Various embodiments are described herein relating generally to the field of antennas, and more particularly to conformal antenna arrays.
There is a need for lightweight, structural panel arrays in sensor platforms, such as the AWACS, Predator, and other unmanned air vehicles. Many such aerospace applications require that the antenna be built onto the skin of the sensor platform, thereby requiring an exposed surface, or face, of the antenna aperture to be conformal or curved. Such conformal panel arrays require variable height radiating aperture since the backside electronic panels are typically planar. Also, as structural members, such arrays require load-bearing apertures.
It is generally desirable that aperture performance be maintained over a wide bandwidth and a wide scan range (e.g., a 40% bandwidth and a 60-degree conical scan). One of the difficult challenges in constructing such variable height antenna apertures is that anomalies are introduced into the array performance, at least in part, due to surface waves generated and supported by such a curved aperture. As individual radiating element of such a conformal array radiate electromagnetic energy, at least a portion of the energy is typically directed towards the backplane. This situation results in reflections of the electromagnetic waves, with implications to performance parameters, such as the radiation pattern and efficiency (e.g., variations to driving point impedance, which lead to increased return loss). Such effects can be compensated for, at least to some extent, for single radiator embodiments, or arrays with uniform antenna height above the backplane. A serious complication, however, in dealing with conformal arrays is that the various radiating elements are each disposed at different heights adding a multi-dimensional complexity. Consequently, such conformal arrays may operate with restrictions or undesirable constraints to parameters, such as radiation pattern performance (e.g., gain, side lobe suppression, beam widths) and bandwidth (e.g., return loss, VSWR).
One solution uses a faceted approach, in which both the aperture and the array electronics are locally planar, with portions of the array being displaced from a common plane according to the desired array profile. Another approach requires that the entire aperture and array electronics each be curved in a similar manner, so that the radiating elements effectively “see” a constant ground plane height. From an aperture design standpoint, aperture can be treated as a circular or cylindrical array. Either category of approach adds complexity to the overall antenna assembly design, as electronic modules and other components associated with such arrays must be housed according to complicated geometries.
Described herein are embodiments of systems and techniques for developing a variable height radiating aperture that can be incorporated in a structural conformal array having a substantially planar backplane.
In one aspect, at least one embodiment described herein provides an antenna array including an electrically conducting ground plane and first and second electrically conducting walls, each extending between a respective lower edge and a respective upper boundary. The first wall is in electrical contact with the ground plane along its lower edge and extends away from the ground plane. The antenna array also includes a first group of antennas, each antenna of the first group disposed at a uniform distance relative to the upper boundary of the first wall. The second electrically conducting wall is also in electrical contact with the ground plane along its lower edge and also extends away from the ground plane substantially parallel to the first wall. The second wall includes a second group of antennas, each antenna of the second group disposed at a uniform distance relative to the upper boundary of the second wall. The first and second electrically conducting walls are separated from each other by a separation distance. At least one region of the respective upper boundary of each of the first and second walls is disposed at a different height with respect to other regions of the upper boundaries of the first and second walls, when measured with respect to the ground plane.
In some embodiments, the separation distance is less than about one-half a shortest anticipated wavelength of operation. Generally, each antenna of the first and second pluralities of antennas is positioned for maximum radiation in a direction away from the ground plane. Each antenna of the first and second groups of antennas can be selected from the group consisting of: notch antennas; dipole antennas; patch antennas; travelling wave antennas; directional antennas and combinations thereof.
In at least some embodiments, the antenna array further includes an orthogonal electrically conducting wall extending between a lower edge and an upper boundary, the orthogonal wall being in electrical contact with the ground plane along its lower edge and extending away from the ground plane, the orthogonal wall also intersecting each of the first and second walls at an intersection angle. In some embodiments, a third group of antennas is provided, with each antenna disposed at a uniform distance relative to the upper boundary of the orthogonal wall.
In some embodiments, at least some antennas of the third group of antennas disposed on the orthogonal, wall respectively bisect antennas of at least one of the first and second groups of antennas. Each of the bisected antenna pair of the first and third groups of antennas and the second and third groups of antennas can be adapted for common-phase center, dual-polarized, or elliptically polarized operation.
In some embodiments, the antenna array further includes phase offsets in electrical communication between pluralities of antennas. The phase offsets are adapted to steer a radiation pattern of the antenna array.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
A description of embodiments of systems and processes for developing a variable height radiating aperture that can be incorporated in a structural conformal array having a substantially planar backplane follows. More particularly, the radiator design and techniques described herein are insensitive to variable ground height. This can be accomplished by selecting a suitable radiating element (e.g., an endfire radiating element, such as a dipole or a flared notch), in which the outer extremities or “tips” of the radiating element follow a curvature shape. The same radiator profile can be maintained across the aperture. Differences in radiator heights can be taken up by vertical ground planes disposed between the radiating elements and the ground planes, which forms cutoff waveguide sections that naturally provide a virtual curved ground plane for the radiating elements. Differences in radiator path lengths can be corrected electronically by standard techniques, for example in a transceiver module. In addition, the new aperture has lower front-end loss and offers growth to wider band applications (>40% BW) than existing designs that require a separate balun layer.
