This disclosure relates generally to turbine engines and, more particularly, to casings of a turbine engine.
A turbine engine, also referred to herein as a gas turbine engine, is a type of internal combustion engine that uses atmospheric air as a moving fluid. A turbine engine generally includes a fan and a core arranged in flow communication with one another. As atmospheric air enters the turbine engine, rotating blades of the fan and the core impel the air downstream, where the air is compressed, mixed with fuel, ignited, and exhausted. Typically, at least one casing or housing surrounds the turbine engine.
The figures are not to scale. Instead, the thickness of the layers or regions may be enlarged in the drawings. Although the figures show layers and regions with clean lines and boundaries, some or all of these lines and/or boundaries may be idealized. In reality, the boundaries and/or lines may be unobservable, blended, and/or irregular.
As used in this disclosure, stating that any part (e.g., a layer, film, area, region, or plate) is in any way on (e.g., positioned on, located on, disposed on, or formed on, etc.) another part, indicates that the referenced part is either in contact with the other part, or that the referenced part is above the other part with one or more intermediate part(s) located therebetween. As used herein, connection references (e.g., attached, coupled, connected, and joined) may include intermediate members between the elements referenced by the connection reference and/or relative movement between those elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and/or in fixed relation to each other. As used herein, stating that any part is in “contact” with another part is defined to mean that there is no intermediate part between the two parts.
Unless specifically stated otherwise, descriptors such as “first,” “second,” “third,” etc., are used herein without imputing or otherwise indicating any meaning of priority, physical order, arrangement in a list, and/or ordering in any way, but are merely used as labels and/or arbitrary names to distinguish elements for ease of understanding the disclosed examples. In some examples, the descriptor “first” may be used to refer to an element in the detailed description, while the same element may be referred to in a claim with a different descriptor such as “second” or “third.” In such instances, it should be understood that such descriptors are used merely for identifying those elements distinctly that might, for example, otherwise share a same name.
As used herein, “approximately” and “about” modify their subjects/values to recognize the potential presence of variations that occur in real world applications. For example, “approximately” and “about” may modify dimensions that may not be exact due to manufacturing tolerances and/or other real world imperfections as will be understood by persons of ordinary skill in the art. For example, “approximately” and “about” may indicate such dimensions may be within a tolerance range of +/−10% unless otherwise specified in the below description. As used herein “substantially real time” refers to occurrence in a near instantaneous manner recognizing there may be real world delays for computing time, transmission, etc. Thus, unless otherwise specified, “substantially real time” refers to real time+/−1 second. In some examples used herein, the term “substantially” is used to describe a relationship between two parts that is within three degrees of the stated relationship (e.g., a substantially same relationship is within three degrees of being the same, a substantially flush relationship is within three degrees of being flush, etc.). In some examples used herein, the term “substantially” is used to describe a value that is within 10% of the stated value.
In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value, or the precision of the methods or machines for constructing or manufacturing the components and/or systems. For example, the approximating language may refer to being within a 1, 2, 4, 5, 10, 15, or 20 percent margin in either individual values, range(s) of values and/or endpoints defining range(s) of values.
As used herein, the phrase “in communication,” including variations thereof, encompasses direct communication and/or indirect communication through one or more intermediary components, and does not require direct physical (e.g., wired) communication and/or constant communication, but rather additionally includes selective communication at periodic intervals, scheduled intervals, aperiodic intervals, and/or one-time events.
The terms “upstream” and “downstream” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. The terms “forward” and “aft” refer to relative positions within a gas turbine engine or vehicle and refer to the normal operational attitude of the gas turbine engine or vehicle. For example, with regard to a gas turbine engine, forward refers to a position closer to an engine inlet and aft refers to a position closer to an engine nozzle or exhaust.
Various terms are used herein to describe the orientation of features. In general, the attached figures are annotated with reference to the axial direction, radial direction, and circumferential direction of the vehicle associated with the features, forces and moments. In general, the attached figures are annotated with a set of axes including the axial axis A, the radial axis R, and the circumferential axis C.
As used herein, “processor circuitry” is defined to include (i) one or more special purpose electrical circuits structured to perform specific operation(s) and including one or more semiconductor-based logic devices (e.g., electrical hardware implemented by one or more transistors), and/or (ii) one or more general purpose semiconductor-based electrical circuits programmable with instructions to perform specific operations and including one or more semiconductor-based logic devices (e.g., electrical hardware implemented by one or more transistors). Examples of processor circuitry include programmable microprocessors, Field Programmable Gate Arrays (FPGAs) that may instantiate instructions, Central Processor Units (CPUs), Graphics Processor Units (GPUs), Digital Signal Processors (DSPs), XPUs, or microcontrollers and integrated circuits such as Application Specific Integrated Circuits (ASICs). For example, an XPU may be implemented by a heterogeneous computing system including multiple types of processor circuitry (e.g., one or more FPGAs, one or more CPUs, one or more GPUs, one or more DSPs, etc., and/or a combination thereof) and application programming interface(s) (API(s)) that may assign computing task(s) to whichever one(s) of the multiple types of processor circuitry is/are best suited to execute the computing task(s).
