2007 | JP |
2009509570 | Mar 2009 | JP |
2010081981 | Apr 2010 | JP |
4640772 | Dec 2010 | JP |
2010536439 | Dec 2010 | JP |
4747166 | May 2011 | JP |
2011087823 | May 2011 | JP |
4801218 | Aug 2011 | JP |
2011218130 | Nov 2011 | JP |
2011224070 | Nov 2011 | JP |
2012523869 | Oct 2012 | JP |
2013238608 | Nov 2013 | JP |
2014521960 | Aug 2014 | JP |
2015092945 | May 2015 | JP |
3198994 | Jul 2015 | JP |
2019525811 | Sep 2019 | JP |
2021120686 | Aug 2021 | JP |
200290061 | Sep 2002 | KR |
20030047451 | Jun 2003 | KR |
20140039485 | Apr 2014 | KR |
101432639 | Aug 2014 | KR |
20180106659 | Oct 2018 | KR |
20180108774 | Oct 2018 | KR |
2068717 | Jun 2013 | PT |
8101957 | Jul 1981 | WO |
8804558 | Jun 1988 | WO |
9104714 | Apr 1991 | WO |
9104714 | Jun 1991 | WO |
9220299 | Feb 1993 | WO |
9309736 | May 1993 | WO |
9309736 | Jun 1993 | WO |
9514448 | Jun 1995 | WO |
9600096 | Jan 1996 | WO |
9634636 | Nov 1996 | WO |
9817211 | Apr 1998 | WO |
9830336 | Jul 1998 | WO |
0000112 | Jan 2000 | WO |
0000113 | Jan 2000 | WO |
0025651 | May 2000 | WO |
0033773 | Jun 2000 | WO |
0057784 | Oct 2000 | WO |
0145618 | Jun 2001 | WO |
0145621 | Jun 2001 | WO |
02094160 | Nov 2002 | WO |
03013967 | Feb 2003 | WO |
03024824 | Mar 2003 | WO |
03055423 | Jul 2003 | WO |
03071931 | Sep 2003 | WO |
03079942 | Oct 2003 | WO |
03071931 | Feb 2004 | WO |
2004019836 | Mar 2004 | WO |
2004024046 | Mar 2004 | WO |
2005074571 | Sep 2005 | WO |
2005089687 | Sep 2005 | WO |
2005107661 | Nov 2005 | WO |
2006021220 | Mar 2006 | WO |
2007007845 | Jan 2007 | WO |
2007042823 | Apr 2007 | WO |
2007055651 | May 2007 | WO |
2006098950 | Nov 2007 | WO |
2007134608 | Nov 2007 | WO |
2007128156 | Feb 2008 | WO |
2008026106 | Mar 2008 | WO |
2008078117 | Jul 2008 | WO |
2008104019 | Sep 2008 | WO |
2008141471 | Nov 2008 | WO |
2009004368 | Jan 2009 | WO |
2009004369 | Jan 2009 | WO |
2009052496 | Apr 2009 | WO |
2009007702 | Jul 2009 | WO |
2009101738 | Aug 2009 | WO |
2010058192 | May 2010 | WO |
2010030122 | Jul 2010 | WO |
2010101915 | Jan 2011 | WO |
2011018132 | Feb 2011 | WO |
2011018133 | Feb 2011 | WO |
2011024864 | Mar 2011 | WO |
2011054118 | May 2011 | WO |
2011079132 | Jun 2011 | WO |
2011107972 | Sep 2011 | WO |
2011108972 | Sep 2011 | WO |
2011117292 | Sep 2011 | WO |
2011123219 | Oct 2011 | WO |
2011132043 | Oct 2011 | WO |
2012012908 | Feb 2012 | WO |
2012065274 | May 2012 | WO |
2012097462 | Jul 2012 | WO |
2012098796 | Jul 2012 | WO |
2012101288 | Aug 2012 | WO |
2012175916 | Dec 2012 | WO |
2013018435 | Feb 2013 | WO |
2013033429 | Mar 2013 | WO |
2013055434 | Apr 2013 | WO |
2013082397 | Jun 2013 | WO |
2013103291 | Jul 2013 | WO |
2013131109 | Sep 2013 | WO |
2013167478 | Nov 2013 | WO |
2013177716 | Dec 2013 | WO |
2014041534 | Mar 2014 | WO |
2014046420 | Mar 2014 | WO |
2014118518 | Aug 2014 | WO |
2014160852 | Oct 2014 | WO |
2015023599 | Feb 2015 | WO |
2015052348 | Apr 2015 | WO |
2015068384 | May 2015 | WO |
2015169403 | Nov 2015 | WO |
2015170307 | Nov 2015 | WO |
2015197462 | Dec 2015 | WO |
2016051385 | Apr 2016 | WO |
2016055989 | Apr 2016 | WO |
2016071894 | May 2016 | WO |
2016103242 | Jun 2016 | WO |
2016116915 | Jul 2016 | WO |
2016124203 | Aug 2016 | WO |
2016139448 | Sep 2016 | WO |
2016166562 | Oct 2016 | WO |
2016167535 | Oct 2016 | WO |
2016191574 | Dec 2016 | WO |
2016200088 | Dec 2016 | WO |
2016200361 | Dec 2016 | WO |
2016204731 | Dec 2016 | WO |
2017001846 | Jan 2017 | WO |
2017075226 | May 2017 | WO |
2017152198 | Sep 2017 | WO |
2017162559 | Sep 2017 | WO |
2017205446 | Nov 2017 | WO |
2017209779 | Dec 2017 | WO |
2017210524 | Dec 2017 | WO |
2018022414 | Feb 2018 | WO |
2018044781 | Mar 2018 | WO |
2018056953 | Mar 2018 | WO |
2018090550 | May 2018 | WO |
2018138513 | Aug 2018 | WO |
2018144318 | Aug 2018 | WO |
2018144463 | Aug 2018 | WO |
2018150263 | Aug 2018 | WO |
2018150268 | Aug 2018 | WO |
2018152156 | Aug 2018 | WO |
2018183791 | Oct 2018 | WO |
2018150267 | Nov 2018 | WO |
2018235026 | Dec 2018 | WO |
2018235065 | Dec 2018 | WO |
2019004404 | Jan 2019 | WO |
2019065541 | Apr 2019 | WO |
2019096845 | May 2019 | WO |
2019150385 | Aug 2019 | WO |
2019161094 | Aug 2019 | WO |
2019188566 | Oct 2019 | WO |
2019190593 | Oct 2019 | WO |
2019212949 | Nov 2019 | WO |
2019212950 | Nov 2019 | WO |
2019212951 | Nov 2019 | WO |
2019212952 | Nov 2019 | WO |
2019212954 | Nov 2019 | WO |
2019212955 | Nov 2019 | WO |
2019212956 | Nov 2019 | WO |
2019214787 | Nov 2019 | WO |
2019214788 | Nov 2019 | WO |
2020000994 | Jan 2020 | WO |
2020020618 | Jan 2020 | WO |
2020038822 | Feb 2020 | WO |
2020088409 | May 2020 | WO |
2020049394 | Jun 2020 | WO |
2020120657 | Jun 2020 | WO |
2020152575 | Jul 2020 | WO |
2020182923 | Sep 2020 | WO |
2020204967 | Oct 2020 | WO |
2020209898 | Oct 2020 | WO |
2020242790 | Dec 2020 | WO |
2020251893 | Dec 2020 | WO |
2020256865 | Dec 2020 | WO |
2021007144 | Jan 2021 | WO |
2021007345 | Jan 2021 | WO |
2021010844 | Jan 2021 | WO |
2021016026 | Jan 2021 | WO |
2021016300 | Jan 2021 | WO |
2021025919 | Feb 2021 | WO |
2021034886 | Feb 2021 | WO |
2021041123 | Mar 2021 | WO |
2021094352 | May 2021 | WO |
2021102296 | May 2021 | WO |
2021138411 | Jul 2021 | WO |
2021138414 | Jul 2021 | WO |
2021155206 | Aug 2021 | WO |
2021173436 | Sep 2021 | WO |
2021195384 | Sep 2021 | WO |
2021207621 | Oct 2021 | WO |
2021211568 | Oct 2021 | WO |
2021216419 | Oct 2021 | WO |
2021247523 | Dec 2021 | WO |
2021257202 | Dec 2021 | WO |
2022006256 | Jan 2022 | WO |
2022031943 | Feb 2022 | WO |
2022035745 | Feb 2022 | WO |
2022076427 | Apr 2022 | WO |
2022086898 | Apr 2022 | WO |
2022098536 | May 2022 | WO |
2022125685 | Jun 2022 | WO |
2022140545 | Jun 2022 | WO |
2022150360 | Jul 2022 | WO |
2022150463 | Jul 2022 | WO |
2022159392 | Jul 2022 | WO |
2022170182 | Aug 2022 | WO |
2022182385 | Sep 2022 | WO |
