The present disclosure generally pertains to gas turbine engines, and is more particularly directed toward a variable guide vane.
Gas turbine engines include compressor, combustor, and turbine sections. Compressor guide vanes of a gas turbine engine undergo considerable wear during operation and are subject to high vibrations and stress.
U.S. Pat. No. 7,963,742 to B. Clouse, et al., discloses a stator vane assembly. The stator vane assembly includes at least one button, a vane airfoil adjacent to the button, and a fillet defined between the button and the airfoil. The fillet defines a constant radius and extends beyond the button at least greater than a distance of 60% of a length of an overhang portion of the vane airfoil.
The present disclosure is directed toward overcoming one or more of the problems discovered by the inventors.
A guide vane is disclosed. The guide vane includes a first button and a first trunnion connected to the first button. The guide vane further includes an airfoil connected to the first button. The airfoil includes a leading edge, a trailing edge, and a first overhang portion. The first overhang portion extends from one end of the first button to a distal end of the airfoil. The guide vane also includes a first button corner located between the airfoil and first button near the beginning of the first overhang portion. The guide vane also includes a first variable fillet extending between the first button and airfoil and extending into the first overhang portion, the first variable fillet including sections of different radiuses.
The systems and methods disclosed herein include a guide vane. The guide vane may include a first button, a first trunnion connected to the first button, and an airfoil connected to the first button. The airfoil may include a leading edge, a trailing edge, and a first overhang portion. The first overhang portion extends from one end of the first button to a distal end of the airfoil. The guide vane also includes a first variable fillet extending between the first button and airfoil and extending into the first overhang portion, the first variable fillet including sections of different radiuses. One of the sections of different radiuses is a first bulge located near the first button corner. The first bulge may provide local thickening of the first button corner to decrease vibration and stress. This may prevent cracking and other defects.
In addition, the disclosure may generally reference a center axis 95 of rotation of the gas turbine engine, which may be generally defined by the longitudinal axis of its shaft 120 (supported by a plurality of bearing assemblies 150). The center axis 95 may be common to or shared with various other engine concentric components. All references to radial, axial, and circumferential directions and measures refer to center axis 95, unless specified otherwise, and terms such as “inner” and “outer” generally indicate a lesser or greater radial distance from, wherein a radial 96 may be in any direction perpendicular and radiating outward from center axis 95.
A gas turbine engine 100 includes an inlet 110, a shaft 120, a gas producer or compressor 200, a combustor 300, a turbine 400, an exhaust 500, and a power output coupling 600. The gas turbine engine 100 may have a single shaft or a dual shaft configuration.
The compressor 200 includes a compressor rotor assembly 210, compressor guide vanes (sometimes referred to as stators or stationary vanes) 250, and inlet guide vanes 255. As illustrated, the compressor rotor assembly 210 is an axial flow rotor assembly. The compressor rotor assembly 210 includes one or more compressor disk assemblies 220. Each compressor disk assembly 220 includes a compressor rotor disk that is circumferentially populated with compressor rotor blades. Guide vanes 250 axially follow each of the compressor disk assemblies 220. Each compressor disk assembly 220 paired with the adjacent guide vanes 250 that follow the compressor disk assembly 220 is considered a compressor stage. Compressor 200 includes multiple compressor stages. In some embodiments, guide vanes 250 within the first few compressor stages are variable guide vanes. Variable guide vanes may each be rotated about their own axis to control gas flow. Variable guide vanes generally do not rotate circumferentially about center axis 95.
Inlet guide vanes 255 axially precede the compressor stages. Inlet guide vanes 255 may be rotated to modify or control the inlet flow area of the compressor 200 by an actuation system 260. In some embodiments, inlet guide vanes 255 are variable guide vanes and may be rotated about their own axis.