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific examples that may be practiced. These examples are described in sufficient detail to enable one skilled in the art to practice the subject matter, and it is to be understood that other examples may be utilized. The following detailed description is therefore, provided to describe an exemplary implementation and not to be taken limiting on the scope of the subject matter described in this disclosure. Certain features from different aspects of the following description may be combined to form yet new aspects of the subject matter discussed below.
Turbine engines are some of the most widely-used power generating technologies, often being utilized in aircraft and power-generation applications. A turbine engine generally includes a fan positioned forward of a core that includes, in serial flow order, a compressor section (e.g., including one or more compressors), a combustion section, a turbine section (e.g., including one or more turbines), and an exhaust section. A turbine engine can take on any number of different configurations. For example, a turbine engine can include one or more compressors and turbine, single or multiple spools, ducted or unducted fans, geared architectures, etc. In some examples, the fan and a low pressure compressor are on the same shaft as a low pressure turbine and a high pressure compressor is on the same shaft as a high pressure turbine.
In operation, rotating blades of the fan pull atmospheric air into the turbine engine and impel the air downstream. At least a portion of the air enters the core, where the air is compressed by rotating blades of a compressor, combined with fuel and ignited to generate a flow of a high-temperature, high-pressure gas (e.g., hot combustion gas), and fed to the turbine section. The hot combustion gases expand as they flow through the turbine section, causing rotating blades of the turbine(s) to spin and produce a shaft work output(s). For example, rotating blades of a high pressure turbine can produce a first shaft work output that is used to drive a first compressor, while rotating blades of a low pressure turbine can produce a second shaft work output that is used to drive a second compressor and/or the fan. In some examples, another portion of the air bypasses the core and, instead, is impelled downstream and out an exhaust of the turbine engine (e.g., producing a thrust).
Typically, a turbine engine includes one or more casings that surround components of the turbine engine and define a flow passage for airflow through the turbine engine. For example, the turbine engine can include fan casing that surrounds rotor blades of the fan and one more core casings that surround rotor blades of the compressor section and/or the turbine section. A distance between a tip of a rotor blade (e.g., a rotating blade such as a fan blade, a compressor blade, etc.) and a respective casing(s) is referred to as a tip clearance. Typically, rotor blades are made using a material that is different than a material of a casing surrounding the rotor blades. A fan blade(s), for example, may be manufactured using a metal (e.g., titanium, aluminum, lithium, etc., and/or a combination thereof), whereas a casing surrounding the fan blade(s) can be made of a composite material. Thus, in some such examples, the fan blade(s) and the casing can expand at different rates based on different rates of thermal expansion of their respective materials.
In operation, the casing(s) and rotor blades experience a variety of loads that influence tip clearance, such as thermal loads, pressure loads, and mechanical loads. For example, during operation, metal rotor blades may contract in response to relatively low ambient temperatures (e.g., based on differential thermal expansion), while a composite case may not contract, resulting in tip clearance opening. Over a time period of engine operation, tip clearance can transition between a relatively large clearance and a relatively small clearance due to rotor growth and casing growth (e.g., through rotational speed of a rotor, thermal expansion of the rotating components and the casing, etc.). These transitions can result in issues with tip clearance, which can negatively impact the operability and performance of the turbine engine. In some instances, tip clearance between a blade and a casing can be substantially non-existent. In such instances, the rotor blade can rub against the casing (e.g., referred to herein as blade tip rubbing), which can result in damage to the casing, the blade, and/or another component of the turbine engine. In some instances, a relatively large tip clearance can result in performance losses. For example, a relatively large tip clearance can result in tip leakage flow. Tip leakage flow as disclosed herein refers to air flow losses in a region of the casing associated with a rotor blade tip (e.g., a tip region).
