The invention relates to variable focus lenses where focus is changed by a manipulation of the shape of a meniscus between two fluids. In particular, the invention relates to magneto wetting lenses, where a change in applied magnetic field initiates a change in meniscus shape. A variable focus lens generally comprises a fluid chamber containing a first fluid and a second fluid, the fluids being immiscible and in contact over a meniscus, and the second fluid being able to alter its shape under the influence of a magnetic field, and also comprises means for applying a gradient magnetic field over at least part of the fluid chamber. The shape of the meniscus comprises a curvature under application of the gradient magnetic field, which is distorted by a physical requirement of a constant contact angle where the meniscus contacts a chamber wall, such that the curvature comprises a first region of high distortion close to the chamber wall and a second region of low distortion away from the chamber wall
Variable focus lenses are known from WO 03/069380, where the mechanism for adjustment of the meniscus is the electro wetting technique. In such a technique, a change in voltage applied to a cell, containing two immiscible liquids in contact over a meniscus, produces a change in contact angle of the liquids with the wall of the cell, which in turn changes the shape of the meniscus interface.
In a variable focus lens based on a magneto-wetting cell, a gradient magnetic field is applied to the cell. One of the liquids present must be able to alter its shape in response to the magnetic field in order to produce a change in curvature of the meniscus. Such a fluid may be a Ferro fluid, for example. A variable focus lens based on magneto wetting is discussed in EP04102437.3 (not yet published at the priority date of this application).
Variable focus lenses are often incorporated into devices where space is at a premium or where cost considerations are important. Such devices include, solid-state lighting devices, optical devices, mobile telephones with photographic capability, image capture devices and optical recording devices.
A disadvantage with known variable focus lenses based on magneto wetting is distortion in the lens, particularly at lens edges, as soon as a magnetic gradient field is applied.
It is an object of the invention to provide a variable focus lens based on magneto wetting which has a lower level of distortion.
This object is achieved according to the invention by provision of a variable focus lens based on magneto wetting, characterized in that the curvature is arranged by a compensating wall section such that in the first region of high distortion the curvature approaches an extrapolation of the curvature in the second region of low distortion.
If a Ferro fluid or any fluid which is affected by a gradient magnetic field is exposed to a magnetic field, the fluid experiences a volume force in the direction of increasing magnetic field strength. These forces are strongest close to the current carrying coil producing the magnetic field: in the case of a variable focus lens the strongest forces are likely to be found at the walls of the chamber housing the fluids. In other words, the volumetric force experienced by the fluid is dependent on radial position across the chamber. The magnetic forces allow transport of the fluid but have no effect on the contact angle of the fluids (and therefore the meniscus) with the wall of the chamber. The meniscus tends to change shape such that fluid is moved above or below its starting meniscus, i.e. the new meniscus has a line of crossing with the starting position. In general, the meniscus tends towards a spherical shape in the bulk fluid, deviating from spherical towards the walls of the chamber when a gradient magnetic field is applied.
Summarized, the combination of fluid volumes and contact angle conservation leads to unwanted meniscus edge behavior that reduces the effective lens area when a magnetic gradient field is applied. Distortion is introduced into the lens by irregularities in the meniscus shape, particularly close to the edges of the meniscus.
According to the invention, the walls of the chamber containing the fluids are shaped in the region where the wall may be in contact with the meniscus. The walls are designed in the first approximation by numerical calculation. From the various interface tensions first the contact angle is calculated. Then a first wall shape is calculated from the contact angle constraint, the constraint of constant volumes of both liquids and the assumption of an ideal meniscus shape. The shape of the meniscus can be approximated as spherical for the first calculations. Further calculations taking account of the bulk fluid forces may be performed, or experiments done on a prototype of the first wall shape, to refine the wall shape further, given the actual magnetic field. At the wall, the contact angle remains conserved (physical requirement).
The shape of the wall may be tailored to suit a particular application or device. The wall shape allows the ideal meniscus shape at the edges to be conserved more accurately, and hence the overall shape of the meniscus to be better controlled, with less undesired edge deformation of the meniscus. (The actual contact angle may be chosen as a desired value by careful selection of the fluids and chamber, the contact angle being a conserved property of the system). The curvature of the meniscus interface can therefore be tuned more easily, more gradually, and with a better lens shape than in the case of a straight chamber wall. The lens shape also extends further across the cell as the edge effects are reduced, giving a larger effective lens area. The curvature at zero magnetic field gradient is determined by the orientation of the wall at the locations where the meniscus touches the wall and the contact angle.