Actuation system 260 includes actuator 261, actuator arm 262, and a linkage system 263. Actuator 261 moves actuator arm 262 that moves or translates the components of the linkage system 263. The linkage system 263 includes linkage arms 264. A linkage arm 264 may be connected to each inlet guide vane 255 and each stator 250 variable guide vane. When actuator arm 262 is moved it causes each linkage arm 264 to be moved and rotate each inlet guide vane 255 and each stator 250 variable guide vane. The actuator 261, actuator arm 262, and linkage arms 264 may be coupled together and configured to rotate each variable guide vane the same amount.
The combustor 300 includes one or more injectors 310 and includes one or more combustion chambers 390.
The turbine 400 includes a turbine rotor assembly 410, turbine disk assemblies 420, and turbine nozzles 450.
As illustrated in the figure, inner button 230 and outer button 234 may be a cylindrical platform including an outer cylindrical surface, a top surface, and a bottom surface opposite the top surface. Airfoil 240 may extend in a first direction from the top surface of inner button 230. In some embodiments, the airfoil 240 extends axially outwards from the top surface of inner button 230. Inner trunnion 231 may extend in a second direction from the bottom surface of inner button 230, opposite the first direction of the airfoil 240. In some embodiments, inner trunnion 231 extends outwards from the bottom surface of inner button 230 in an axial direction opposite the airfoil 240. Inner trunnion 231 may be a support structure and may be used for rotation of the guide vane 250. Airfoil 240 may extend to the bottom surface of outer button 234. Outer trunnion 235 may extend in the first direction, or axial direction, from the top surface of outer button 234, in a similar fashion as inner button 230 and inner trunnion 231.
An inner fillet 233 (sometimes referred to as first fillet) may form a curved extrusion extending between the top surface of inner button 230 and airfoil 240. An outer fillet 236 (sometimes referred to as second fillet or outer variable fillet) may form a curved extrusion extending between the bottom surface of outer button 234 and airfoil 240. In preferred embodiments, both inner fillet 233 and outer fillet 236 are variable fillets. Both fillets may be a concave curved extrusion. Variable fillets, as explained in
Variable fillet 233 may extend a certain distance into an overhang portion (sometimes referred to as inner overhang portion) 241 of airfoil 240. Overhang portion 241 of the airfoil 240 may include the region of the airfoil 240 extending from a button face 243 to trailing edge 239 of the airfoil 240. Button face 243 may be a circumferential end of the button. In some instances, button face 243 may be flat. In some instances, variable fillet 233 may extend less than 50% the length of the overhang portion 241. By extending less than 50% the length of the overhang portion 241, a termination point of variable fillet 233 terminates at a location less than 50% of the length of the overhang portion 241. The termination point may be one end of variable fillet 233. In other instances, variable fillet 233 extends less than 40% the length of the overhang portion 241. In other instances, variable fillet 233 extends less than 33% the length of the overhang portion 241. In other instances, variable fillet 233 extends less than 25% the length of the overhang portion 241. In other instances, variable fillet 233 extends less than 20% the length of the overhang portion 241. In other instances, variable fillet 233 extends less than 10% the length of the overhang portion 241. In other instances, variable fillet 233 extends less than 5% the length of the overhang portion 241.
The intersection of the button face 243 and the overhang portion 241 may form a button corner 232 (sometimes referred to as inner button corner). During operation, defects such as cracks may form in the button corner 232 due to high vibration and high stress. In certain embodiments, variable fillet 233 may aid in reducing such vibration and stress.
In some embodiments, a leading button corner 229 may form on the other side of button 230 opposite button corner 232 (leading button corner 229 may form on the same side as leading edge 238, whereas button corner 232 may form on the same side as trailing edge 239). Furthermore, an outer button corner (not pictured) may form between outer button 234 an airfoil 240. Variable fillet 233 may extend past leading button corner 229 towards leading edge 238. In some embodiments, variable fillet 233 extends less than 50% the length of the airfoil between leading button corner 229 and leading edge 238.
In alternative embodiments, variable fillet may extend in limited segments within transition area 244. In other embodiments, variable fillet may extend in a limited segment encompassing the button corner.