2022192188 | Sep 2022 | WO |
2022192347 | Sep 2022 | WO |
2023038945 | Mar 2023 | WO |
2023038950 | Mar 2023 | WO |
Entry |
---|
US 9,908,683 B2, 03/2018, Sandhausen et al. (withdrawn) |
Advisory Action for U.S. Appl. No. 16/904,868 dated Jun. 15, 2022. |
Final Office Action for U.S. Appl. No. 16/452,258 dated Jun. 14, 2022. |
Final Office Action for U.S. Appl. No. 16/478,180 dated Jun. 22, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/051456 dated Jan. 19, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/055515 dated Jan. 28, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/011419 dated Jun. 7, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/012794 dated May 3, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015471 dated May 16, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/016942 dated Jun. 8, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/018170 dated May 31, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/019254 dated Jun. 7, 2022. |
Issue Notification for U.S. Appl. No. 17/088,272 dated Jun. 15, 2022. |
Issue Notification for U.S. Appl. No. 17/330,657 dated Jun. 22, 2022. |
Notice of Allowance for U.S. Appl. No. 29/741,751 dated Jun. 9, 2022. |
U.S. Appl. No. 14/433,773, filed Apr. 3, 2020. |
U.S. Appl. No. 17/664,914, filed May 25, 222. |
U.S. Appl. No. 17/749,340, filed May 20, 2022. |
U.S. Appl. No. 17/756,201, filed May 19, 2022. |
U.S. Appl. No. 17/758,152, filed Jun. 29, 2022. |
U.S. Appl. No. 17/758,316, filed Jul. 1, 2022. |
U.S. Appl. No. 63/191,558, filed May 21, 2021. |
Advisory Action for U.S. Appl. No. 14/722,613 dated Mar. 4, 2019. |
Advisory Action for U.S. Appl. No. 14/952,591 dated Jun. 1, 2018. |
Advisory Action for U.S. Appl. No. 15/238,427 dated Apr. 10, 2019. |
Advisory Action for U.S. Appl. No. 16/899,956 dated Jul. 9, 2021. |
Advisory Action for U.S. Appl. No. 16/904,868 dated Jul. 2, 2021. |
Advisory Action for U.S. Appl. No. 16/905,400 dated Feb. 16, 2022. |
Advisory Action for U.S. Appl. No. 16/905,400 dated Jun. 9, 2021. |
Corrected International Search Report and Written Opinion for International Application No. PCT/US2017/043025 dated Jan. 11, 2018. |
Corrected Notice of Allowability for U.S. Appl. No. 15/221,106 dated Jul. 2, 2019. |
Corrected Notice of Allowability for U.S. Appl. No. 15/612,325 dated Mar. 17, 2021. |
Corrected Notice of Allowability for U.S. Appl. No. 17/330,657 dated Dec. 9, 2021. |
Final Office Action for U.S. Appl. No. 14/722,613 dated Nov. 29, 2018. |
Final Office Action for U.S. Appl. No. 14/947,759 dated Apr. 8, 2016. |
Final Office Action for U.S. Appl. No. 14/952,591 dated Feb. 23, 2018. |
Final Office Action for U.S. Appl. No. 14/952,591 dated Nov. 1, 2019. |
Final Office Action for U.S. Appl. No. 14/952,591 dated Nov. 27, 2020. |
Final Office Action for U.S. Appl. No. 15/171,968 dated Feb. 14, 2020. |
Final Office Action for U.S. Appl. No. 15/171,968 dated Mar. 19, 2019. |
Final Office Action for U.S. Appl. No. 15/221,106 dated Jan. 23, 2019. |
Final Office Action for U.S. Appl. No. 15/238,427 dated Jan. 2, 2019. |
Final Office Action for U.S. Appl. No. 15/260,103 dated Feb. 14, 2019. |
Final Office Action for U.S. Appl. No. 15/612,325 dated Sep. 17, 2020. |
Final Office Action for U.S. Appl. No. 16/452,145 dated Mar. 25, 2022. |
Final Office Action for U.S. Appl. No. 16/899,956 dated Apr. 19, 2021. |
Final Office Action for U.S. Appl. No. 16/904,868 dated Mar. 10, 2022. |
Final Office Action for U.S. Appl. No. 16/904,868 dated Mar. 26, 2021. |
Final Office Action for U.S. Appl. No. 16/905,400 dated Apr. 6, 2021. |
Final Office Action for U.S. Appl. No. 16/905,400 dated Dec. 9, 2021. |
Final Office Action for U.S. Appl. No. 17/088,272 dated May 25, 2021. |
Final Office Action for U.S. Appl. No. 29/624,661 dated Feb. 18, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2016/049274 dated Dec. 1, 2016. |
International Search Report and Written Opinion from International Application No. PCT/US2017/035625 dated Aug. 15, 2017. |
International Search Report and Written Opinion from International Application No. PCT/US2017/043025 dated Oct. 18, 2017. |
International Search Report and Written Opinion from International Application No. PCT/US2018/015968 dated Apr. 6, 2018. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029608 dated Sep. 3, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029609 dated Sep. 3, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029610 dated Sep. 3, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029611 dated Jul. 3, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029613 dated Jul. 3, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029614 dated Sep. 26, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2019/029616 dated Aug. 30, 2019. |
International Search Report and Written Opinion from International Application No. PCT/US2020/023572 dated Jul. 6, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/033064 dated Aug. 31, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/033122 dated Aug. 31, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/040860 dated Oct. 2, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/041242 dated Nov. 17, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/041249 dated Oct. 2, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/042262 dated Oct. 14, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/043059 dated Oct. 6, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/044024 dated Nov. 12, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/046914 dated Dec. 1, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/055680 dated Dec. 15, 2020. |
