The subject matter described herein relates to siderails of the type used on hospital beds and particularly to a siderail having a variable height that enables the siderail to comply with potentially conflicting design requirements.
Beds of the type used in hospitals, other health care facilities and home health care settings include a frame, a deck, a mattress resting on the deck and a set of siderails. The siderails have a deployed or raised position and a lowered or stored position. In the deployed position the top of the siderail should be a minimum distance above the top of the deck, and the bottom of the siderail should be low enough, and close enough to the neighboring lateral side of the deck, to ensure that any gap between the siderail and the deck is less than a specified amount, for example 60 mm. In the stowed position, the top of the siderail should be a minimum distance below the top of the mattress to facilitate occupant ingress and egress, and the distance from the bottom of the siderail to the floor should be no less than a prescribed amount, for example 120 mm. A siderail tall enough to satisfy the requirements of the deployed state may be too tall to satisfy one or both of the requirements of the stored state. Conversely, a siderail short enough to satisfy the requirements of the stored state may be too short to satisfy one or both of the requirements of the deployed state.
Siderails should also be designed to minimize “pinch points”, i.e. spaces large enough to receive a foreign object when the siderail is in one position, but which become small enough to trap the object when the siderail is placed in a different position.
A siderail comprises a rail having a lower edge extending longitudinally from a head end to a foot end, and a longitudinally outer link comprising a head side outer link segment and a foot side outer link segment. Each segment is connected to the rail at a joint OR and connected to a host frame at a joint OF. The siderial also includes an inner link longitudinally intermediate the outer link segments and connected to the rail at a joint IR and to the host frame at a joint IF. The head side outer link segment extends longitudinally from approximately the head end of the rail lower edge toward the inner link without longitudinally overlapping the inner link. The foot side outer link segment extends longitudinally from approximately the foot end of the rail lower edge toward the inner link without longitudinally overlapping the inner link.
The foregoing and other features of the various embodiments of the siderail described herein will become more apparent from the following detailed description and the accompanying drawings in which:
Referring to
The bed also includes left and right head end siderails 50, 52 and left and right foot end siderails 54, 56. The head end siderails are substantially mirror images of each other. Similarly, the foot end siderails are substantially mirror images of each other. Each head end siderail differs from its neighboring foot end siderail, however the differences do not extend to the variable height attribute described herein. Accordingly it will suffice to describe only one siderail in detail.
Referring to
Each outer link segment 82, 84 has a frame end 88, a rail end 90 and an elbow portion 92 extending between the frame and rail ends. The frame end 88 of each segment is connected to frame 28 at joints OF. The frame end 88 of each outer link segment has a longitudinally inboard edge 96 and a longitudinally outboard edge 98, the longitudinally inboard edge 96 being longitudinally closer to inner link 110, and the longitudinally outboard 98 edge being longitudinally further away from the inner link. The rail end 90 of each outer link segment extends from joint OR in a direction nonparallel to that of the frame end 88. For example, when the siderail is in the deployed state as seen in
The rail ends 90 of the outer link segments extend longitudinally toward the inner link, but not far enough to overlap the inner link, even partially. In the illustrated siderail, the rail end of the head side outer link segment 82 extends longitudinally from approximately the head end 74 of the rail lower edge, toward the inner link, and terminates at a terminus 100 longitudinally outboard of the inner link. The rail end of the foot side outer link segment 84 extends longitudinally from approximately the foot end 76 of the rail lower edge toward the inner link, and terminates at a terminus 102 also longitudinally outboard of the inner link. In the limit, terminus 100 of the head side outer link segment 82 would be no further inboard than the head side edge 116 of inner link 110, and terminus 102 of the foot side outer link segment 84 would be no further inboard than the foot side edge 118 of inner link 110.
The rail end 90 of each outer link segment 82, 84, in addition to being connected to rail 70 at a joint OR, is also connected to rail 70 at a joint P near the longitudinal ends 74, 76 of the rail. Joint P is a joint between the rail 70 and the wing portion 94 of rail end 90 of each link segment. Joint P defines a pivot axis Px which is common with pivot axis ORx of joint OR.
Rail end 90 of each outer link segment has a top edge 106 spaced from rail lower edge 72 along substantially all of the longitudinal extent of the rail end of the outer link thereby defining interedge space 130. The presence of inter-edge space 130 addresses a pinch risk that would be formed by edges 72, 106 if they were separated by a smaller distance. In the illustrated siderail any pinch risk is limited to the regions 132 where the wing portions 94 are in close proximity to the rail in order to be connected thereto at joint P. The space also facilitates cleaning. A larger space 130 will be more advantageous for limiting pinch risk and facilitating cleaning; a smaller space will be less advantageous. The size of space 130 may be determined by the siderail designer or prescribed by regulation or voluntary standards. As is evident from
In the deployed state (e.g.