The flow field of air in the tip region (e.g., fan blade tip region, compressor blade tip region, etc.) is relatively complex due to generation of vortical structures by interaction of the axial flow with the rotor blades and a surface (e.g., of the casing) near the rotor blade tips. In the fan, for example, as tip clearance between a fan blade and a fan case increase, several vortices in the tip region are generated (e.g., tip leakage, separation and induced vortices). These interactions can lead to substantial aerodynamic loss in the fan and decreased efficiency of the turbine engine. Thus, performance of the fan is closely related to its tip leakage mass flow rate and level of tip and casing interactions. In the compressor section, interactions of tip leakage flow with the mainstream flow and other secondary flows can lead to decreased efficiency and negatively impact compressor stability. In some examples, tip flow leakage can result in compressor and/or fan instabilities such as stall and surge. Compressor and/or fan stall is a circumstance of abnormal airflow resulting from the aerodynamic stall of the rotor blades within the respective component, which causes the air flowing through the component to slow down or stagnate. Compressor and/or fan surge refers to a stall that results in the disruption (e.g., complete disruption, partial disruption, etc.) of the airflow through the respective component.
Based on the foregoing, at least one factor that determines performance of a turbine engine is tip clearance associated with a fan and/or a compressor. Typically, turbine engine performance increases with a smaller tip clearance to minimize air loss or leakage around the blade tip. If close tip clearances are not maintained, a loss of performance will be noticed in pressure capability and airflow. However, tip clearance that is too small (e.g., resulting in blade tip rubbing) can result in damage to the casing, the blade, and/or another component of the turbine engine. Thus, an ability to control (e.g., manage) tip clearance during operation of a turbine engine can be important for aerodynamic performance of a turbine engine.
Examples disclosed herein enable manufacturing of an example variable flowpath casing having a variable flowpath component that provides for blade-tip-to-case clearance control. Example variable flowpath casings disclosed herein include an example outer substrate that surrounds an example variable flowpath component. The variable flowpath component (e.g., a flexible casing flowpath above a blade tip) can be used to control blade-tip-to-case clearance by adjusting a casing flowpath surface during operation. Controlled tip clearance between a rotor blade and a casing can be a challenge due to differential thermal expansion of the rotor blade(s) material and casing material. Certain examples disclosed herein provide a material independent, system level architecture for blade tip clearance control that can be used for different blade and casing material combinations.
Example variable flowpath components can include an example facesheet(s), an example core(s), an example damper(s), an example abradable layer(s), and example linkages to couple the variable flowpath component(s) to the outer substrate. In some examples, the linkages couple a facesheet and/or an abradable layer of material to the outer substrate via an example hinge rod set(s) and an example slider link, which is operatively coupled to an example actuator(s). In some such examples, movement of the actuator can cause the slider links to slide (e.g., in an axial and/or radial direction) to cause the hinge rod set(s) to pivot about a pivot point and move the facesheet and/or the abradable layer of material in an axial and/or radial direction. For example, the facesheet and/or the abradable layer of material can move radially inwards, radially outwards, and/or is different axial directions to adjust a tip clearance between a rotor blade tip and the variable flowpath casing.
In some examples, the variable flowpath component is segmented into a plurality of segments that are arranged circumferentially. In some such examples, each segment can include one or more linkages to couple a facesheet and/or an abradable layer of material of each segment to the outer substrate. In some examples, the one or more linkages can be used to adjust a radius of the variable flowpath component to adjust a tip clearance. In some examples, the one or more linkages are coupled such that one or more segments can be actuated concurrently.
Examples disclosed herein can be used to prevent blade tip rubs on a variable flow casing, thus reducing the chances of rotor blade tip and/or casing abradable material damage or destruction. Certain examples reduce costs (e.g., maintenance costs) of rotor blades due to tip loss and casing abradable repair. As fan casing sizes grow to accommodate growing fan sizes, examples disclosed herein can reduce manufacturing, assembly, and/or maintenance efforts.
Certain example variable flowpath components include a honeycomb structure and/or a damper. Certain examples can serve a dual purpose by also acting as a compliant structure to absorb more energy and withstand increased impact load during a blade-out event. A blade-out event refers to an unintentional release of a rotor blade during operation. Structural loading can result from an impact of the rotor blade on a casing (e.g., shroud) and from the subsequent unbalance of the rotating components. Certain examples can reduce damage to a variable flowpath casing (e.g., for a fan, compressor, etc.) under an impact load.