Variable fillet 233 may be a curved extrusion wherein the radius of the curvature of the extrusion varies along the length of the fillet. Certain sections of variable fillet 233 may be thicker than other sections. Such sections may strengthen the variable fillet 233 and prevent cracks from forming. In certain embodiments, a thicker section of the variable fillet 233 forms a bulge 242. Bulge 242 may be a rapidly expanding thicker section where the bottom of the fillet rapidly expands across bulge 242. Variable fillet 233 may also taper, such as in a narrow section 237, to allow for increased airflow, or to minimize material cost. Narrow section may be located within a portion of the fillet distal from bulge 242. Variable fillet 233 may taper and expand gradually throughout any section of the fillet including narrow section 237 and bulge 242. In preferred embodiments, a thicker section forms at both ends of transition area 233. Bulge 242 may form proximal button corner 232, and leading bulge (sometimes referred to as second bulge) 249 may form proximal leading button corner 229.
In certain embodiments, button face 243 may be flat. This may provide clearance for installation of the guide vane.
In some embodiments, variable fillet 233 is a compound fillet as illustrated in
As the variable fillet 233 extends radially from one end to the other, the radius of the lower curve 245 and upper curve 246 may vary proportionally. For example, in comparison to the cross section in the bulge area as discussed above, a cross section in the narrow section 237 of the variable fillet may include a proportionately smaller radius in the lower curve and upper curve.
Airfoil 240 may include an airfoil base width 247 (sometimes referred to as inner airfoil base width 247) at the intersection of variable fillet 233 and airfoil 240. The width of the airfoil may expand to a fillet base width 248 (sometimes referred to as inner fillet base width 248) at the inner surface of variable fillet 233. In some embodiments, fillet base width 248 may be 20-150% wider than airfoil base width 247. In further embodiments, fillet base width 248 may be 90-120% wider than airfoil base width 247.
In certain embodiments, variable fillet 233 extrudes with a circular curvature along the length of the fillet. In such embodiments, the radius of upper curve and lower curve is the same at any cross section along the fillet.
Although not pictured, outer button 234 and outer fillet 236 may include similar features as inner button 230 and inner fillet 233. For example, outer fillet 236 may extend a certain distance into an outer overhang portion. In some instances, outer fillet 236 may extend less than 50% the length of outer overhang portion. Airfoil 240 may include an outer airfoil base width at the intersection of outer fillet 236 and airfoil 240, which may expand to an outer fillet base width at the outer surface of outer fillet 236.
One or more of the above components (or their subcomponents) may be made from a base material that is stainless steel and/or durable, high temperature materials known as “superalloys”. A superalloy, or high-performance alloy, is an alloy that exhibits excellent mechanical strength and creep resistance at high temperatures, good surface stability, and corrosion and oxidation resistance.
Superalloys may include materials such as alloy x, WASPALOY, RENE alloys, alloy 188, alloy 230, alloy 17-4PH, INCOLOY, INCONEL, MP98T, TMS alloys, and CMSX single crystal alloys.
Gas turbine engines may be suited for any number of industrial applications such as various aspects of the oil and gas industry (including transmission, gathering, storage, withdrawal, and lifting of oil and natural gas), the power generation industry, cogeneration, aerospace, and other transportation industries.
Guide vanes may be susceptible to cracks from high vibrations and high stresses during operation. In particular, areas of intersection between structural parts may create vulnerabilities. As illustrated in
Variable fillet 233 may, in some instances, be an elliptical fillet as described above. Elliptical fillets may provide for more efficient use of material and provide better castability or machining of the guide vane. Furthermore, elliptical fillets may provide for improved design of variable fillet 233. For example, as depicted in
The preceding detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. The above description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles described herein can be applied to other embodiments without departing from the spirit or scope of the invention. Thus, it is to be understood that the description and drawings presented herein represent a presently preferred embodiment of the invention and are therefore representative of the subject matter which is broadly contemplated by the present invention. It is further understood that the scope of the present invention fully encompasses other embodiments that may become obvious to those skilled in the art and that the scope of the present invention is accordingly limited by nothing other than the appended claims.