A variable-height radiator includes an antenna array formed by multiple antenna elements. The radiating elements collectively define an antenna aperture that follows a line or surface that is disposed in a non-parallel arrangement with respect to a planar backside. For example, such an array aperture can follow a curve, such as a radius of curvature making it well suited for panel array applications. In at least some embodiments, such antenna apertures can be made structural and load-bearing. The devices, systems and techniques described herein provide a simplified RF transition, which simplifies grounding requirements for such arrays, such as the tying of vertical radiator strips to a horizontal ground plane. The approaches described herein can be extended to nonlinear polarizations, for example, by providing a dual polarized aperture.
A schematic representation of vertical radiator strip portion of a prior art antenna array is shown in
An outer edge 108 of the vertical plane 104 defines an array aperture curve that is non-parallel to horizontal ground plane 106. The aperture curve 108 resides in one or more of an elevation plane or azimuthal plane. Each element 102 of each sub array 100 is positioned at a respective height Hn above the horizontal ground plane 106. In particular, the height of each of the portrayed sub array elements 102 differs from its neighbors according to the aperture curve 108. The outer-most portions of the radiating elements 102 (i.e., tops) effectively define, or otherwise follow the aperture curve 108.
Also shown are example transmission lines or “feed” lines 110 for each radiating element 102, extending upward from the horizontal ground plane 106 toward an input or driving point of the radiating element 102. The lengths of such feed lines 110 also vary according to their respective element heights above the backplane. Electronics (not shown) as may be used with such an array 100 can be positioned along an opposite side of the horizontal ground plane 106, such that the ground plane 106 serves as an electromagnetic shield, protecting the electronics from external radiation, such as radiation from the elements 102 themselves. Accordingly, each of the feed lines 110 is shown as crossing through the horizontal ground plane 106 allowing for interconnection to such electronics. As with any antenna array, the electronics can include one or more of transmitters, receivers, interconnecting transmission lines, phase adjusting elements, fixed phase offset elements, amplifiers, filters, attenuators, couplers, control processors, and the like.
Interactions between the radiating elements 102 and the horizontal ground plane 106 produce reflections that otherwise affect overall performance of the array. With each sub array element having a different respective spacing to the ground plane 106, there are multiple different interactions (e.g., reflections) that can negatively impact overall performance of the array 100. Such multiple reflections could impact sidelobe suppression, or at least complicate processing to control of such sidelobe suppression. Alternatively or in addition, the non-uniform spacing might impact bandwidth performance, for example, by introducing or otherwise complicating the control of reflected energy from the antenna elements (e.g., return loss).
Beneficially, the devices, systems and techniques described herein are substantially insensitive to variable ground plane heights. A schematic representation of an embodiment of a height-insensitive antenna array is shown in
In the illustrative embodiment, each of the radiating elements 204 is substantially identical, having uniform dimensions, particularly with respect to height D measured within a plane parallel to the vertical plane 206. Those portions of the individual radiating elements 204 farthest from the backplane 208 (i.e., tops) define an aperture curve 210a, 210b (generally 210), similar to the aperture curve 108 illustrated in
In an important distinction, however, each of the vertical planes 206 includes a respective virtual ground boundary 216a, 216b (generally 216) within the respective plane 206. The virtual ground boundary 216 is selected to provide a uniform spacing D to the respective aperture curve 210, and similarly to each of the antenna elements 204. In the illustrative example, the virtual ground boundary 216 is positioned to coincide with the driving points 214 of each of the antenna elements 204, although this is in no way meant to be limiting. Conceivably, the virtual ground boundary 216 could reside above or below the respective antenna element driving points 214, as long as the separation between the virtual ground boundary 216 and the aperture curve 210 is constant in at least each of the antenna sub arrays 202.
At least a substantial portion of the region between the virtual ground boundary 216 and the backplane 208 is electrically conducting. In the illustrative example, the entire vertical plane 206 below the virtual boundary 216 and the backplane 208 is formed by an electrically conducting plane, referred to as a vertical ground plane 206. It is conceivable that the vertical ground plane 206 and the backplane 208 are in electrical contact with each other.
In operation, at least a portion of radiated energy from the antenna elements 204 is directed toward the backplane 208. Without the benefits provided by the virtual ground boundary 216, such energy would otherwise reflect from the backplane 208 and interact with radiated energy from the radiating element 204 and perhaps other radiating elements 204 in a manner dependent upon the non-uniform spacing of the aperture curve 210 above the backplane 208. By the nature of the vertical conducting ground planes 206, however, an electromagnetic phenomenon referred to as “waveguide below cutoff” can result in dramatic reduction if not elimination of electromagnetic interaction between the antenna elements 204 and the backplane 208.
