The subject invention relates to a variable capacity water pump with an impeller for use in automotive engines and the like.
The cooling mechanism for an internal combustion engine used in an automobile normally comprises a coolant pump, commonly referred to as a water pump, of a centrifugal-type. The most common arrangement utilizes the engine rotation to drive a shaft via a belt connection between a driving pulley (connected to the crankshaft) and a driven pulley. The example shown in
Although this system is simple, it has the disadvantage of supplying a fixed capacity of coolant that is often unnecessarily large. This over-capacity arises because the pump output is sized to deliver a minimum flow amount of coolant at low engine speeds. At higher engine speeds, such as those experienced under normal highway driving conditions, the flow amount becomes excessive because it is directly proportional to engine speed. This leads to poor cooling efficiencies and increased power losses.
An alternative arrangement uses an electric motor instead of the engine to drive the impeller. For instance, U.S. Pat. No. 3,840,309 discloses a variable capacity centrifugal pump with vanes that move via a pivoting linkage mechanism between a threaded nut and a cross-mount that is attached to a propeller shaft rotated by an electric motor. However, this type of design adds weight and cost because extra components are required. Also, the capacity of the battery and generator needs to be increased in order to supply the extra power needed by the motor.
Still further, U.S. Pat. Nos. 4,752,183 and 5,169,286 disclose two similar variations of a variable output centrifugal pump utilizing a shroud with recesses through which the vanes protrude. The shroud is axially moved over the vanes to vary the exposed area and, therefore, the quantity of coolant that flows through the water pump. This design fails to properly control fluid flow into the volute and allows coolant to pass beneath the impeller. Furthermore, it does not allow for varying the pump capacity with the engine rotational speed.
The present invention provides a water pump having variable capacity in accordance with a relatively simple mechanical means that obviates the need for expensive electric motors or shrouds that can cause turbulent flow.
According to the present invention, a variable capacity coolant pump includes a pump body for directing the flow of fluid through the pump between an inlet and an outlet and a shaft rotatably connected to the pump body. An impeller is coupled to the pump body for pumping fluid through the pump body from the inlet to the outlet. The impeller includes a shroud and at least one vane pivotally coupled to the shroud for pivotal movement between a plurality of pitch angles relative to the shaft. A pitch plate is operatively coupled to the vane for controlling the pitch angle of the vane. A spring is coupled to the pitch plate for biasing the vane to a maximum pitch angle wherein the vane varies in pitch in response to a force of fluid pressure from the inlet and automatically reduces the pitch angle of the vane upon an increase in the fluid pressure from the inlet to reduce the flow of fluid to the-outlet. In an alternative embodiment, the pitch angle is also controlled externally via an actuator.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
a is a partial section view of a water pump according to
b is a partial section view of a water pump according to
a is a partial section view of a water pump according to
b is a partial section view of a water pump according to
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views,
The impeller I includes a lower flange or shroud 5 having a plurality of pivotal vanes 2 projecting axially toward the inlet path of the pump. Each vane 2 is connected to an upper flange or shroud 1 via rivets 11 and guided within arcuate shaped slots 3a, 3b between the shrouds 1, 5. Directly underneath the lower shroud 5, and rigidly connected to the rotatable shaft 10, is a pitch plate 6 having slots 13 to accommodate the pitch control tabs 12 projecting from the bottom of each of the plurality of vanes 2, as best shown in
Further, a torsional pitch spring 7 is disposed around the rotatable shaft 10, and extends to the edge of the lower shroud 5, such that the torsional spring 7 normally biases the impeller I to its most forward position, where the vanes 2 are held in their highest pitch position. The slots 13 in the pitch plate 6 restrict the movement of the vanes so that they are set to an optimal position, or pitch, for low pump rotational speeds.
In operation, when the engine is first started, the torsional pitch spring 7 holds the impeller in its most forward position. The vanes 2 rotate about their rivets 11 and are held in their highest pitch position, as shown in
Therefore, as the pump speed increases in response to increasing engine speed, the vanes 2 rotate about their rivets 11 from their highest pitch position, illustrated in
Referring now to
At low rotational speeds, the torsion pitch spring 107 holds the vanes 102 in their outer most, or highest pitch, position, shown in
Finally,
Having now fully described the invention, any changes can be made by one of ordinary skill in the art without departing from the scope of the invention as set forth herein. For example, the pitch plate or vanes can also be driven by an electronic or hydraulic actuator. Further, the pitch plate could be replaced by a set of linkages.
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced other than as specifically described.
This application claims the benefit of Provisional Application Nos. 60/197,069, filed Apr. 13, 2000 and 60/242,619, filed Oct. 23, 2000.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA01/00541 | 4/12/2001 | WO | 00 | 10/14/2002 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO01/79703 | 10/25/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2950686 | Ledel et al. | Aug 1960 | A |
3901623 | Grennan | Aug 1975 | A |
4012908 | Dundore | Mar 1977 | A |
5183392 | Hansen | Feb 1993 | A |
5207559 | Clevenger et al. | May 1993 | A |
5730580 | Japikse | Mar 1998 | A |
6145313 | Arnold | Nov 2000 | A |
6309193 | Repple et al. | Oct 2001 | B1 |
Number | Date | Country |
---|---|---|
467868 | Sep 1946 | BE |
1512443 | Dec 1966 | FR |
2175393 | Sep 1973 | FR |
Number | Date | Country | |
---|---|---|---|
20030165383 A1 | Sep 2003 | US |
Number | Date | Country | |
---|---|---|---|
60242619 | Oct 2000 | US | |
60197069 | Apr 2000 | US |