Examples disclosed herein are discussed in connection with a variable flowpath casing for a fan section (e.g. single stage fans, multi-stage fans, etc.) of a turbine engine. It is understood that examples disclosed herein for the variable flowpath casing having the variable flowpath component may additionally or alternatively be applied to other sections of the turbine engine, including a compressor section and turbine section. Though examples disclosed herein are discussed in connection with a turbofan jet engine, it is understood that examples disclosed herein can be implemented in connection with a turbojet jet engine, a turboprop jet engine, a combustion turbine for power production, or any other suitable application.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
In general, the turbine engine 100 includes a core turbine 104 disposed downstream from a fan (e.g., fan section) 106. The core turbine 104 includes a substantially tubular outer casing 108 that defines an annular inlet 110. The outer casing 108 can be formed from a single casing or multiple casings. The outer casing 108 encloses, in serial flow relationship, a compressor section having a booster or low pressure compressor 112 (“LP compressor 112”) and a high pressure compressor 114 (“HP compressor 114”), a combustion section 116, a turbine section having a high pressure turbine 118 (“HP turbine 118”) and a low pressure turbine 120 (“LP turbine 120”), and an exhaust section 122. A high pressure shaft or spool 124 (“HP shaft 124”) drivingly couples the HP turbine 118 and the HP compressor 114. A low pressure shaft or spool 126 (“LP shaft 126”) drivingly couples the LP turbine 120 and the LP compressor 112. The LP shaft 126 can also couple to a fan spool or shaft 128 of the fan 106. In some examples, the LP shaft 126 is coupled directly to the fan shaft 128 (e.g., a direct-drive configuration). In alternative configurations, the LP shaft 126 can couple to the fan shaft 128 via a reduction gear 130 (e.g., an indirect-drive or geared-drive configuration).
As shown in
As illustrated in
The combustion gases 160 flow through the HP turbine 118 where one or more sequential stages of HP turbine stator vanes 162 and HP turbine rotor blades 164 coupled to the HP shaft 124 extract a first portion of kinetic and/or thermal energy therefrom. This energy extraction supports operation of the HP compressor 114. The combustion gases 160 then flow through the LP turbine 120 where one or more sequential stages of LP turbine stator vanes 166 and LP turbine rotor blades 168 coupled to the LP shaft 126 extract a second portion of thermal and/or kinetic energy therefrom. This energy extraction causes the LP shaft 126 to rotate, thereby supporting operation of the LP compressor 112 and/or rotation of the fan shaft 128. The combustion gases 160 then exit the core turbine 104 through the exhaust section 122 thereof. A turbine frame 170 with a fairing assembly is located between the HP turbine 118 and the LP turbine 120. The turbine frame 170 acts as a supporting structure, connecting a high-pressure shaft's rear bearing with the turbine housing and forming an aerodynamic transition duct between the HP turbine 118 and the LP turbine 120. Fairings form a flow path between the high-pressure and low-pressure turbines and can be formed using metallic castings (e.g., nickel-based cast metallic alloys, etc.).
Along with the turbine engine 100, the core turbine 104 serves a similar purpose and is exposed to a similar environment in land-based gas turbines, turbojet engines in which the ratio of the first portion 146 of the air 142 to the second portion 148 of the air 142 is less than that of a turbofan, and unducted fan engines in which the fan 106 is devoid of the nacelle 134. In each of the turbofan, turbojet, and unducted engines, a speed reduction device (e.g., the reduction gear 130) can be included between any shafts and spools. For example, the reduction gear 130 is disposed between the LP shaft 126 and the fan shaft 128 of the fan 106.
As described above with respect to
The variable flowpath casing 202 of
The variable flowpath casing 202 of
The variable flowpath casing 202 circumferentially surrounds an example shaft 210 and an example rotor blade(s) 212 of the fan 200. While one rotor blade 212 is the illustrated in
An example blade tip region 216 of the variable flowpath casing 202 is illustrated at a region of the variable flowpath casing 202 at the blade tip 214. The blade tip region 216 is associated with an example tip clearance 218, defined by a distance between the blade tip 214 and the blade tip region 216 of the variable flowpath casing 202. During operation of the turbine engine 100, the variable flowpath casing 202 experiences significant loads that influence the blade tip region(s) 216 and more specifically, the tip clearance 218. For example, the tip clearance 218 between the blade tip 214 and the blade tip region 216 of the variable flowpath casing 202 can transition between a relatively large clearance and relatively small clearance. In some examples, a relatively large clearance may be between 4% to 10% of the axial cord. A relatively small (e.g., substantially non-existent) clearance can allow the blade tip 214 to rub against the blade tip region 216 of the variable flowpath casing 202. Further, the changes in tip clearance 218 may affect the airflow through the turbine engine 100 resulting in performance losses and/or stalls (e.g., fan stall, compressor stall, etc.) by allowing air to bypass the rotor blades 212. Accordingly, the variable flowpath casing 202 includes an example variable flowpath component (e.g., mechanism, surface, ring, system, etc.) 220 structured in accordance with the teachings of this disclosure to control blade-tip-to-casing clearance. The variable flowpath component 220 implements an example variable flowpath surface that can adjust with rotor and/or casing changes during operation to increase performance of a fan 106, 200, a compressor section, and/or, more generally, the turbine engine 100.