International Search Report and Written Opinion from International Application No. PCT/US2020/057562 dated Jan. 27, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2020/061563 dated Feb. 19, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2020/065234 dated Apr. 12, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2020/067451 dated Mar. 25, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2020/067454 dated Mar. 29, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2020/067455 dated Mar. 26, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/015024 dated May 18, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/015787 dated May 27, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/023001 dated Jun. 21, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/024162 dated Jul. 8, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/026607 dated Jul. 29, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027061 dated Jul. 19, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027104 dated Jul. 6, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027314 dated Jul. 6, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027422 dated Aug. 12, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027425 dated Aug. 11, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027913 dated Jul. 12, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/027917 dated Aug. 19, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/035181 dated Sep. 16, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/043893 dated Nov. 22, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/044699 dated Nov. 22, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/045188 dated Jan. 26, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/047536 dated Dec. 23, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/048211 dated Dec. 22, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/048661 dated Feb. 14, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/049404 dated Jan. 18, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/053593 dated Apr. 11, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/056566 dated Feb. 11, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/060993 dated Mar. 18, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2021/062440 dated Mar. 28, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/011108 dated Apr. 22, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/011281 dated Apr. 25, 2022. |
Issue Notification for U.S. Appl. No. 14/952,591 dated Jul. 28, 2021. |
Issue Notification for U.S. Appl. No. 15/171,968 dated Mar. 3, 2021. |
Issue Notification for U.S. Appl. No. 15/221,106 dated Jul. 24, 2019. |
Issue Notification for U.S. Appl. No. 15/238,427 dated Jul. 24, 2019. |
Issue Notification for U.S. Appl. No. 15/260,103 dated Aug. 7, 2019. |
Issue Notification for U.S. Appl. No. 15/611,587 dated Feb. 20, 2019. |
Issue Notification for U.S. Appl. No. 15/612,325 dated Mar. 24, 2021. |
Issue Notification for U.S. Appl. No. 29/624,661 dated Aug. 4, 2021. |
Non-Final Office Action for U.S. Appl. No. 14/592,591 dated Mar. 20, 2020. |
Non-Final Office Action for U.S. Appl. No. 14/722,613 dated Jun. 13, 2019. |
Non-Final Office Action for U.S. Appl. No. 14/947,759 dated Mar. 17, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Aug. 1, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Mar. 20, 2020. |
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Mar. 21, 2019. |
Non-Final Office Action for U.S. Appl. No. 14/952,591 dated Sep. 28, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/171,968 dated May 11, 2020. |
Non-Final Office Action for U.S. Appl. No. 15/171,968 dated Aug. 20, 2019. |
Non-Final Office Action for U.S. Appl. No. 15/171,968 dated Jun. 12, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/221,106 dated Jun. 5, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/238,427 dated Aug. 8, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/260,103 dated Sep. 26, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/611,587 dated Dec. 29, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/611,587 dated Jul. 13, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/612,325 dated Mar. 19, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/245,726 dated Jan. 21, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/369,676 dated Mar. 31, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/433,773 dated Apr. 21, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/449,039 dated Dec. 8, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/452,145 dated Sep. 28, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/452,258 dated Sep. 28, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/478,180 dated Oct. 22, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/899,956 dated Oct. 16, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/899,956 dated Sep. 2, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/904,868 dated Nov. 25, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/904,868 dated Oct. 5, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/905,400 dated Apr. 27, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/905,400 dated Dec. 2, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/905,400 dated Jul. 22, 2021. |
Non-Final Office Action for U.S. Appl. No. 17/088,272 dated Jan. 25, 2021. |
Non-Final Office Action for U.S. Appl. No. 17/330,657 dated Aug. 11, 2021. |
Non-Final Office Action for U.S. Appl. No. 29/624,661 dated Jul. 18, 2019. |
Non-Final Office Action for U.S. Appl. No. 29/694,002 dated Jun. 24, 2020. |
Non-Final Office Action for U.S. Appl. No. 29/741,751 dated Jan. 18, 2022. |
Notice of Allowance for U.S. Appl. No. 14/952,591 dated Apr. 5, 2021. |
Notice of Allowance for U.S. Appl. No. 14/952,591 dated Jul. 8, 2021. |
Notice of Allowance for U.S. Appl. No. 15/171,968 dated Feb. 16, 2021. |
Notice of Allowance for U.S. Appl. No. 15/171,968 dated Nov. 6, 2020. |