Conceptually, the two vertical ground planes 206 can be considered to form a parallel plate waveguide. Electromagnetic energy directed from the antenna elements toward a parallel plate waveguide opening formed by the virtual ground boundaries 206 of each of the vertical ground planes 206 can give rise to propagating waveguide modes within the waveguide, depending upon the wavelength of the radiation and the separation of the walls of the waveguide (i.e., separation S between the vertical ground planes 206). With such waveguides, however, there is a wavelength above which substantially no propagating modes can be supported. Such a wavelength is referred to as a cutoff wavelength λc and for the parallel plate waveguide configuration illustrated herein, generally corresponds to about one-half of the highest operating frequency (i.e., one half the shortest wavelength λmin/2). Thus, separation between adjacent vertical planes 206 can be selected to establish a cutoff frequency fc, thereby isolating the radiating elements 204 from the backplane 208.
The exposed edges of parallel plate waveguide structures formed by leading edges 216 of the vertical planes 206 effectively establish a new, virtual ground boundary. Beneficially, upon proper selection of shape and position of the leading edges 216, the virtual ground boundary 216 can be uniformly separated from the aperture curve 210, as illustrated. This results in the introduction of a virtual ground plane to provide the radiating elements an equivalent constant electrical height ground plane. A significant benefit of such spacing is reduction or elimination of unwanted reflections from the non-uniformly spaced backplane 208 in favor of reflections from the uniformly spaced virtual ground plane 216.
The ground “trough” created by adjacent elements acts like a cutoff waveguide. Most of the backward traveling energy will not reach the horizontal ground plane if the ground trough is greater than about λ/8.
A schematic representation of another embodiment of an antenna array is shown in
Disposed above each of the vertical ground planes 302, 306 are a respective number of antenna elements 308. The antenna elements 308 can be located at the intersection of the vertical planes 302, 306, as shown, or along the respective vertical ground planes 302, 306 between the intersections. When formed at the intersections, the antenna elements 308 can be formed as “crossed” elements, such as crossed dipoles.
As in the example described above in reference to
In egg-crate-style embodiments, the equivalent waveguide structures can be considered as rectangular waveguides. Column separation Sc between vertical ground planes 306 and row separation Sr between vertical ground planes 302 can be established based upon intended frequencies of operation to ensure that waveguide below cutoff criteria are satisfied over the entire frequency band of operation.
With crossed elements 308, such as crossed notch radiators, it is possible to provide horizontal polarization, vertical polarization, right-hand circular polarization and left-hand circular polarization. Of course, circular polarization would require an appropriate feed design providing a phase offset (e.g., +/−90 degrees) between each portion of the crossed element.
The antenna elements in any of the embodiments described herein can be any suitable radiating elements, including generally narrowband elements, such as monopoles, dipoles, patches, and generally broadband elements, such as flared notches and the like. In at least some embodiments, the antenna elements themselves can be array-type elements, such as Yagi Uda array, log periodic structures, such as log periodic dipoles, log periodic spirals, and the like.
In some embodiments, one or more of the ground planes can be formed from rigid metals, such as sheet metals or castings. Alternatively or in addition, one or more of the ground planes can be formed from layered structures, such as metals layered on a substrate. Some examples include printed circuit board type structures, such as microstrip, stripline, and the like. Other structures include metal coated insulators, such as a rigid polymer (e.g., plastic) coated with a conductive layer. Such polymer substrates can be formed from any suitable known technique, such as blow molding, casting, and the like. Conductive coatings can be applied according to any of a number of known techniques, such as painting, dipping, laminating, and the like. When serving as structural members, selection of substrate material and/or thickness can be taken into consideration in view of anticipated loading requirements.
A planar view of a portion of another embodiment of antenna sub array is shown in
In the illustrative embodiment, the feed line 410 is formed using microstrip techniques, such that a conductive strip is run along and above a ground plane. Here, the ground plane of the microstrip feed line 410 is contiguous with the conductive portions forming the flared notch antenna elements 402. A signal contact 412 for the microstrip signal line 410 is shown extending beyond the lower edge 408 of the vertical ground plane, suitable for interconnection to antenna array electronics, for example, through the horizontal ground plane (not shown). Also shown are two ground contact tabs 414 also extending beyond the lower edge 408 of the vertical ground plane. In at least some embodiments, such tabs 414 are suitable for electrical interconnection to the horizontal ground plane. Greater or fewer numbers of ground contacts 414 can be provided. In at least some embodiments, an ground contact 414 can be formed along substantially the entire lower edge of the vertical ground plane 404 and the horizontal ground plane, for example, by soldering, welding, or the like. It is worth noting that one of the advantages of establishing a waveguide below cutoff configuration is that it lessens restrictions in interconnecting the bases of the vertical ground planes to the horizontal ground planes, such that one or two contact tabs per element can suffice.