The variable flowpath component 220 is positioned radially inward from the outer substrate 204 at an example trench (e.g., cavity, opening, etc.) 222 of the variable flowpath casing 202. In some examples, the trench 222 implements cavity means. The example trench 222, which is positioned at the blade tip region 216 of the variable flowpath casing 202, extends axially from a forward end (e.g., forward of a rotor blade 212) towards an aft end (e.g., aft of the rotor blade 212). The trench 222 extends from the facesheet 206 radially outwards to the outer substrate 204. In some examples, the variable flowpath casing 202 includes more than one trench 222. For example, the variable flowpath casing 202 can include an additional or alternative trench(es) 222 at another tip region of the fan 200 and/or at a tip region(s) of an array(s) of compressor rotor blades.
The variable flowpath component 220 of
In some examples, the outer facesheet 224 is a rigid facesheet and the inner facesheet 226 is a flexible facesheet. However, the outer facesheet 224 can be a flexible facesheet in additional or alternative examples. Similarly, the inner facesheet 226 can be a rigid facesheet in additional or alternative examples. In some examples, the inner facesheet 226 implements second substrate means. The inner facesheet 226 of
An example hinge rod set 230 includes an example first hinge rod(s) 230a and an example second hinge rod(s) 230b. In some examples, the hinge rod set 230 implements hinge means. In the illustrated example of
In operation, the actuator 240 can apply a force (e.g., pushing force, pulling force, etc.) on the connection rod 242, which can apply a pulling force on the slider link 236. The force on the slider link 236 causes the slider link 236, which is coupled to the hinge rod sets 230, to move in a substantially axial direction. The movement of the slider link 236 in the axial direction causes a pulling force at the first end of the first hinge rods 230a. The pulling force on the first hinge rods 230a causes the first end of the first hinge rods 230a to move in the axial direction. However, because the first hinge rods 230a are coupled to the second hinge rods 230b (e.g., which are fixed to the outer substrate 204 via the fixed hinge joints 232) via the rotation joints 234 at the hinge points 233, the pulling force on the first hinge rods 230a causes the hinge rods 230a to rotate (e.g., pivot) about the hinge points 233. The rotation of the first hinge rods 230a about the hinge points 233 causes a pulling force on the inner facesheet 226, which causes the inner facesheet 226 to move in a radially outward direction. The movement of the inner facesheet 226 results in an increased tip clearance 218 between a rotor blade tip 214 and the abradable layer 238 on the inner facesheet 226. Similarly, the actuator 240 can apply a pushing force on the connection rod 242, which can cause the inner facesheet 226 to move in a radially inward direction to decrease tip clearance 218 between a rotor blade tip 214 and the abradable layer 238 on the inner facesheet 226.
In some examples, the first hinge rods 230a include a telescopic tub. A telescopic tube in a structure in which a first component (e.g., a tube, rod, etc.) fits inside, and slides relative to, a second component (e.g., a tube, etc.). The telescopic tube allows movement of the first component relative to the second component such that the telescopic tube can increase and/or decrease in length based on the sliding. Thus, one or more first hinge rods 230a may be telescopic tubes, enabling such first hinge rods 230a to expand or retract, altering a length of the first hinge rods 230a and providing for additional radial movement.
It is understood that the variable flowpath component 220 can be configured differently in additional or alternative examples. In the example of
In some examples, the actuator 240, slider link 236, and/or other components of the linkage mechanism can be configured to move in additional or alternative directions. In some examples, the linkage mechanism can be a lattice structure to reduce impact loads on the variable flowpath casing 202. In some examples, the actuator 240 is mounted within the variable flowpath casing 202. In some examples, the actuator 240 is fixed to an outer surface of the outer substrate 204. In some examples, the actuator 240 is removably coupled to the outer surface of the outer substrate 204 to provide flexibility repairs, inspections, or other maintenance of the variable flowpath casing 202.