Notice of Allowance for U.S. Appl. No. 15/221,106 dated May 1, 2019. |
Notice of Allowance for U.S. Appl. No. 15/238,427 dated May 23, 2019. |
Notice of Allowance for U.S. Appl. No. 15/260,103 dated Jun. 7, 2019. |
Notice of Allowance for U.S. Appl. No. 15/611,587 dated Dec. 21, 2018. |
Notice of Allowance for U.S. Appl. No. 15/612,325 dated Feb. 19, 2021. |
Notice of Allowance for U.S. Appl. No. 15/612,325 dated Jan. 21, 2021. |
Notice of Allowance for U.S. Appl. No. 16/899,956 dated Apr. 19, 2022. |
Notice of Allowance for U.S. Appl. No. 16/899,956 dated Dec. 29, 2021. |
Notice of Allowance for U.S. Appl. No. 17/088,272 dated Aug. 5, 2021. |
Notice of Allowance for U.S. Appl. No. 17/088,272 dated Mar. 4, 2022. |
Notice of Allowance for U.S. Appl. No. 17/088,272 dated Nov. 24, 2021. |
Notice of Allowance for U.S. Appl. No. 17/330,657 dated Mar. 16, 2022. |
Notice of Allowance for U.S. Appl. No. 17/330,657 dated Nov. 26, 2021. |
Notice of Allowance for U.S. Appl. No. 29/624,661 dated Apr. 28, 2021. |
Notice of Allowance for U.S. Appl. No. 29/624,661 dated Jul. 10, 2020. |
Notice of Allowance for U.S. Appl. No. 29/624,661 dated May 14, 2020. |
Notice of Allowance for U.S. Appl. No. 29/624,661 dated Sep. 29, 2020. |
Notice of Allowance for U.S. Appl. No. 29/694,002 dated Apr. 29, 2021. |
Notice of Allowance for U.S. Appl. No. 29/694,002 dated Jan. 29, 2021. |
Notice of Allowance for U.S. Appl. No. 29/694,002 dated Oct. 16, 2020. |
Notice to File Missing Parts for U.S. Appl. No. 17/179,116 dated Mar. 3, 2021. |
Restriction Requirement for U.S. Appl. No. 16/433,773 dated Dec. 7, 2021. |
Restriction Requirement for U.S. Appl. No. 16/478,180 dated May 25, 2021. |
U.S. Appl. No. 14/625,469, filed Feb. 28, 2015. |
U.S. Appl. No. 14/947,759, filed Nov. 20, 2015. |
U.S. Appl. No. 14/952,591, filed Nov. 25, 2015. |
U.S. Appl. No. 15/171,968, filed Jun. 2, 2016. |
U.S. Appl. No. 15/221,106, filed Jul. 27, 2016. |
U.S. Appl. No. 15/260,103, filed Sep. 8, 2016. |
U.S. Appl. No. 15/384,196, filed Dec. 19, 2016. |
U.S. Appl. No. 15/611,587, filed Jun. 1, 2017. |
U.S. Appl. No. 15/612,325, filed Jun. 2, 2017. |
U.S. Appl. No. 16/245,726, filed Jan. 11, 2019. |
U.S. Appl. No. 16/369,676, filed Mar. 29, 2019. |
U.S. Appl. No. 16/433,773, filed Jun. 6, 2019. |
U.S. Appl. No. 16/449,039, filed Jun. 21, 2019. |
U.S. Appl. No. 16/452,145, filed Jun. 25, 2019. |
U.S. Appl. No. 16/452,258, filed Jun. 25, 2019. |
U.S. Appl. No. 16/478,180, filed Jul. 16, 2019. |
U.S. Appl. No. 16/904,868, filed Jun. 18, 2020. |
U.S. Appl. No. 16/905,400, filed Jun. 18, 2020. |
U.S. Appl. No. 17/051,550, filed Oct. 29, 2020. |
U.S. Appl. No. 17/051,554, filed Oct. 29, 2020. |
U.S. Appl. No. 17/051,585, filed Oct. 29, 2020. |
U.S. Appl. No. 17/051,600, filed Oct. 29, 2020. |
U.S. Appl. No. 17/088,272, filed Nov. 3, 2020. |
U.S. Appl. No. 17/179,116, filed Feb. 18, 2021. |
U.S. Appl. No. 17/330,657, filed May 26, 2021. |
U.S. Appl. No. 17/378,015, filed Jul. 16, 2021. |
U.S. Appl. No. 17/394,055, filed Aug. 4, 2021. |
U.S. Appl. No. 17/412,864, filed Aug. 26, 2021. |
U.S. Appl. No. 17/444,825, filed Aug. 10, 2021. |
U.S. Appl. No. 17/446,256, filed Aug. 27, 2021. |
U.S. Appl. No. 17/446,654, filed Sep. 1, 2021. |
U.S. Appl. No. 17/447,123, filed Sep. 8, 2021. |
U.S. Appl. No. 17/450,864, filed Oct. 14, 2021. |
U.S. Appl. No. 17/451,345, filed Oct. 19, 2021. |
U.S. Appl. No. 17/451,354, filed Oct. 19, 2021. |
U.S. Appl. No. 17/453,260, filed Nov. 2, 2021. |
U.S. Appl. No. 17/453,560, filed Nov. 4, 2021. |
U.S. Appl. No. 17/461,036 mailed Aug. 30, 2021. |
U.S. Appl. No. 17/494,578, filed Oct. 5, 2021. |
U.S. Appl. No. 17/501,591, filed Oct. 14, 2021. |
U.S. Appl. No. 17/595,747, filed Nov. 23, 2021. |
U.S. Appl. No. 17/597,408, filed Jan. 5, 2022. |
U.S. Appl. No. 17/597,673, filed Jan. 18, 2022. |
U.S. Appl. No. 17/614,173, filed Nov. 24, 2021. |
U.S. Appl. No. 17/631,619, filed Jan. 31, 2022. |
U.S. Appl. No. 17/645,821, filed Dec. 23, 2021. |
U.S. Appl. No. 17/646,771, filed Jan. 3, 2022. |
U.S. Appl. No. 17/653,314, filed Mar. 3, 2022. |
U.S. Appl. No. 17/653,920, filed Mar. 8, 2022. |
U.S. Appl. No. 17/654,156, filed Mar. 9, 2022. |
U.S. Appl. No. 17/655,464, filed Mar. 18, 2022. |
U.S. Appl. No. 17/657,474, filed Mar. 31, 2022. |
U.S. Appl. No. 17/661,090, filed Apr. 28, 2022. |
U.S. Appl. No. 17/662,700, filed May 10, 2022. |
U.S. Appl. No. 17/754,736, filed Apr. 11, 2022. |
U.S. Appl. No. 29/741,751, filed Jul. 15, 2020. |
U.S. Appl. No. 61/955,537, filed Mar. 19, 2014. |
U.S. Appl. No. 62/082,279, filed Nov. 20, 2014. |
U.S. Appl. No. 62/084,078, filed Nov. 25, 2014. |
U.S. Appl. No. 62/414,963, filed Oct. 31, 2016. |
U.S. Appl. No. 62/452,437, filed Jan. 31, 2017. |
U.S. Appl. No. 62/485,578, filed Apr. 14, 2017. |
U.S. Appl. No. 62/665,297, filed May 1, 2018. |
U.S. Appl. No. 62/665,302, filed May 1, 2018. |
U.S. Appl. No. 62/665,317, filed May 1, 2018. |
U.S. Appl. No. 62/665,321, filed May 1, 2018. |
U.S. Appl. No. 62/665,331, filed May 1, 2018. |
U.S. Appl. No. 62/665,335, filed May 1, 2018. |
U.S. Appl. No. 62/853,279, filed May 28, 2019. |
U.S. Appl. No. 62/853,889, filed May 29, 2019. |
U.S. Appl. No. 62/864,656, filed Jun. 21, 2019. |
U.S. Appl. No. 62/873,045, filed Jul. 11, 2019. |
U.S. Appl. No. 62/873,048, filed Jul. 11, 2019. |
U.S. Appl. No. 62/876,500, filed Jul. 19, 2019. |
U.S. Appl. No. 62/877,558, filed Jul. 23, 2019. |
U.S. Appl. No. 62/883,172, filed Aug. 6, 2019. |
U.S. Appl. No. 62/889,149, filed Aug. 20, 2019. |
U.S. Appl. No. 62/923,279, filed Oct. 18, 2019. |
U.S. Appl. No. 62/926,767, filed Oct. 28, 2019. |
U.S. Appl. No. 62/935,337, filed Nov. 14, 2019. |
U.S. Appl. No. 62/938,447, filed Nov. 21, 2019. |
U.S. Appl. No. 62/949,187, filed Dec. 17, 2019. |
U.S. Appl. No. 62/956,756, filed Jan. 3, 2020. |
U.S. Appl. No. 62/956,767, filed Jan. 3, 2020. |
