Disclosed is a variable interlacing system for use in xerographic imaging. Variable interlacing provides automatic reconfiguration of imaging parameters in a printing machine. Print speed, format and resolution of the printed material may be traded-off against each other dynamically and on demand without changing any of the hardware, including the Raster Output Scanner (ROS).
Xerography is an electrostatic printing process where a latent image is formed on a specially coated charged surface, sometimes referred to as a photoreceptor, by the action of light, and the latent image is developed with powders that adhere only to electrically charged areas. One xerographic imaging process involves an array of laser sources irradiating an array of micromechanical mirrors to image a series of spots onto a moving photoreceptor. Spots form the basis of an image on the photoreceptor, and interlacing involves the sequence of forming of a series of spots on the photoreceptor.
Lasers or light emitting diodes (LEDs) may be used to expose spots on the photoreceptor. The photoreceptor has the property of holding an electrical charge in the absence of light. Illumination of a spot on the photoreceptor by a laser or LED causes the loss of charge at the exposed spot. In a typical xerographic system, charge left on the photoreceptor attracts toner that is then transferred to paper which has a greater charge than the photoreceptor. Single spot raster output scanning (ROS) print engines are known in the art.
A motor (not shown) rotates the polygon mirror about its central axis 41, as indicated by the arrow 43, at a substantially constant angular velocity. Polygon mirror 40 is optically aligned between laser 20 and photoreceptor 65 so that its rotation causes the laser beam 25 to be intercepted by and reflected from one after another of the mirror facets 45. As a result, beam 25 is cyclically swept across the photoreceptor 65 in a fastscan direction. Photoreceptor 65, on the other hand, is advanced (by means not shown) simultaneously in an orthogonal, process direction at a substantially constant linear velocity, as indicated by arrow 63 so that the laser beam 55 scans the photoreceptor 65 in accordance with a raster scan pattern. As shown, the photoreceptor 65 is coated on a rotating drum 60, though it will be apparent that it also could be carried by a belt or any other suitable substrate. Pre-scan and post-scan optics, 37 and 47, respectively, of ROS systems are well known in the art for providing any optical correction that may be needed to compensate for scanner wobble and other optical irregularities, and as they are not significant to the invention, they are not described in detail here in order not to unnecessarily obscure the present disclosure.
A flying spot scanner is described by Curry in U.S. Pat. No. 5,382,967. The scanner provides printing capability with a continuously tunable ROS. In another U.S. Pat. No. 5,638,107, Curry discloses a system for performing interlace scanning and formatting with plural light beams. However, it will be known to those skilled in the art of ROS systems that in order to maintain a particular resolution of an image on a photoreceptor of a certain speed, the rotation of the polygon mirror must also be maintained at a relatively constant rotational speed commensurate with the unvarying interlacing scheme of the present state of the art. It is desirable to be able to vary the resolution of the output image independent of the other parameters of the ROS system, such as the thruput of writing on the photoreceptor and the format of the printed material.
Aspects disclosed herein include
an apparatus comprising an electrostatic imaging station having a Raster Output Scanner (ROS); a data processing apparatus associated with said ROS; a photoreceptor configured to interact with said imaging station; one or more image data files in said electronic data modules to instruct a set of interlacing factors to said ROS; and one or more arrays of irradiative sources to execute said interlacing factors.
an apparatus comprising a Multi-Beam Raster Output Scanner (MBROS); a photoreceptor configured to interact with said MBROS; an electronic data module capable of interfacing with said MBROS; one or more image data files in said electronic data module to instruct a set of variable interlacing factors to said MBROS; and one or more beams to execute said interlacing instructions.
a method comprising creating an image file; assigning portions of said image file into buffers; mapping said image files into interlacing factors; directing said interlacing factors to a ROS; forming images on a photoreceptor corresponding to said interlacing factors; and printing images with different resolutions at different photoreceptor and ROS speeds, and any combinations thereof.
In embodiments there is illustrated:
a system for enabling multiple print speeds and resolutions by changing the interlace factor without any change to the ROS hardware. The system involves a multiple VCSEL (vertical cavity surface emitting laser) source array with which resolution and print speed can be traded off against each other in ROS printers by changing the interlace addressing schemes on-the-fly. The interlace scheme can be dynamically changed while keeping the same optical magnification through electronic data manipulations. To accommodate different slow scan addressability schemes, either the xerographic process speed or the ROS motor speed can be changed.