A dashed curve 416 is drawn through a common portion of each flared-notch antenna elements 402, generally corresponding to the elements driving point. As can be observed, the dashed curve 416 generally follows the aperture curve 406, being displaced from the aperture curve 406 by a distance corresponding to the antenna element height D. The dashed curve 416 corresponds to a virtual ground boundary, considering the microstrip backing portion extending from the antenna element feed point to the lower edge 408 as a ground plane 418. Beneficially, the virtual ground boundary 416 will serve as an approximate boundary for waveguide below cutoff phenomena when two or more like sub arrays 400 are positioned parallel to each other.
A perspective view of an embodiment of a flared-notch antenna element 402 usable in any of the antenna arrays described herein is shown in
The flared-notch element 402 is fed by a microstrip line 460 extending upward from the lower edge 456 and crossing a narrowed, driving point of the flared-notch element 402 at a right angle. The microstrip line 460 forms another 90 degree turn upwards forming a stub tuning element 462 configured to form an optimal impedance match to the flared-notch element 402 according to well-known antenna design techniques. The two parallel conducting surfaces 452 are contiguous with a vertical ground plane surface 464 extending from a driving point of the antenna element 402 downward to the lower edge 456. A rectangular aperture 466 formed at the base of the flared-notch element 402 is also provided as part of the antenna element feed and matching network.
The horizontal ground plane 458 includes a conducting surface formed on a supporting substrate 468. The microstrip line 460 can extend through an aperture in the ground plane 458 to an opposite side of the ground plane 458 to facilitate interconnection to other electronic circuitry as may be provided for use with antenna arrays.
Referring to
In at least some embodiments, one or more of the supporting substrates 461, 470 can be structural elements. It is further contemplated that a radome 473 (shown in phantom) could be combined with any of the antennas or antenna array structures described herein. As illustrated, the radome 473 can be disposed above the ground plane 458, effectively sandwiching the sub arrays 400 between the radome 473 and the ground plane 458. In at least some embodiments, the radome 473 can follow aperture curve 406 or contour of the various sub arrays 400. It is also conceivable that such a radome can be formed upon the sub arrays 400 using standard radome construction techniques and relying on the sub arrays 400 to provide structural support for the radome. Examples of such radomes include thicknesses of 17.6 mils and 35.2 mils, for example, fabricated from cyanate ester quartz (CEQ).
The antenna arrays described thus far are generally part of a larger antenna array assembly. An exploded perspective view of an embodiment of such an antenna assembly including a conformal antenna array 500 is shown in
The electronics module 504 includes electronic assemblies and/or components as may be necessary for operation of the antenna array assembly 500. For example, the electronics module 504 typically includes an RF distribution network configured to selectively interconnect one or more of the antenna elements to one or more of a transmitter and a receiver. The RF distribution network may include one or more of transmission lines, RF couplers, switches, amplifiers, filters, attenuators, fixed phase offsets, such as delay lines, variable phase offsets, power supplies and control elements. In at least some embodiments, the control elements, in combination with other components of the electronics module, are adjusted to configure the antenna array assembly as a steerable phased array according to generally well known techniques. In at least some embodiments, one or more of the electronics module, the interface module and the antenna module are configured to provide thermal management. Such thermal management can be accomplished, for example, by one or more of heat sinks and active coolers. Such active cooling can include one or more of forced cooling air, circulating cooling fluid, and thermoelectric coolers.
In at least some embodiments, the antenna assembly 500 includes an interface module 506. For example, the interface module 506 can include, for example, a spring pin adapter plate to facilitate interconnection between the RF interface board 510 of the antenna assembly 502 with the electronics module 504. A perspective view of the antenna assembly 500 shown in
Referring to
Shown in
Any of the circuits described herein can be fabricated as integrated circuits having one or more electrically conductive layers (e.g., traces and ground planes) separated from each other by one or more insulting layers. Such circuits can be formed on a dielectric substrate, such as Silicon, Germanium, III-V materials, such as Gallium-Arsenide (GaAs), and combinations of such dielectrics. In some embodiments, the circuits are formed as a monolithic integrated circuit. Alternatively, circuits can be formed as multi-chip assemblies.
Comprise, include, and/or plural forms of each are open ended and include the listed parts and can include additional parts that are not listed. And/or is open ended and includes one or more of the listed parts and combinations of the listed parts.
One skilled in the art will realize the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting of the invention described herein. Scope of the invention is thus indicated by the appended claims, rather than by the foregoing description, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
This invention was made with Government support via Contract No. FA8650-08-D-3857. The Government may have certain rights in this invention.