For a contact angle of 90 degrees, the above-determined shape of the wall becomes such that the spherical meniscus surface is independent of the meniscus curvature. Hence, for this particular case the total surface energy is independent of its curvature. Consequently in practice, the force, field and energy required to change the curvature will be very low. For stability of the meniscus position it is, however, better to choose the field not too small. Alternatively or in addition, a contact angle deviating (slightly) from 90 degrees or a wall deviating (slightly) from the ideal one can be chosen to obtain sufficient stability.
In a further embodiment of the invention, the wall section is sub-divided into discreet regions of variable local shape superimposed on the shape of the wall section. Instead of a continuous spectrum of possible meniscus positions, a series of steps are positioned at specific intervals along the continuum. Thus the wall of the chamber must be shaped overall in such a way as to allow contact angle to be conserved and meniscus shape advantages to be present, as described above, but with additional shapes being present which coincide with discreet, desired positions of the meniscus. These additional shapes could take many forms, for example wedges, mini-spheres, hemispheres, pyramids, or any other shape capable of forming preferred regions for the meniscus at the wall of the chamber.
It is envisaged that the discreetisation of the wall would allow for pockets of preferred meniscus positions. To move between these stable states extra energy would be required, more than needed to move along a continuum. Thus the discreet positions are protected and stable. Due to the optimized wall shape according to the invention, the meniscus shape is also less prone to edge effects and thus has a better overall shape and larger effective lens area at these discreet positions. Discreet positions can also be advantageous to prevent unnecessary tilting of the meniscus interface. By narrowing the continuum of positions available to the meniscus, the precise position of the meniscus at the wall can be more precisely defined, and therefore more accurately aligned across a chamber (but allowed tolerances become smaller). It is also envisaged to have a situation where the magnetic field is switched on to provide sufficient power to move the meniscus to a discreet position and then, with the meniscus secured in a stable manner, the magnetic field is switched off, thereby trapping the meniscus at the desired curvature and location. This has positive benefits for the power consumption of the device containing the variable focus lens and reduces heating effects in the device.
In a further embodiment of the invention, the second fluid comprises a Ferro fluid. In principle, all fluids having sufficient magnetic moment can be utilized in the invention. Ferro fluids, however, have the further advantage that in a gradient magnetic field the Ferro fluid responds as a homogeneous magnetic liquid, which moves to the region of highest flux density. The Ferro fluid may take the form of a multi-phase liquid wherein magnetic particles are held in colloidal suspension.
A Ferro fluid is usually a stable colloidal suspension of sub-domain magnetic particles in a liquid carrier. The particles, which have an average size of about 10 nm, are coated with a stabilizing dispersing agent (surfactant), which prevents particle agglomeration even when a strong magnetic field gradient is applied to the Ferro fluid. The surfactant must be matched to the carrier type and must overcome the attractive van der Waals and magnetic forces between the particles. The colloid and thermal stabilities, crucial to many applications, are greatly influenced by the choice of the surfactant. A typical Ferro fluid may contain by volume 5% magnetic solid, 10% surfactant and 85% carrier.
In a further embodiment of the invention, the means for applying a gradient magnetic field comprises at least two independent electrically conducting coils. Application of a magnetic field in a variable focus lens is often achieved with a magnetic field produced by a single current carrying coil. In the case of a contact angle of 90 degrees and a cylindrical wall at the flat meniscus contour at zero magnetic field, the use of two independent coils allows the meniscus to be moved through a full range of movement from convex to concave, thereby enhancing device performance. However, the stability of intermediate positions has then to be obtained. For a contact angle strongly deviating from 90 degrees, a single coil suffices.
Alternatively, the means for applying a gradient magnetic field may take the form of shaped soft magnetic material arranged around the chamber in the region of the meniscus position, which is subject to magnetization by a second homogeneous magnetic field.
In a further embodiment of the invention, a solid-state lighting device comprises a variable focus lens as described in its different embodiments above. The general goal of the solid-state lighting device is to direct, and if necessary collimate, the broad spatial distribution of the primary light radiated by a simple light source in the device. In particular it can be used to control the solid angle of a light source as demanded at a certain moment at a certain place. By utilizing a variable focus lens as described in the invention, the solid angle of the light can be controlled as desired, and without any mechanical movement. The shape of the lens is less prone to edge effects and is therefore all less prone to distortions. It is highly suitable for use in combination with the small modern solid-state primary light source LED (light emitting diode). Very small dimensions are possible, in the order of 1 cubic mm. The power requirement is advantageously low. Such devices are suitable for use in diverse areas of application, such as the automotive industry, traffic lights, ambient lighting.
In further embodiments of the invention, the variable focus lens as described in its different embodiments above, may be incorporated into different devices. The basic lens unit is small, operates at low voltages and power, has no moving mechanical parts and is potentially relatively cheap. Such a unit can replace conventional lenses in devices such as, optical devices, image capture devices, or telephones.