U.S. Appl. No. 62/956,770, filed Jan. 3, 2020. |
U.S. Appl. No. 62/967,977, filed Jan. 30, 2020. |
U.S. Appl. No. 62/994,912, filed Mar. 26, 2020. |
U.S. Appl. No. 63/008,112, filed Apr. 10, 2020. |
U.S. Appl. No. 63/011,445, filed Apr. 17, 2020. |
U.S. Appl. No. 63/011,487, filed Apr. 17, 2020. |
U.S. Appl. No. 63/011,571, filed Apr. 17, 2020. |
U.S. Appl. No. 63/011,657, filed Apr. 17, 2020. |
U.S. Appl. No. 63/011,760, filed Apr. 17, 2020. |
U.S. Appl. No. 63/012,347, filed Apr. 20, 2020. |
U.S. Appl. No. 63/012,384, filed Apr. 20, 2020. |
U.S. Appl. No. 63/030,685, filed May 27, 2020. |
U.S. Appl. No. 63/033,310, filed Jun. 2, 2020. |
U.S. Appl. No. 63/047,374, filed Jul. 2, 2020. |
U.S. Appl. No. 63/061,241, filed Aug. 5, 2020. |
U.S. Appl. No. 63/061,244, filed Aug. 5, 2020. |
U.S. Appl. No. 63/061,834, filed Aug. 6, 2020. |
U.S. Appl. No. 63/064,017, filed Aug. 11, 2020. |
U.S. Appl. No. 63/064,126, filed Aug. 11, 2020. |
U.S. Appl. No. 63/067,542, filed Aug. 19, 2020. |
U.S. Appl. No. 63/071,438, filed Aug. 28, 2020. |
U.S. Appl. No. 63/071,821, filed Aug. 28, 2020. |
U.S. Appl. No. 63/073,545, filed Sep. 2, 2020. |
U.S. Appl. No. 63/073,553, filed Sep. 2, 2020. |
U.S. Appl. No. 63/074,051, filed Sep. 3, 2020. |
U.S. Appl. No. 63/074,066, filed Sep. 3, 2020. |
U.S. Appl. No. 63/076,032, filed Sep. 9, 2020. |
U.S. Appl. No. 63/076,474, filed Sep. 10, 2020. |
U.S. Appl. No. 63/076,477, filed Sep. 10, 2020. |
U.S. Appl. No. 63/082,261, filed Sep. 23, 2020. |
U.S. Appl. No. 63/088,506, filed Oct. 7, 2020. |
U.S. Appl. No. 63/088,511, filed Oct. 7, 2020. |
U.S. Appl. No. 63/088,539, filed Oct. 7, 2020. |
U.S. Appl. No. 63/094,464, filed Oct. 21, 2020. |
U.S. Appl. No. 63/094,498, filed Oct. 21, 2020. |
U.S. Appl. No. 63/094,594, filed Oct. 21, 2020. |
U.S. Appl. No. 63/094,608, filed Oct. 21, 2020. |
U.S. Appl. No. 63/094,626, filed Oct. 21, 2020. |
U.S. Appl. No. 63/094,646, filed Oct. 21, 2020. |
U.S. Appl. No. 63/109,066, filed Nov. 3, 2020. |
U.S. Appl. No. 63/109,084, filed Nov. 3, 2020. |
U.S. Appl. No. 63/112,417, filed Nov. 11, 2020. |
U.S. Appl. No. 63/119,161, filed Nov. 30, 2020. |
U.S. Appl. No. 63/124,271, filed Dec. 11, 2020. |
U.S. Appl. No. 63/133,892, filed Jan. 5, 2021. |
U.S. Appl. No. 63/134,287, filed Jan. 6, 2021. |
U.S. Appl. No. 63/134,450, filed Jan. 6, 2021. |
U.S. Appl. No. 63/134,631, filed Jan. 7, 2021. |
U.S. Appl. No. 63/134,632, filed Jan. 7, 2021. |
U.S. Appl. No. 63/134,754, filed Jan. 7, 2021. |
U.S. Appl. No. 63/138,878, filed Jan. 19, 2021. |
U.S. Appl. No. 63/146,946, filed Feb. 8, 2021. |
U.S. Appl. No. 63/147,013, filed Feb. 8, 2021. |
U.S. Appl. No. 63/147,299, filed Feb. 9, 2021. |
U.S. Appl. No. 63/148,723, filed Feb. 12, 2021. |
U.S. Appl. No. 63/154,248, filed Feb. 26, 2021. |
U.S. Appl. No. 63/155,395, filed Mar. 2, 2021. |
U.S. Appl. No. 63/157,007, filed Mar. 5, 2021. |
U.S. Appl. No. 63/157,014, filed Mar. 5, 2021. |
U.S. Appl. No. 63/159,142, filed Mar. 10, 2021. |
U.S. Appl. No. 63/159,186, filed Mar. 10, 2021. |
U.S. Appl. No. 63/159,210, filed Mar. 10, 2021. |
U.S. Appl. No. 63/159,280, filed Mar. 10, 2021. |
U.S. Appl. No. 63/165,273, filed Mar. 24, 2021. |
U.S. Appl. No. 63/165,384, filed Mar. 24, 2021. |
U.S. Appl. No. 63/171,165, filed Apr. 6, 2021. |
U.S. Appl. No. 63/172,975, filed Apr. 9, 2021. |
U.S. Appl. No. 63/181,695, filed Apr. 29, 2021. |
U.S. Appl. No. 63/192,274, filed May 24, 2021. |
U.S. Appl. No. 63/192,289, filed May 24, 2021. |
U.S. Appl. No. 63/193,235, filed May 26, 2021. |
U.S. Appl. No. 63/193,406, filed May 26, 2021. |
U.S. Appl. No. 63/193,891, filed May 27, 2021. |
U.S. Appl. No. 63/208,262, filed Jun. 8, 2021. |
U.S. Appl. No. 63/214,551, filed Jun. 24, 2021. |
U.S. Appl. No. 63/214,570, filed Jun. 24, 2021. |
U.S. Appl. No. 63/215,017, filed Jun. 25, 2021. |
U.S. Appl. No. 63/228,244, filed Aug. 2, 2021. |
U.S. Appl. No. 63/228,252, filed Aug. 2, 2021. |
U.S. Appl. No. 63/228,258, filed Aug. 2, 2021. |
U.S. Appl. No. 63/230,894, filed Aug. 9, 2021. |
U.S. Appl. No. 63/230,897, filed Aug. 9, 2021. |
U.S. Appl. No. 63/238,457, filed Aug. 30, 2021. |
U.S. Appl. No. 63/238,477, filed Aug. 30, 2021. |
U.S. Appl. No. 63/241,562, filed Sep. 8, 2021. |
U.S. Appl. No. 63/241,564, filed Sep. 8, 2021. |
U.S. Appl. No. 63/241,575, filed Sep. 8, 2021. |
U.S. Appl. No. 63/246,972, filed Sep. 22, 2021. |
U.S. Appl. No. 63/247,375, filed Sep. 23, 2021. |
U.S. Appl. No. 63/247,478, filed Sep. 23, 2021. |
U.S. Appl. No. 63/247,491, filed Sep. 23, 2021. |
U.S. Appl. No. 63/299,208, filed Jan. 13, 2022. |
Sage's Second Supplemental Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508, 10,226,375, 10,390,989, and U.S. Pat. No. 10,376,407, 292 pages. |
Plaintiff's Identification of Claim Terms and Proposed Constructions, 3 pages. |
Sage's Preliminary Identification of Claim Elements and Proposed Constructions for U.S. Pat. Nos. 8,287,508, 10,226,376, 10,390,989 and U.S. Pat. No. 10,376,407, 7 pages. |
Corrected Certificate of Service, 2020, 2 pages. |
Excerpts from the 508 (U.S. Pat. No. 8,278,508) Patent's Prosecution History, 2020, 99 pages. |
Declaration of Diane K. Newman Curriculum Vitae, 2020, pp. 1-199. |
Sage's Supplemental and Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; 10,390,989 and Initial Invalidity Contentions Regarding U.S. Pat. No. 10,376,407, Aug. 21, 2020, 277 pages. |
Decision Granting Institution of Inter Partes Review for U.S. Pat. No. 8,287,508, dated Feb. 17, 2021, 39 pages. |
Memorandum Order, Feb. 2021, 14 pgs. |
Boehringer CareDry System—Second Generation for Non-Invasive Urinary Management for Females, Mar. 2021, 3 pgs. |
PureWick's Response to Interrogatory No. 9 in PureWick, LLC v. Sage Products, LLC, Mar. 23, 2020, 6 pages. |