In the embodiment of
The above mentioned two piece construction leads to an alternative interpretation in which a siderail 52′ comprises a rail 70′ having an upper panel 70 and a lower panel 94′. The upper panel lower edge 72 extends longitudinally from upper panel head end 74 to upper panel foot end 76. The siderail also includes longitudinally outer link 80 comprising head side outer link segment 82 and foot side outer link segment 84. Each outer link segment comprises the arm 140 comprising frame end, rail end and elbow portions 88, 90, 92 respectively, and the separately manufactured panel 94′ affixed to its rail end by fasteners 142. The siderail also includes inner link 110 longitudinally intermediate the outer link segments. The inner link is connected to the upper panel 70 at joint IR and to the host frame 78 at joint IF.
The rail lower panel 94′ comprises head side and foot side subpanels 94′H, 94′F, each of which is connected to one of the outer link segments by the fasteners 142 so that the subpanels, and therefore the lower panel 94′ as a whole, are stationary with respect to the outer link 80. The lower panel extends longitudinally from substantially the head end 74 to the foot end 76 of the upper panel lower edge 72 without longitudinally overlapping or crossing over the laterally outer side 112 of the inner link. The illustrated lower panel avoids crossing over the inner link by virtue of the twin panel construction in which subpanel 94′H extends longitudinally footwardly toward the inner link but has a terminus 100 longitudinally outboard of head side edge 116 of the inner link, and subpanel 94′F extends longitudinally headwardly toward the inner link but has a terminus 102 longitudinally outboard of inner link foot side edge 118.
As shown in
Top edge 106 of each subpanel is spaced from upper panel lower edge 72 along substantially all of the longitudinal extent of the lower panel thereby defining the interedge space 130.
In the deployed state (
In the foregoing description, terms such as “inner” and “outer” (describing laterally opposite sides of the inner link) and “top” (describing an edge of the rail end of the outer link segments or subpanels) were chosen based on the deployed orientation of the siderail components as seen, for example, in
Although this disclosure refers to specific embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the subject matter set forth in the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
7028352 | Kramer | Apr 2006 | B2 |
7073220 | Simmonds et al. | Jul 2006 | B2 |
7350248 | Hensley et al. | Apr 2008 | B2 |
7467427 | Wu | Dec 2008 | B1 |
7676862 | Poulos | Mar 2010 | B2 |
20020144348 | Ganance | Oct 2002 | A1 |
20080201844 | Gemeline et al. | Aug 2008 | A1 |
20090144898 | Wu et al. | Jun 2009 | A1 |
20120023666 | Heimbrock et al. | Feb 2012 | A1 |
20120102643 | Turner et al. | May 2012 | A1 |
20120144583 | Turner | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2210529 | Jul 2010 | EP |
Entry |
---|
User Manual AvantGuard® 1600/LI160Ax Electric bed, 149214 Rev.006, Mar. 2010. |
User Manual Affinity® Three Birthing Bed and Affinity® Four Birthing Bed From Hill-Rom Product No. P3700 USR025 Rev 4. Dec. 2009. |
Service Manual AvantGuard® 1600 Electric bed LI160Ax 149223 Rev.002. Second edition, Apr. 2010 first printing Mar. 2008. |
Service Manual AvantGuard® 1600 Electric bed with weigh system LI160A2. 155725 Rev.003. Third edition, Apr. 2010 first printing 2009. |
Service Manual Hill-Rom® Basic Care™ Bed, Hill-Rom® 305 Manual Bed, Hill-Rom® 405 Electric Bed From Hill-Rom Product No. P1440/P1441 MAN336 Rev 2. Second Edition Mar. 2008 First Printing May 2004 Printed in the USA. |
User Manual Hill-Rom® Basic Care™ Bed, Hill-Rom® 305 Manual Bed, Hill-Rom® 405 Electric Bed From Hill-Rom Product No. P1440/P1441 USR124 Rev 7. Seventh Edition Dec. 2007First Printing Mar. 2004. |
Affinity Siderails Photographs: Dated Dec. 2009 numbered 1-6. |
Number | Date | Country | |
---|---|---|---|
20120023667 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61369152 | Jul 2010 | US |