The disclosed embodiments relates in general to a variable height vehicle and, more specifically, to a variable height vehicle with a constant wheelbase
Variable height vehicles are known in the art. Such vehicles may be used for high clearance agricultural uses such as spray boom applicators or may be used to level the vehicle over sloped or otherwise uneven terrain.
One type of such prior art machine uses swing arms coupled to each wheel. While this construction allows for the wheels of the vehicle to be independently raised and lowered, such constructions have numerous drawbacks. One such drawback is the limited height adjustment associated with most prior art swing arms. An additional drawback of such prior art devices is that raising and lowering the height of a vehicle using swing arms changes the length of the wheelbase of the vehicle, causing additional problems such as instability and an altered turn radius.
It is also known in the prior art to provide vehicles with wheels extended by hydraulic cylinder. While it is possible to use hydraulic cylinders to raise and lower wheels of a vehicle directly while maintaining a predetermined wheel base length, hydraulic cylinders are only feasible for raising and lowering vehicles a short distance. Raising the vehicles a longer distance requires large, heavy, and expensive hydraulic cylinders. Accordingly, it is known in the art to use hydraulic cylinders in association with a scissor assembly to increase the length of the height adjustment with smaller hydraulic cylinders. One drawback associated with such devices is the scissor assemblies alter the wheelbase of the vehicle, leading to instability and an altered turn radius.
It is also known in the art to use other hydraulically actuated linkage assemblies. While such systems do increase the distance traveled over a straight hydraulic cylinder, to obtain a large vehicle height adjustment, such linkages have to be large and cumbersome. It would therefore be desirable to provide a variable height vehicle with a robust compact system for varying vehicle height by a large distance while maintaining the wheelbase and turn radius of the vehicle. The difficulties discussed herein above are sought to be eliminated by the present invention.
The present invention includes systems and methods for raising and lowering the height of a vehicle. The system uses a four-bar linkage assembly coupled to the frame of a vehicle. The four-bar linkage assembly includes a first linkage assembly and a second linkage assembly. The first linkage assembly includes a first linkage pivotably coupled to the frame, a second linkage pivotably coupled to the first linkage, and a third linkage pivotably coupled to the frame and to the second linkage. The second linkage assembly includes a fourth linkage pivotably coupled to the frame, a fifth linkage pivotably coupled to the fourth linkage, and a sixth linkage pivotably coupled to the frame and to the fifth linkage. A linear actuator is coupled to the sixth linkage, to raise and lower the four-bar linkage assembly in a generally straight line motion.
The features and advantages described in this summary and the following detailed description are not all-inclusive. Many additional features and advantages may be apparent to one of ordinary skill in the art in view of the drawings, specification and claims presented herein.
The present invention will now be described, by way of example, with reference to the accompanying drawings in which:
As shown in
The vehicle (10) is lifted and lowered by a plurality of closed chain linkages, which are preferably four-bar linkage assemblies (28). Separate four-bar linkage assemblies (28) are provided for each wheel (30) of the vehicle. As the four-bar linkage assemblies (28) are similar except for being mirror images of one another, description will be limited to a single four-bar linkage assembly (28).
As shown in
The leveling linkage (32) maintains the orientation of the leg (38) and wheel (30) as the vehicle (10) is raised and lowered by the lifting linkage (34). (FIGS. 1 and 5-6). The leveling linkage (32) also maintains the wheelbase and turning radius of the vehicle consistent as the vehicle (10) is raised and lowered. The leveling linkage (32) is pivotably coupled to the leg support structure (36). As shown in
The lifting linkage (34) includes a fourth linkage (62) having a first plate (64) and second plate (66) pivotably secured to the pin (42) on opposite sides of the main brace (40). (
As shown in
The four-bar linkage assembly (28) is coupled to the leg (38) by two pins (104 and 106)
By providing the steering assembly (116) between the suspension and the wheel, complicated prior art steering system linkage assemblies can be eliminated. Additionally, by providing the steering assembly (116) below the suspension, steering tolerances are tighter making the vehicle (10) easier to manage and allowing auto-steer systems to function more efficiently. Using the four-bar linkage described above allows a smaller hydraulic cylinder to lift the vehicle (10) a greater distance. In the preferred embodiment, the hydraulic cylinder is preferably a 61-centimeter hydraulic cylinder, which lifts the vehicle (10) 122 centimeters. Alternatively, any desired length of cylinders may be used from below 10 centimeters to in excess of 2 meters in length, depending on the application. Similarly, while in the preferred embodiment, the length of the cylinder to the lift height of the vehicle is 1 to 2, the angles and connection points of the four-bar linkage (28) may be modified to create a lift ratio anywhere from above 1 to 1, to 1 to 3 or more. The four-bar linkage assembly of the present invention also allows for four wheel independent suspension and a large under vehicle clearance that eliminates axles spanning the complete width of the vehicle. While the linkages of the four-bar linkage (28) in the preferred embodiment are steel, they may be constructed of any desired dimensions or material.
When it is desired to operate the vehicle (10) of the preferred embodiment, the user (20) manipulates the control panel (22) to direct hydraulic fluid from the hydraulic pump (16) to the hydraulic cylinders (90). The hydraulic cylinders (90) push the ends of the sixth linkages (94) away from the main braces (40), causing the fourth linkages to rotate around the main braces (40). This pushes the fourth linkages (62) downward in a straight line, thereby raising the vehicle (10) without changing the length of the wheelbase of the vehicle (10). When it is desired to lower the vehicle (10), the user (20) manipulates the control panel (22) to return hydraulic fluid from the hydraulic cylinders (90), thereby contracting the hydraulic cylinders (90), drawing the ends of the sixth linkages (94) toward the main brace (40) and rotating the fourth linkages (62) in the opposite direction. This draws the fifth linkages (70) upward, lowering the vehicle (10) without changing the length of the wheelbase (120).
As shown in
Although the invention has been described with respect to a preferred embodiment thereof, it is to be understood that it is not to be so limited since changes and modifications can be made therein which are in within the full, intended scope of this invention as defined by the appended claims.