Sage's Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; and U.S. Pat. No. 10,390,989, May 29, 2020, 193 pages. |
Defendant and Counterclaim Plaintiff Sage Products, LLC'S Answer, Defenses, and Counterclaims to Plaintiff's Amended Complaint, Nov. 1, 2019. |
Plaintiff's Opening Claim Construction Brief, Oct. 16, 2020, 26 pages. |
“3 Devices Take Top Honors in Dare-To-Dream Medtech Design Contest”, R+D Digest, Nov. 2013, 1 page. |
“Advanced Mission Extender Device (AMDX) Products”, Omni Medical Systems, Inc., 15 pages. |
“AMXD Control Starter Kit Brochure”, https://www.omnimedicalsys.com/index.php?page=products, 8 pages. |
“AMXDmax In-Flight Bladder Relief”, Omni Medical; Omni Medical Systems, Inc., 2015. |
“AMXDX—Advanced Mission Extender Device Brochure”, Omni Medical, 2 pages. |
“External Urine Management for Female Anatomy”, https://www.strykercom/us/en/sage/products/sage-primafit.html, Jul. 2020, 4 pages. |
“High Absorbancy Cellulose Acetate Electrospun Nanofibers for Feminine Hygiene Application”, https://www.sciencedirect.com/science/article/abs/pii/S2352940716300701?via%3Dihub, Jul. 2016, 3 pages. |
“How Period Panties Work”, www.shethinx.com/pages/thinx-itworks, 2020, 10 pages. |
“Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers”, https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra07514a#!divAbstract, 2015, 5 pages. |
“In Flight Bladder Relief”, Omni Medical, 14 pages. |
“Making Women's Sanitary Products Safer and Cheaper”, https://www.elsevier.com/connect/making-womens-sanitary-products-safer-and-cheaper, Sep. 2016, 10 pages. |
“Novel Nanofibers Make Safe and Effective Absorbent for Sanitary Products”, https://www.materialstoday.com/nanomaterials/news/nanofibers-make-safe-and-effective-absorbent/, Oct. 2016, 3 pages. |
“Research and Development Work Relating to Assistive Technology Jun. 2005”, British Department of Health, Nov. 2006, 40 pages. |
“Rising Warrior Insulated Gallon Jug Cover”, https://www.amazon.com/Rising-Warrior-Insulated-Sleeve, 2021, 2 pages. |
“Step by Step How Ur24 WorksHome”, http://medicalpatentur24.com, Aug 30, 2017, 4 pages. |
“Underwear that absorbs your period”, Thinx!, 7 pages. |
“Urine Bag Cover-Catheter Bag Cover 2000 ml Volume-Medline Style-Multiple Sclerosis-Spine Injury-Suprapublic Catheter-Bladder Incontinence”, https://www.etsy.com/listing/1142934658/urine-bag-cover-caatheter-bag-cover-2000, 2022, 1 page. |
“User & Maintenance Guide”, Omni Medical, 2007, 16 pages. |
“Vinyl Dust Cover, Janome #741811000, Janome, Sewing Parts Online”, https://www.sewingpartsonline.com/vinyl-dust-cover-janome-74181000, 2020, 2 pages. |
“Winners Announced for Dare-to-Dream Medtech Design Challenge”, https://www.mddionline.com/design-engineering/winners-announced-dare-dream-medtech-design-challenge, 2014, 4 pages. |
Ali , “Sustainability Assessment: Seventh Generation Diapers versus gDiapers”, The University of Vermont, Dec. 6, 2011, pp. 1-31. |
Autumn , et al., “Frictional adhesion: a new angle on gecko attachment”, The Journal of Experimental Biology, 2006, pp. 3569-3579. |
Cañas , et al., “Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces”, Acta Biomaterialia 8, 2012, pp. 282-288. |
Chaudhary , et al., “Bioinspired dry adhesive: Poly(dimethylsiloxane) grafted with poly(2-ethylhexyl acrylate) brushes”, European Polymer Journal, 2015, pp. 432-440. |
Dai , et al., “Non-sticky and Non-slippery Biomimetic Patterned Surfaces”, Journal of Bionic Engineering, Mar. 2020, pp. 326-334. |
Espinoza-Ramirez , “Nanobiodiversity and Biomimetic Adhesives Development: From Nature to Production and Application”, Journal of Biomaterials and Nanobiotechnology, pp. 78-101, 2019. |
Hollister , “Female Urinary and Pouch and Male Urinary Pouch Brochure”, 2011, 1 page. |
Hollister , “Male Urinary Pouch External Collection Device”, http://www.hollister.com/en/products/Continence-Care-Products/Urine-Collectors/Urine-Collection-Accessories/Male-Urinary-Pouch-External-Collection-Device. |
Hollister , “Retracted Penis Pouch by Hollister”, Vitality Medical.com, 6 pages. |
Hwang , et al., “Multifunctional Smart Skin Adhesive Patches for Advanced Health Care”, Adv. Healthcare Mater, 2018, pp. 1-20. |
Jagota , et al., “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces”, Materials Science and Engineering, 2011, pp. 253-292. |
Jeong , et al., “A nontransferring dry adhesive with hierarchical polymer nanohairs”, PNAS, Apr. 7, 2009, pp. 5639-5644. |
Jeong , et al., “Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives”, Science Direct, 2009, pp. 335-346. |
Karp , et al., “Dry solution to a sticky problem”, Nature., 2011, pp. 42-43. |
Lee , et al., “Continuous Fabrication of Wide-Tip Microstructures for Bio-Inspired Dry Adhesives via Tip Inking Process”, Journal of Chemistry, Jan. 2, 2019, pp. 1-5. |
Macaulay , et al., “A Noninvasive Continence Management System: Development and Evaluation of a Novel Toileting Device for Women”, The Wound, Ostomy and Continence Nurses Society, 2007, pp. 641-648. |
Newman , et al., “The Urinary Incontinence Sourcebook”, Petition for Interparties Review, 1997, 23 pages. |
Newton , et al., “Measuring Safety, Effectiveness and Ease of Use of PureWick in the Management of Urinary Incontinence in Bedbound Women: Case Studies”, Jan. 8, 2016, 11 pages. |
Parmar , “10 Finalists Chosen for Dare-to-Dream Medtech Design Challenge (PureWick)”, Design Services, Nov. 10, 2014, 3 pages. |
Parness , et al., “A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality”, J.R. Soc. Interface, 2009, pp. 1223-1232. |
Purewick , “Incontinence Relief for Women”, Presentation, Sep. 23, 2015, 7 pages. |
Pytlik , “Super Absorbent Polymers”, University of Buffalo. |
Sachtman , “New Relief for Pilots? It Depends”, Wired, 2008, 2 pages. |
Tsipenyuk , et al., “Use of biomimetic hexagonal surface texture in friction against lubricated skin”, Journal of the Royal Society—Interface, 2014, pp. 1-6. |