While two hinge rod sets 230 at a segment are illustrated in
In some examples, the variable flowpath component 220 and/or the turbine engine 100 includes an example clearance control system (discussed in relation to
Additional or alternative variable flowpath components for an example variable flowpath casing(s) 202 are described in further detail below. The example variable flowpath components disclosed below are applied to the example turbine engine 100 of
Examples disclosed below are applied to the example fan 200 of the example turbine engine 100 as described in
The variable flowpath component 300 of
The variable flowpath component 300 of
In the example of
In some examples, the actuator 240 is positioned to apply a substantially axial force on the facesheet 502 to cause the facesheet and the abradable layer 504 to move a same axial direction. Because the variable flowpath component 500 may slopes along the axial direction, the movement of the facesheet 502 and the abradable layer 504 can enable the facesheet 502 and the abradable layer 504 to move away from and/or towards an example rotor blade tip 214 to adjust a tip clearance 218. In some examples, the actuator 240 is positioned to apply a force that is tangential to a slope of the variable flowpath component 500. For example, the actuator 240 can apply a tangential force on the variable flowpath component 500 can cause the facesheet 502 and the abradable layer 504 to move in a partially axial direction to adjust a tip clearance 218. However, the actuator 240 can be positioned and configured to apply force in other directions in additional or alternative examples.
In some examples, the segments 702 are coupled to one another. In some examples, each segment 702 includes one or more actuators 240. In some such examples, each segment 702 may actuate individually. In some examples, the hinge rod sets 230 and/or other linkage components for the segments 702 are connected via at least one linkage and actuated concurrently with one or more actuators 240. It is understood that the variable flowpath component 220 can take on other configurations in additional or alternative examples.
The variable flowpath component 220, 300, 400, 500 segments 702 are structured to move from an example first position 704 associated with an example first radius 706. Upon detection of a tip clearance 218 issue, the variable flowpath component 220, 300, 400, 500 can be actuated to move towards an example second position 708 associated with an example second radius 710 that is different (e.g., larger or smaller) than the first radius 706. For example, an example actuator 240 can be used to apply a force to an abradable layer 504 and/or to a linkage mechanism 229 to cause a variable surface to move radially inwards or radially outwards to control a tip clearance 218.
The clearance control system 800 includes at least one example sensor(s) 802, which is structured to monitor components of a turbine engine (e.g., turbine engine 100). For example, the sensor(s) 802 can sense any number of operating characteristic of the turbine engine 100 (e.g., during operation). The sensor(s) 802 can include a temperature sensor to detect ambient temperature, a proximity sensor to detect tip clearance, an altitude sensor, power lever angle sensor, and/or another type of sensor(s).
The clearance control system 800 includes example engine simulator circuitry 804, which is structured to simulate the turbine engine 100 performance based on data from the sensor(s). In some examples, the engine simulator circuitry 804 is instantiated by processor circuitry executing engine simulation instructions and/or configured to perform operations such as those represented by the flowchart of
The clearance control system 800 includes an example database 806, which is storage circuitry for storing information. For example, the database 806 can store data collected from the sensor(s) 802, machine-learning model(s), and/or other information for maintaining clearance control.
The clearance control system 800 includes an example controller 808, which is structured to control one or more components of the turbine engine 100. The controller 808 can be one controller and/or a system of controllers. In some examples, the controller 808 can be an engine controller (e.g., an Electronic Engine Controller (EEC), an Electronic Control Unit (ECU), etc.). In some examples, the controller 808 can be operated as a control device of a FADEC system. Based on information from the engine simulator circuitry 804 and example control rules 810, the controller 808 can be configured to actuate an example actuator (e.g., actuator 240) in response to identification of a relatively large and/or relatively small tip clearance 218.
The clearance control system 800 includes example control rules 810, which determine an ideal or otherwise good tip clearance 218 of the turbine engine 100. Based on the tip clearance 218, the control rules 810 provide information regarding when to actuate an actuator 240 of an example variable flowpath component 220, 300, 400, 500 to increase and/or decrease the tip clearance 218 by adjusting a flowpath surface of a variable flowpath casing 202.
While an example manner of implementing the clearance control system 800 of
A flowchart representative of example hardware logic circuitry, machine readable instructions, hardware implemented state machines, and/or any combination thereof for implementing the clearance control system 800 of
The machine readable instructions described herein may be stored in one or more of a compressed format, an encrypted format, a fragmented format, a compiled format, an executable format, a packaged format, etc. Machine readable instructions as described herein may be stored as data or a data structure (e.g., as portions of instructions, code, representations of code, etc.) that may be utilized to create, manufacture, and/or produce machine executable instructions. For example, the machine readable instructions may be fragmented and stored on one or more storage devices and/or computing devices (e.g., servers) located at the same or different locations of a network or collection of networks (e.g., in the cloud, in edge devices, etc.). The machine readable instructions may require one or more of installation, modification, adaptation, updating, combining, supplementing, configuring, decryption, decompression, unpacking, distribution, reassignment, compilation, etc., in order to make them directly readable, interpretable, and/or executable by a computing device and/or other machine. For example, the machine readable instructions may be stored in multiple parts, which are individually compressed, encrypted, and/or stored on separate computing devices, wherein the parts when decrypted, decompressed, and/or combined form a set of machine executable instructions that implement one or more operations that may together form a program such as that described herein.