These and other aspects of the invention will be further described with reference to the drawings, in which:
Changes in the magnetic field strength are thus directly related to the focusing power of the variable focus lens. The changes in magnetic field strength are not without other consequences, however. The contact angle 5 is a feature of the system which is conserved no matter where the point of contact between meniscus 4 and chamber 1 walls. As the fluids become more distorted on increasing application of a magnetic field, the meniscus 4 shape deviates more and more from the (chosen) relatively flat starting position. It becomes more difficult to maintain the shape of the meniscus 4 curvatures away from the central region of the chamber 1 towards the point of contact with the wall. Distortion of the meniscus is most pronounced close to the wall. Thus the effective lens area available is reduced and the lens performance is affected. Further, as it becomes more difficult to further change the meniscus 4 curvature, the amount of electrical energy and power required will also increase. This power consumption is limiting and undesirable in a device containing the variable focus lens.
The contact angle can be maintained while avoiding problems with meniscus shape, effective lens area loss, and increased energy and power consumption, by implementation of an embodiment of the invention. The invention is to change the shape of the wall (external or internal) of the chamber 1 at places where the meniscus 4 contacts, either at rest or during the movement of the fluids under magnetic influence. The required shape of the wall can be calculated (estimated) when the system is designed by reference to the characteristics of the first and second fluids 2 and 3 and the wall material or coating resulting in the fixed contact angle, and the size of the chamber 1. The aim is to improve the lens shape across more of the lens area while allowing the meniscus 4 to change curvature.
An embodiment of the invention is shown in
In this particular figure and embodiment, the contact angle dictated by the fluids and wall (coating) is assumed to be 90 degrees and the meniscus shapes are approximated by hemispheres (3D) and parts of a circle (2D).
All meniscus positions shown in
The general goal of the solid-state lighting device is to control, usually to collimate, the broad spatial distribution of the primary light that is radiated by a simple light source 37. For the figure, the primary light source (not shown) is a light emitting diode (LED). For a “white LED”, a small-wavelength (blue) LED is embedded in phosphors which generate all colors to approximate white light. In addition to the LED, the light source 37 may also contain a substrate (not shown) and electronics (not shown). The electronics may also include control circuitry (not shown) for manipulation of the electric current flowing through coils, which are used to generate the magnetic field to drive and position the meniscus 33.
In the figure the contact angle 36 is set at 90 degrees, but this may be chosen to be another angle depending on material characteristics. The edge effects near the lines of contact with the internal wall are reduced by the designed shape of the internal wall thereby giving better overall lens performance. Movement of the meniscus under influence of the magnetic field produces different lens curvatures and therefore different light distributions.
At the starting position considered here, one part of the meniscus 53 is in contact with a first wall section 55 at its top point. As a gradient magnetic field is applied to the chamber 50, the meniscus 53 is forced to move due to local volume changes in the second fluid 52. In this case the fluid 52 at the first wall section 55 will move downwards along the wall section 55. Eventually it will contact the junction between first wall section 55 and second wall section 56. A preferred location for the meniscus 53 in this region of the junction may additionally be ensured by extra shaping of the wall sections 55 and 56 or by locally preparing the surface with a special coating. The wall sections 55, 56 and 57 are illustrated in the diagram as a series of flat regions, but these could take the form of wedges, mini-spheres, or other shapes capable of forming localized pockets of low energy states for the meniscus 53. With a preferred location between first wall section 55 and second wall section 56, a change in magnetic field applied to the chamber moves the meniscus 53 not continuously along the wall but discontinuously between two preferred locations. A third preferred location for the meniscus 53 can be added with the introduction of a third wall section 57, designed with an optimum meniscus position as a guideline, and reached by further increase of the applied magnetic field. In this example the energy of the fluid system is almost or completely independent of lens curvature at all the six equilibrium positions: only in between the equilibrium positions the energy is (here slightly) higher, which helps to stabilize each of the six possible meniscus curvatures when the field is switched. (The number of equilibrium positions is variable depending on system design). Thus the energy and power advantages, and the advantages of increased lens area and improved lens shape, permitted by the overall wall section 54, are maintained (or even improved by switching off the field as soon as a new equilibrium position is reached). Within the continuum of positions more preferred positions could be defined, still with good lens characteristics, by using smaller wall section regions 55, 56 and 57 for example, for more precise control of meniscus position and tilt.
Number | Date | Country | Kind |
---|---|---|---|
05105286.8 | Jun 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB06/51864 | 6/12/2006 | WO | 00 | 12/11/2007 |