Advisory Action for U.S. Appl. No. 16/452,258 dated Oct. 26, 2022. |
Advisory Action for U.S. Appl. No. 16/478,180 dated Sep. 21, 2022. |
Final Office Action for U.S. Appl. No. 16/245,726 dated Nov. 25, 2022. |
Final Office Action for U.S. Appl. No. 16/369,676 dated Dec. 5, 2022. |
Final Office Action for U.S. Appl. No. 16/433,773 dated Oct. 25, 2022. |
Final Office Action for U.S. Appl. No. 16/449,039 dated Aug. 1, 2022. |
Final Office Action for U.S. Appl. No. 17/662,700 dated Sep. 30, 2022. |
International Search Report and Written Opinion from International Application No. PCT/IB2021/057173 dated Nov. 5, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2021/039866 dated Oct. 7, 2021. |
International Search Report and Written Opinion from International Application No. PCT/US2022/011421 dated Jun. 13, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/014285 dated Sep. 28, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/014749 dated Sep. 28, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015026 dated Oct. 31, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015045 dated Sep. 9, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015073 dated Sep. 8, 2022. |
International Search Report and Written Opinion from international Application No. PCT/US2022/015418 dated Nov. 11, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015420 dated Nov. 18, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015492 dated Apr. 26, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/015781 dated May 6, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/018159 dated Dec. 12, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/019480 dated Jun. 13, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/021103 dated Jun. 23, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/022111 dated Oct. 26, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/023594 dated Jul. 12, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/026667 dated Aug. 22, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/030685 dated Oct. 31, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/031032 dated Sep. 9, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/032424 dated Oct. 11, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/034457 dated Oct. 12, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/034744 dated Dec. 9, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/039714 dated Nov. 22, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/042719 dated Dec. 5, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/044107 dated Dec. 23, 2022. |
Issue Notification for U.S. Appl. No. 16/905,400 dated Nov. 30, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/478,180 dated Dec. 20, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/051,550 dated Dec. 15, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/451,345 dated Dec. 7, 2022. |
Non-Final Office Action for U.S. Appl. No. 17/662,700 dated Jul. 22, 2022. |
Notice of Allowance for U.S. Appl. No. 16/449,039 dated Dec. 15, 2022. |
Notice of Allowance for U.S. Appl. No. 16/899,956 dated Aug. 10, 2022. |
Notice of Allowance for U.S. Appl. No. 16/899,956 dated Dec. 1, 2022. |
Notice of Allowance for U.S. Appl. No. 16/905,400 dated Aug. 17, 2022. |
Notice of Allowance for U.S. Appl. No. 17/461,036 dated Oct. 6, 2022. |
U.S. Appl. No. 17/664,914, filed May 25, 2022. |
U.S. Appl. No. 17/759,697, filed Jul. 28, 2022. |
U.S. Appl. No. 17/878,268, filed Aug. 1, 2022. |
U.S. Appl. No. 17/907,125, filed Sep. 23, 2022. |
U.S. Appl. No. 17/912,147, filed Sep. 16, 2022. |
U.S. Appl. No. 17/929,887, filed Sep. 6, 2022. |
U.S. Appl. No. 17/930,238, filed Sep. 7, 2022. |
U.S. Appl. No. 17/933,590, filed Sep. 20, 2022. |
U.S. Appl. No. 17/996,064, filed Oct. 12, 2022. |
U.S. Appl. No. 17/996,155, filed Oct. 13, 2022. |
U.S. Appl. No. 17/996,253, filed Oct. 14, 2022. |
U.S. Appl. No. 17/996,468, filed Oct. 18, 2022. |
U.S. Appl. No. 17/996,556, filed Oct. 19, 2022. |
U.S. Appl. No. 17/999,648, filed Nov. 22, 2022. |
U.S. Appl. No. 18/003,029, filed Dec. 22, 2022. |
U.S. Appl. No. 62/967,158, filed Jan. 26, 2020. |
U.S. Appl. No. 62/991,754, filed Mar. 19, 2020. |
U.S. Appl. No. 63/241,328, filed Sep. 7, 2021. |
Advisory Action for U.S. Appl. No. 16/245,726 dated Apr. 19, 2023. |
Advisory Action for U.S. Appl. No. 16/369,676 dated Mar. 24, 2023. |
Advisory Action for U.S. Appl. No. 16/433,773 dated Feb. 15, 2023. |
Advisory Action for U.S. Appl. No. 17/662,700 dated Jan. 30, 2023. |
Final Office Action for U.S. Appl. No. 17/051,399 dated Mar. 9, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/039018 dated Jan. 10, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/039022 dated Jan. 10, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/039711 dated Jan. 12, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/041085 dated Mar. 16, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/042725 dated Dec. 19, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/044212 dated Jan. 20, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/044243 dated Feb. 24, 2023. |
Issue Notification for U.S. Appl. No. 16/899,956 dated Mar. 29, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/433,773 dated Apr. 11, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/452,145 dated Mar. 28, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/452,258 dated Apr. 26, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/904,868 dated Mar. 15, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/051,585 dated Mar. 29, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/179,116 dated Mar. 24, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/444,792 dated Feb. 10, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/446,256 dated Apr. 13, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/448,811 dated Mar. 1, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/453,260 dated Mar. 14, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/653,137 dated Apr. 7, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/655,464 dated Mar. 14, 2023. |