In another example, the machine readable instructions may be stored in a state in which they may be read by processor circuitry, but require addition of a library (e.g., a dynamic link library (DLL)), a software development kit (SDK), an application programming interface (API), etc., in order to execute the machine readable instructions on a particular computing device or other device. In another example, the machine readable instructions may need to be configured (e.g., settings stored, data input, network addresses recorded, etc.) before the machine readable instructions and/or the corresponding program(s) can be executed in whole or in part. Thus, machine readable media, as used herein, may include machine readable instructions and/or program(s) regardless of the particular format or state of the machine readable instructions and/or program(s) when stored or otherwise at rest or in transit.
The machine readable instructions described herein can be represented by any past, present, or future instruction language, scripting language, programming language, etc. For example, the machine readable instructions may be represented using any of the following languages: C, C++, Java, C#, Perl, Python, JavaScript, HyperText Markup Language (HTML), Structured Query Language (SQL), Swift, etc.
As mentioned above, the example operations of
“Including” and “comprising” (and all forms and tenses thereof) are used herein to be open ended terms. Thus, whenever a claim employs any form of “include” or “comprise” (e.g., comprises, includes, comprising, including, having, etc.) as a preamble or within a claim recitation of any kind, it is to be understood that additional elements, terms, etc., may be present without falling outside the scope of the corresponding claim or recitation. As used herein, when the phrase “at least” is used as the transition term in, for example, a preamble of a claim, it is open-ended in the same manner as the term “comprising” and “including” are open ended. The term “and/or” when used, for example, in a form such as A, B, and/or C refers to any combination or subset of A, B, C such as (1) A alone, (2) B alone, (3) C alone, (4) A with B, (5) A with C, (6) B with C, or (7) A with B and with C. As used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. Similarly, as used herein in the context of describing structures, components, items, objects and/or things, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. As used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A and B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B. Similarly, as used herein in the context of describing the performance or execution of processes, instructions, actions, activities and/or steps, the phrase “at least one of A or B” is intended to refer to implementations including any of (1) at least one A, (2) at least one B, or (3) at least one A and at least one B.
As used herein, singular references (e.g., “a”, “an”, “first”, “second”, etc.) do not exclude a plurality. The term “a” or “an” object, as used herein, refers to one or more of that object. The terms “a” (or “an”), “one or more”, and “at least one” are used interchangeably herein. Furthermore, although individually listed, a plurality of means, elements or method actions may be implemented by, e.g., the same entity or object. Additionally, although individual features may be included in different examples or claims, these may possibly be combined, and the inclusion in different examples or claims does not imply that a combination of features is not feasible and/or advantageous.
At block 904, the engine simulator circuitry 804 determines whether the tip clearance 218 is larger than a threshold distance (e.g., 40 mils, etc.). When the answer to block 904 is YES, control advances to block 906, at which example controller 808 causes an example actuator(s) 240 to apply a force to an example connection rod 242, which applies a force to a slider link 236 to cause a surface of the variable flowpath casing 202 to move to adjust the tip clearance 218. Control then advances to block 912. When the answer to block 904 is NO, control advances to block 908.
At block 908, the engine simulator circuitry 804 determines whether the tip clearance 218 is smaller than a threshold distance (e.g., 20 mils, etc.). When the answer to block 908 is YES, control advances to block 910, at which the example controller 808 causes an example actuator(s) 240 to apply a force to an example connection rod 242, which applies a force to a slider link 236 to cause a surface of the variable flowpath casing 202 to move to adjust the tip clearance 218. Control then advances to block 912. When the answer to block 904 is NO, control advances to block 902, at which the engine simulator circuitry 804 continues to monitor tip clearance 218. At block 912, the controller 808 determines whether the turbine engine 100 is operating. When the answer to block 912 is YES, control advances to block 902, at which the engine simulator circuitry 804 continues to monitor tip clearance 218.
The processor platform 1000 of the illustrated example includes processor circuitry 1012. The processor circuitry 1012 of the illustrated example is hardware. For example, the processor circuitry 1012 can be implemented by one or more integrated circuits, logic circuits, FPGAs, microprocessors, CPUs, GPUs, DSPs, and/or microcontrollers from any desired family or manufacturer. The processor circuitry 1012 may be implemented by one or more semiconductor based (e.g., silicon based) devices. In this example, the processor circuitry 1012 implements example engine simulator circuitry 804, example controller 808, etc.