The printing machine architecture shown in
Each of the four processing stations 210, 220, 230 and 240 shown in
The process described above is repeated at the subsequent stations 220, 230 and 240 where the second, third and fourth electrostatic latent images are recorded, then exposed by respective VCSEL ROSs 225, 235 and 245 followed by depositing and developing toner particles in yellow, cyan and black, respectively. The black toner particles form a black toner powder image which may be partially or totally in superimposed registration with the previously formed cyan, yellow and magenta toner powder images. In this manner, a multi-color toner powder image is formed on the exterior surface of photoreceptor 205. Thereafter, photoreceptor 205 advances the multi-color toner powder image to a transfer station, indicated generally by the reference numeral 250. A receiving medium 260, e.g., paper, is advanced by sheet feeders (not shown) and guided to transfer station 250, where a corona generating device (not shown) sprays ions onto the back side of the paper. This attracts the developed multi-color toner image from the exterior surface of photoreceptor 205 to the sheet of paper. The photoreceptor 205 is then stripped away from the paper 260 having the toner image. A vacuum transport moves the sheet of paper 260 in the direction of arrow 203 to a fusing station (not shown). In the fusing operation, the toner particles coalesce with one another and bond to the sheet in image configuration, forming a multi-color image thereon. After fusing, the finished sheet is discharged to be collected by the printing machine operator.
The latent images that are recorded on photoreceptor 205 through exposure of the photoreceptor 205 by VCSEL ROSs 215, 225, 235 and 245 at their respective process stations 210, 220, 230 and 240 are governed by digital data provided at their respective ROS control modules (RCM) 217, 227, 237 and 247 shown in
Using ROS control module 247 as exemplary of the other RCMs 237227 and 217, RCM 247, like the others, receives pixel data from raster image module (RIM) 270, which in turn, receives a binary image (pixel) file from a contone rendering module (CRM) 280. (As is known in the art, contone rendering involves a combination of dithering-creating the illusion of new colors and shades by varying the pattern of dots- and printing at different levels of intensity to produce different colors and different shades of lightness and darkness). CRM 280 maps a binary image (pixels) file from the gray scale level for halftones, as interpreted by a digital front end (DFE) 290 of the electronics that controls the operation of the printer. DFE 290 interprets the various electronic files that command the processing of an image by the printer. The image data can be grayscale converted to multiple bits per pixel, or may be provided in binary format (i.e., one bit per pixel).
DFE 290 interprets the type of document (file type). The interpreted information includes whether or not the image is in color or black/white, the resolution of the image and whether the image is text or picture. This process is sometimes referred to as tagging an image. DFE also converts the information to a uniform file type that CRM 280 can understand. The information may then be used to set the parameters of the printing machine on demand and “on-the-fly”, as described more in detail later.
Interlacing involves exposing adjacent lines of dots of a particular color during sequential scans by a ROS. For example, odd numbered lines 1, 3, 5, etc., may be exposed during first scan, and even numbered lines 2, 4, 6, etc., during the next scan. In an embodiment,
A ROS capable of executing a reconfigured set of instructions received from the DFE of
Returning to
Along the same digital path 295, at the contone rendering module (CRM) 280 in
It will be noted that the conversion given above is based on a 45-degree contone screen angle. As is known in the art, for other color stations other angles must be used in order for the repetitive frequency patterns not to have Moiré (beating patterns) with each other. At different contone and resolutions, different number of grey levels are attained.
Following the digital path 295, the ROS interface module (RIM) 270 receives the binary files from CRM 280. RIM codifies the interlace factors which are dependent upon the desired print resolution and comprise the following resolution elements:
In an aspect of an embodiment described earlier, with 31 VCSEL beams shown in
The raster output scanners (ROSs) 215, 225, 235, 245 in
Hence, it will be apparent now that there are one or more different ways to enable multiple print speeds and resolutions by changing the interlace factor dynamically “on-the-fly”. In one embodiment, one may:
1. adjust the photoreceptor speed;
2. adjust the polygon mirror speed; or
3. adjust both polygon and photoreceptor speed.
In another embodiment, the ROS hardware can be made modular so that different characteristics of print speed, resolution for the same printing machine, may be obtained simply by exchanging one ROS for another and/or reprogramming the image files to affect the desired characteristics by making changes to the software. It will be understood that the photoreceptor may move at different speed to change line spacing. The data rates coming from the RIM 270 in
It will be appreciated that variations of the above-disclosed embodiments and other features and functions, or alternatives thereof, may be desirably combined into many other different devices or applications. For example, the embodiments may be practiced with other radiation sources such as the electron beam. Also that various presently unforeseen or unanticipated alternatives, modifications, variations or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.