Notice of Allowance for U.S. Appl. No. 17/461,036 dated Feb. 22, 2023. |
Notice of Allowance for U.S. Appl. No. 17/662,700 dated Mar. 28, 2023. |
Restriction Requirement for U.S. Appl. No. 17/326,980 dated Mar. 20, 2023. |
Restriction Requirement for U.S. Appl. No. 17/446,256 dated Jan. 23, 2023. |
Restriction Requirement for U.S. Appl. No. 17/646,771 dated Apr. 6, 2023. |
Text Messages to Lorena Eckert Re Prototype PureWick Holder dated Apr. 16, 2022. |
U.S. Appl. No. 18/006,807, filed Jan. 25, 2023. |
U.S. Appl. No. 18/007,105, filed Jan. 27, 2023. |
U.S. Appl. No. 18/041,109, filed Feb. 9, 2023. |
U.S. Appl. No. 18/042,842, filed Feb. 24, 2023. |
U.S. Appl. No. 18/043,618, filed Mar. 1, 2023. |
U.S. Appl. No. 18/115,444, filed Feb. 28, 2023. |
U.S. Appl. No. 18/134,857, filed Apr. 14, 2023. |
U.S. Appl. No. 18/164,800, filed Feb. 6, 2023. |
U.S. Appl. No. 18/246,121, filed Mar. 21, 2023. |
U.S. Appl. No. 18/247,986, filed Apr. 5, 2023. |
U.S. Appl. No. 18/299,788, filed Apr. 13, 2023. |
U.S. Appl. No. 63/308,190, filed Feb. 9, 2022. |
Final Office Action for U.S. Appl. No. 16/478,180 dated May 31, 2023. |
Final Office Action for U.S. Appl. No. 17/051,550 dated May 23, 2023. |
Final Office Action for U.S. Appl. No. 17/051,585 dated Jul. 27, 2023. |
Final Office Action for U.S. Appl. No. 17/444,792 dated Jun. 15, 2023. |
Final Office Action for U.S. Appl. No. 17/448,811 dated Aug. 3, 2023. |
Final Office Action for U.S. Appl. No. 17/451,345 dated May 3, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/041688 dated Nov. 21, 2022. |
International Search Report and Written Opinion from International Application No. PCT/US2022/043818 dated Mar. 24, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/044208 dated May 8, 2023. |
International Search Report and Written Opinion from International Application No. PCT/US2022/049300 dated Jun. 6, 2023. |
Non-Final Office Action for U.S. Appl. No. 16/449,039 dated Apr. 27, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/326,980 dated Jul. 11, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/450,864 dated May 10, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/451,354 dated May 3, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/501,591 dated Apr. 25, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/646,771 dated Jul. 5, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/661,090 dated Jul. 6, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/663,330 dated Jun. 29, 2023. |
Non-Final Office Action for U.S. Appl. No. 17/664,487 dated Jun. 8, 2023. |
Notice of Allowance for U.S. Appl. No. 16/245,726 dated Jul. 6, 2023. |
Notice of Allowance for U.S. Appl. No. 17/051,554 dated Jul. 6, 2023. |
Notice of Allowance for U.S. Appl. No. 17/461,036 dated Jun. 30, 2023. |
Notice of Allowance for U.S. Appl. No. 17/662,700 dated Jul. 28, 2023. |
Notice of Allowance for U.S. Appl. No. 18/299,788 dated Jul. 24, 2023. |
Restriction Requirement for U.S. Appl. No. 17/657,474 dated Jun. 30, 2023. |
U.S. Appl. No. 17/664,487, filed May 23, 2022. |
U.S. Appl. No. 18/140,163, filed Apr. 27, 2023. |
U.S. Appl. No. 18/140,751, filed Apr. 28, 2023. |
U.S. Appl. No. 18/198,464, filed May 17, 2023. |
U.S. Appl. No. 18/259,626, filed Jun. 28, 2023. |
U.S. Appl. No. 18/260,122, filed Jun. 30, 2023. |
U.S. Appl. No. 18/260,391, filed Jul. 5, 2023. |
U.S. Appl. No. 18/260,394, filed Jul. 5, 2023. |
U.S. Appl. No. 18/263,800, filed Aug. 1, 2023. |
U.S. Appl. No. 18/264,004, filed Aug. 2, 2023. |
U.S. Appl. No. 18/265,736, filed Jun. 7, 2023. |
U.S. Appl. No. 18/335,579, filed Jun. 15, 2023. |
PureWick Corporation v. Sage Products, LLC Transcripts vol. 5, Apr. 1, 2022, 72 pages. |
PureWick Corporation v. Sage Products, LLC Transcripts vol. 1, Mar. 28, 2022, 99 pages. |
PureWick Corporation v. Sage Products, LLC Transcripts vol. 2, Mar. 29, 2022, 106 pages. |
PureWick Corporation v. Sage Products, LLC Transcripts vol. 3, Mar. 30, 2022, 115 pages. |
PureWick Corporation v. Sage Products, LLC Transcripts vol. 4, Mar. 31, 2022, 117 pages. |
“AMXD Control Starter Kit”, Omni Medical Systems, Inc., 1 page. |
“AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical, Jan. 11, 2010, 10 pages. |
“AMXDmax Development History 2002-2014”, Omni Medical Systems, Inc., 2 pages. |
“Combat Force Multiplier in Flight Bladder Relief Cockpit Essential Equipment Brochure”, Omni Medical, 20 pages. |
“GSA Price List”, Omni Medical, Apr. 2011, 2 pages. |
“How is Polypropylene Fiber Made”, https:www.yarnsandfibers.com/textile-resources/synthetic-fibers/polypropylene-fiber/polypropylene-fiber-production-raw-materials/how-is-polypropylene-fiber-made/ last accessed 2020, Oct. 7, 2020, 3 pages. |
“Letter to Mark Harvie of Omni Measurement Systems”, Department of Veterans Affairs, Nov. 1, 2007, 11 pages. |
“Revised AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical Systems, Oct. 8, 2019, 52 pages. |
Pieper, et al., “An external urine-collection device for women: A clinical trial”, Journal of ER Nursing, vol. 20, No. 2, Mar./Apr. 1993, pp. 51-55. |
Vinas, “A Solution For An Awkward—But Serious—Subject”, http://www.aero-news.net/index.cfm?do=main.textpost&id=69ae2bb1-838b-4098-a7b5-7flbb2505688 last accessed Feb. 8, 2021, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20220339023 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
63138878 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2022/012794 | Jan 2022 | US |
Child | 17663046 | US |