The processor circuitry 1012 of the illustrated example includes a local memory 1013 (e.g., a cache, registers, etc.). The processor circuitry 1012 of the illustrated example is in communication with a main memory including a volatile memory 1014 and a non-volatile memory 1016 by a bus 1018. The volatile memory 1014 may be implemented by Synchronous Dynamic Random Access Memory (SDRAM), Dynamic Random Access Memory (DRAM), RAMBUS® Dynamic Random Access Memory (RDRAM®), and/or any other type of RAM device. The non-volatile memory 1016 may be implemented by flash memory and/or any other desired type of memory device. Access to the main memory 1014, 1016 of the illustrated example is controlled by a memory controller 1017.
The processor platform 1000 of the illustrated example also includes interface circuitry 1020. The interface circuitry 1020 may be implemented by hardware in accordance with any type of interface standard, such as an Ethernet interface, a universal serial bus (USB) interface, a Bluetooth® interface, a near field communication (NFC) interface, a Peripheral Component Interconnect (PCI) interface, and/or a Peripheral Component Interconnect Express (PCIe) interface.
In the illustrated example, one or more input devices 1022 are connected to the interface circuitry 1020. The input device(s) 1022 permit(s) a user to enter data and/or commands into the processor circuitry 1012. The input device(s) 1022 can be implemented by, for example, an audio sensor, a microphone, a camera (still or video), a keyboard, a button, a mouse, a touchscreen, a track-pad, a trackball, an isopoint device, and/or a voice recognition system.
One or more output devices 1024 are also connected to the interface circuitry 1020 of the illustrated example. The output device(s) 1024 can be implemented, for example, by display devices (e.g., a light emitting diode (LED), an organic light emitting diode (OLED), a liquid crystal display (LCD), a cathode ray tube (CRT) display, an in-place switching (IPS) display, a touchscreen, etc.), a tactile output device, a printer, and/or speaker. The interface circuitry 1020 of the illustrated example, thus, typically includes a graphics driver card, a graphics driver chip, and/or graphics processor circuitry such as a GPU.
The interface circuitry 1020 of the illustrated example also includes a communication device such as a transmitter, a receiver, a transceiver, a modem, a residential gateway, a wireless access point, and/or a network interface to facilitate exchange of data with external machines (e.g., computing devices of any kind) by a network 1026. The communication can be by, for example, an Ethernet connection, a digital subscriber line (DSL) connection, a telephone line connection, a coaxial cable system, a satellite system, a line-of-site wireless system, a cellular telephone system, an optical connection, etc.
The processor platform 1000 of the illustrated example also includes one or more mass storage devices 1028 to store software and/or data. Examples of such mass storage devices 1028 include magnetic storage devices, optical storage devices, floppy disk drives, HDDs, CDs, Blu-ray disk drives, redundant array of independent disks (RAID) systems, solid state storage devices such as flash memory devices and/or SSDs, and DVD drives.
The machine readable instructions 1032, which may be implemented by the machine readable instructions of
From the foregoing, it will be appreciated that example variable flowpath casing are disclosed herein that enable blade tip to casing clearance control. Example variable flowpath casings disclosed herein include a variable flowpath surface implemented by an example variable flowpath mechanism to manage tip clearance. Example variable flowpath components disclosed herein can adjust a surface of an example variable flowpath casing to reduce a tip clearance that is larger than a desired tip clearance or to increase a tip clearance that is smaller than a desire tip clearance.
Further aspects of the present disclosure are provided by the subject matter of the following clauses:
Although certain example systems, methods, apparatus, and articles of manufacture have been disclosed herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all systems, methods, apparatus, and articles of manufacture fairly falling within the scope of the claims of this patent.
The following claims are hereby incorporated into this Detailed Description by this reference, with each claim standing on its own as a separate embodiment of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202211039662 | Jul 2022 | IN | national |
This patent arises from a continuation of U.S. patent application Ser. No. 17/894,881 filed Aug. 24, 2022, which claims benefit to Indian Provisional Patent Application No. 20/2211039662, which was filed on Jul. 11, 2022, and which is hereby incorporated by reference in its entirety. Priority to U.S. patent application Ser. No. 17/894,881 filed Aug. 24, 2022, and Indian Provisional Patent Application No. 20/2211039662 filed with the Intellectual Property of India on Jul. 11, 2022, is hereby claimed.
Number | Date | Country | |
---|---|---|---|
Parent | 17894881 | Aug 2022 | US |
Child | 18657420 | US |